Climate Validation of MERRA

Siegfried Schubert, Michael Bosilovich, Michele Rienecker, Max Suarez, Randy Koster, Yehui Chang, Derek Van Pelt, Larry Takacs, Man-Li Wu, Myong-In Lee, Scott Weaver, Junye Chen, Julio Bacmeister, Steve Bloom

and many others in the Global Modeling and Assimilation Office

5 January 2009 NASA/GSFC

Overview

- Global Climate Variability
- Regional Climate Variability
- Analysis Increments, Budgets and Replay

Results from GEOS-5 2004, 2006 validation runs and some updates using latest available results from MERRA

200 MB Zonal Wind vs EC OPS

GEOS-5

EC OPS

G5 - EC

ECMWF_OPS Jan04

GEOS5-DAS Jan06

GEOS-5 minus ECMWF Jan06

04 - 06

Jan 04

Jan 06

(weak

La Nina)

GEOS-5 minus ECMWF (Jan04 minus Jan06)

U*V* vs EC OPS

GEOS-5

EC OPS

G5 - EC

2004 Tropical Precipitation

Taylor diagrams for tropical precipitation. GPCP merged precipitation is the reference data set. The diagrams compare spatial correlation (to GPCP) of the analysis to standard deviation normalized by the reference data set. If a field exactly duplicated GPCP, it would be at the 1,1 point. Linear distance to the 1,1 point is a measure of skill in reproducing the reference data set (annual 1979-2005).

JFM 1998 EL NINO

Link to Weather

200mb Height and Precipitation Anomalies

7

Link to Ocean

SST and 850mb Wind Vector Anomalies http://snare.gsfc.nasa.gov/intranet/personnel/dvanpelt/MERRA/ENSO/jan98_v2/index.html

Validating 3 hourly Precipitation (Jan04)

MERRA

CMORPH (obs)

mm/day

Thanks to Matt Sapiano

Monthly Mean Precipitation over Americas July 2004 (mm/day)

Seasonal evolution of North American NARR monsoon (2004)

Shading: precipitation rate (mm/d), Arrows: 925 mb winds Contours: surface elevation

GEOS-5 reproduces the typical structure of the monsoon rainband. Seasonal march of the rainband is reasonable, with a peak in July.

Maximum rainfall region is located reasonably well in the windward slope of the mountains (the Sierra Madre Occidental).

□ Southwesterly flows in the Gulf of California and in the upslope of the mountains seem to be benefit from the high-resolution (1/2degree) data assimilation.

Precipitation (mm/d) and 925mb wind

JJA v-wind at 850mb (9-yrs)

MERRA

NARR JJA SD

Std

JJA Precipitation (9-yrs)

2004 Precipitation Revisited

Diurnal Cycle

Jul/Aug 2004 v-wind at 35°N

Diurnal variation in precipitation over the United States for July 2004 (mm/day). The July mean is removed.

Interception loss / total evaporation: A defining characteristic of local hydrology

Summary of findings: -- Interception loss ratio is generally smaller in the offline ("realistic") forcing environment than it is in the MERRA environment.

Likely Problem Source: Coincidence of Rainfall and High Solar Radiation

Analysis Increments, Budgets and Replay

January 2004 Zonal Mean Specific Humidity

Analysis Increment

24 Hour Forecast Error

January 2002 Zonal Mean Specific Humidity Budget from MERRA

January 2002 Vertical Mean Specific Humidity Budget from MERRA

Replay to Scout Using CGCM

NINO3 SST: Replay Results (red) versus Reynolds Observations

Nino3 SST

SUBSURFACE OCEAN TEMPERATURE (5S-5N, 130E-80W)

REPLAY TO SCOUT ATMOS. ANALYSIS

Summary

- MERRA improves upon many features of existing reanalyses
- Biases generally smaller than climate signals
- Precipitation issues remain: trends; diurnal cycle, summer land
- Comprehensive output suite including analysis increments -anticipate novel uses of MERRA to address climate and modeling issues

movie