
Toward a Benchmark for Multi-Threaded Testing Tools

Yaniv Eytani
Computer Science Department

Haifa University
Haifa, Israel

ieytani@cslx.haifa.ac.il

Klaus Havelund
Kestrel Technology

NASA Ames Research Center
Moffett Field, CA 94035-1000 USA

havelund@email.arc.nasa.gov

Scott D. Stoller
Computer Science Department

State University of New York at Stony Brook
Stony Brook, NY 11794, USA

stoller@cs.sunysb.edu

Shmuel Ur
IBM Haifa Research Lab
Haifa University Campus

Haifa, 31905, Israel
ur@il.ibm.com

Abstract

Looking for intermittent bugs is a problem that has been
getting prominence in testing. Multi-threaded code is be-
coming very common, mostly on the server side. As there
is no silver bullet solution, research focuses on a vari-
ety of partial solutions. We outline a road map for com-
bining the research on the different disciplines of testing
multi-threaded programs and on evaluating its quality. The
project goals are to create a benchmark that can be used
to evaluate different solutions, to create a framework with
open API’s that enables combining techniques in the multi-
threading domain, and to create a focus for the research
in this area around which a community of people who try
to solve similar problems with different techniques, could
congregate. The benchmark, apart from containing pro-
grams with documented bugs, includes other artifacts, such
as traces, that are useful for evaluating some of the tech-
nologies. We have started creating such a bench mark and
detail the lesson learned in the process. The framework will
enable technology developers, for example, race detectors,
to concentrate on their components and use other ready
made components, (e.g., instrumentor) to create a testing
solution.

1. Introduction

The increasing popularity of concurrent Java program-
ming – on the Internet as well as on the server side – has
brought the issue of concurrent defect analysis to the fore-
front. Concurrent defects such as unintentional race con-

ditions or deadlocks are difficult and expensive to uncover
and analyze, and such faults often escape to the field. The
development of technology and tools for identifying con-
current defects are now considered by some experts in the
domain as the most important issue that needs to be ad-
dressed in software testing [12]. Having new dual core or
hyper-threaded processors in the personal computer, makes
the testing of multi-threaded programs even more impor-
tant. It turns out the programs that use to work well on
single-threaded and single CPU core processors are now ex-
hibiting problems. As a result Intel has come out with a race
detection tool Microsoft has also addressed the issue.

There are a number of distinguishing factors between
concurrent defect analysis and sequential testing; these dif-
ferences make it especially challenging, if the set of possi-
ble interleavings is huge and it is not practical to try all of
them. Only a few of the interleavings actually produce con-
current faults. Thus, the probability of producing a concur-
rent fault is very low. Second, under the simple conditions
of unit testing, the scheduler is deterministic; therefore ex-
ecuting the same tests repeatedly does not help. Due to this
fact, concurrent bugs are often not found early in the pro-
cess, rather in stress tests or by the customer. The problem
of testing multi-threaded programs is even more costly be-
cause tests that reveal a concurrent fault in the field or in a
stress test are usually long and run under different environ-
mental conditions. As a result, such tests are not necessarily
repeatable, and when a fault is detected, much effort must
be invested in recreating the conditions under which it oc-
curred. When the conditions of the bug are finally recreated
the debugging itself may mask the bug (the observer effect).

All the currently used testing techniques, some of which,
such as coverage and inspection, proved very useful, ad-



dress sequential problems. One solution is to hide the multi-
threading from the user [1]. However, no architecture has
been found that lets the user take full advantage of the fact
that the program is multi-threaded or that the hardware is
parallel and yet lets the user program as if intermittent bugs
were not a problem. Existing attempts only serve to hide
the bugs even further, because the programmer is not aware
that she can cause such bugs.

There is a large body of research involved in trying to
improve the quality of multi-threaded programs both in aca-
demic circles and in the industry. Progress has been made
in many domains and it seems that a high quality solution
will contain components from many of them. Work on race
detection [38] [40] [28] [34] [17] has been going on for a
long time. Race detection suffers from the problem of false
warnings. To alleviate this problem, tools have been devel-
oped to increase the probability of bugs being discovered
by creating more races [43] [15]. The tools that cause races
do not report false alarms (they actually do not report any-
thing); they just try to make the user tests fail. Tools for
replay [10] are necessary for debugging and contain tech-
nology useful for testing. It is hard to create replay that
always works. Therefore, tools that increase the probabil-
ity of replay have also been developed [15]. Static analysis
tools of various types, as well as formal analysis tools, are
being developed to detect faults in the multi-threaded do-
main [42] [24] [11]. Analysis tools that show a view of
specific interest in the interleaving space both for coverage
and performance [7][24] are being worked on. Currently
the most common testing methodology by dollar value takes
single thread tests and creates stress tests by cloning them
many times and executing them simultaneously [23] (Ra-
tional Robot and Mercury WinRunner). There are a number
of approaches to cloning, some of which are very practical.
A variety of programming and debugging aids for such an
environment are closely related but beyond the scope of this
work.

In this paper, we discuss and show initial results for de-
veloping a benchmark that formally assesses the quality of
different tools and technologies and compares them. Many
areas, including some of the technologies discussed in this
paper, have benchmarks [2]. The benchmark we are work-
ing on is different in that it not only contains programs
against which the tools are evaluated, but a number of ad-
ditional artifacts that are useful for developing the testing
tools. For example, the bugs are annotated so that if a race
detection tool suspects a variable, assessment can be made
if a it is a false negative or a real result. We started working
on this benchmark, and already created more then forty an-
notated programs. This work has taught us how to annotate
programs and showed that the programs are useful in un-
covering problems in testing tools. The annotation of bugs
includes information about location in the program, vari-

ables involved, and bug patterns exhibited. The annotation
work obviously draws on bug pattern description, however,
we also learned about new bug patterns in the annotation
work.

Section 2 lists the technologies we think are relevant to
the benchmark. Section 3 details the interaction between
the technologies. Section 4 explains about the benchmark ,
and we conclude in section 5.

2. Existing dedicated concurrent testing tech-
nologies

In this section we survey technologies that we think are
the most useful or promising for the creation of concurrent
testing tools and show how they could interact. We di-
vide the technologies into two domains. The first includes
technologies that statically inspect the program and glean
some information. This information can be in the form
of a description of a bug, stating that a synchronization
statement is redundant or pointing to missing locks. Static
technologies can also be used to generate information that
other technologies may find useful, such as a list of pro-
gram statements from which there can be no thread switch.
The static technologies we discuss are formal verification
mainly model checking and forms of static analysis. The
second group of technologies are active while the program
is executing. The one most commonly associated with con-
current testing is race detection. However, we believe that
noise makers, replay, coverage, and performance monitors
are also of importance. A third group which we mention but
do not discuss, is trace analysis technologies. Some tech-
nologies such as race detection, coverage or performance
monitoring can be performed on-line and off-line. The trade
off is usually that on-line affects performance and off-line
requires huge storage space. As the underlying technolo-
gies is very similar, we primarily discuss the on-line ver-
sion in the section on dynamic technologies. In addition,
we talk about cloning, which is currently the most popular
testing technique in the industry for concurrent bugs. The
technologies described in this paper are white box in that
knowledge of the code is assumed. However, cloning is a
black box technique, usually deployed very late in the de-
velopment process. Cloning is mentioned here mainly for
completeness.

2.1. Static testing techniques

Formal Verification- Model checking is a family of tech-
niques, based on systematic and exhaustive state-space ex-
ploration, for verifying properties of concurrent systems.
Properties are typically expressed as invariants (predicates)
or formulas in a temporal logic. Model checkers are tradi-
tionally used to verify models of software expressed in spe-

2



cial modeling languages, which are simpler and higher-level
than general-purpose programming languages. (Recently,
model checkers have been developed that work by directly
executing real programs; we classify them as dynamic tech-
nologies and discuss them in section 2.2.) manually Produc-
ing models of software is labor-intensive and error-prone, so
a significant amount of research is focused on abstraction
techniques for automatically or semi-automatically produc-
ing such models. Notable work in this direction includes
FeaVer [27], Bandera [11], SLAM [3], and BLAST [26].

Model checking is infeasible for concurrent systems with
very large state spaces. Therefore, the goal is not only
to translate the program into the modeling language, but
to determine which details of the program are not essen-
tial for verifying the required properties and to omit those
details from the model. The models should normally be
conservative: they may over-approximate, but not under-
approximate, the possible behaviors of the program. Thus,
if a conservative model of a program satisfies a given invari-
ant, so does the program.

Static Analysis- Static analysis plays two crucial roles
in verification and defect detection. First, it is the founda-
tion for constructing models for verification, as described
above. Dependency analysis, in the form ofslicing, is used
to eliminate parts of the program that are irrelevant to the
properties of interest.Pointer analysisis used to conserva-
tively determine which locations may be updated by each
program statement. This information is then used to deter-
mine the possible effects of each program statement on the
state of the model. For concurrent programs,escape anal-
ysis, such as [8], is used to determine which variables are
thread-local and which may be shared. This information can
be used to optimize the model, or to guide the placement of
instrumentation used by dynamic testing techniques.

Second, static analysis can be used by itself for verifi-
cation and defect detection. Compared to model checking,
program analysis is typically more scalable but more likely
to give indeterminate results (“don’t know”). One approach
is to develop specialized static analyses for verifying spe-
cific concurency-related properties. For example, there are
specialized type systems [17] [6] [20] and data-flow analyz-
ers [16] [45] for detecting data races; some of these analy-
ses, specifically [6] and [16], also detect deadlocks. The
type systems are modular, scalable, and conservative (i.e.,
they never overlook errors), but they require programmers
to provide annotations in the program, and they produce
false alarms if the program design is inconsistent with the
design patterns encoded in the type system. Static conflict
analysis [45] is conservative and automatic, but less scalable
than the type systems. RacerX [16] is scalable and auto-
matic but not conservative (it can miss some errors). There
are also general verification-oriented static analysis frame-
works, such as Canvas [37], ESP [13], and xgcc [21], but

they generally do not model concurrency, so they are poten-
tially unsound when applied to concurrent programs. Nev-
ertheless, they may still be effective in practice at finding
some concurrency-related errors, e.g., forgetting to release a
lock [21]. TVLA [29] is a general static analysis framework
that can model concurrency and rigorously verify a variety
of properties of concurrent programs, as demonstrated in
[48, 49]. However, TVLA’s analysis is relatively expensive
and hence limited to small programs.

2.2. Dynamic testing technologies

All the dynamic testing technologies discussed in this
section make use of instrumentation technology. An instru-
mentor is a tool that receives as input the original program
(source or object) and instruments it, at different locations,
with additional statements. During the execution of the pro-
gram, the instructions embedded by the instrumentor are ex-
ecuted. The instrumentor should have a standard interface
that let the user tell it what type of instructions to instru-
ment, which variables, and where to instrument in terms of
methods and classes. In addition, the same interface tells
it what code to insert in these locations. This interface en-
ables the user of the instrumentor (be it noise maker, race
analyzer, replay or coverage tool) to take full advantage of
the tool. It also enables performance enhancements, such as
not instrumenting in locations where static analysis shows
instrumentation to be unnecessary.

The instrumentation can be at the source code level, the
bytecode, or the JVM level. The JVM level has the bene-
fit of being the easiest but is the least transportable. Both
the bytecode and the source are transportable. Instrument-
ing at the bytecode level is easier and is therefore the most
common.

In the following, it is assumed that an instrumentor is
available.

Noise makers -A noise maker [15] [43] belongs to the
class of testing tools that make tests more likely to fail and
thus increase the efficiency of testing. In the sequential
domain, such tools [32] [47] usually work by denying the
application certain services, for example returning that no
more memory is available to a memory allocation request.
In the sequential domain, this technique is very useful but
is limited to verifying that, on the bad path of the test, the
program fails gracefully. In the concurrent domain, noise
makers are tools that force different legal interleavings for
each execution of the test in order to check that the test
continues to perform correctly. In a sense, it simulates the
behaviour of other possible schedulers. The noise heuris-
tic, during the execution of the program, receives calls em-
bedded by the instrumentor. When such a call is received,
the noise heuristic decides, randomly or based on specific
statistics or coverage, if some kind of delay is needed. Two

3



noise makers can be compared to each other with regard to
the performance overhead and the likelihood of uncovering
bugs.

There are two important research questions in this do-
main. The first is to find noise making heuristics with a
higher likelihood of uncovering bugs. The second, impor-
tant mainly for performance but also for the likelihood of
finding bugs, is the question of where calls to the heuristic
should be embedded in the original program.

Race and deadlock detection -A race is defined as ac-
cesses to a variable by two threads, at least one of which
is a write, which have no synchronization statement tempo-
rally between them [40]. A race is considered an indica-
tion of a bug. Race detectors are tools that look, online or
offline, for evidence of existing races. Typically, race de-
tectors work by first instrumenting the code such that the
information will be collected and then they process the in-
formation. On-line race detection suffers from performance
problems and tends to significantly slow down the appli-
cation. On-line race detection techniques compete in the
performance overhead they produce. Off-line race detec-
tion suffers from the fact that huge traces are produced, and
techniques compete in reducing and compressing the infor-
mation needed. The main problem of race detectors of all
breeds is that they produce too many false alarms.

While the definition of race used by the tools is simi-
lar, the ability to detect user implemented synchronization is
different. Detecting such synchronization with a high prob-
ability will alleviate much of the problem of false alarms.

Annotated traces of program executions can help race
detection research. The trace will include all the informa-
tion needed by the race detection tools, such as memory
location accessed and synchronization events. In addition,
for each record, annotated information is kept about why it
was recorded, so that the race detection tool can decide if it
should consider this record. The annotation will also denote
the bugs revealed by the trace so that the ratio between real
bugs and false warnings can be easily verified.

A deadlock is defined as a state where, in a collection
of threads, each thread tries to acquire a lock already held
by one of the other threads in the collection. Hence, the
threads are blocked on each other in a cyclic manner. Tools
exist which can examine traces for evidence of deadlock
potentials [22] [25]. Specifically they look for cycles in lock
graphs.

Replay -One of the most annoying features of concurrent
testing is that once a bug is seen it may be very difficult to
remove. There are two distinct aspects to this problem. The
first is that many times the bug does not reproduce with high
enough probability. The second is that even if it does, when
you try to analyze it using a debugger or print statements,
it goes away. The ability to replay a test is essential for
debugging. Replay has two phases: record and playback.

In the record phase, information concerning the timing and
any other “ random” decision of the program is recorded.
In the playback phase, the test is executed and the replay
mechanism ensures that the same decisions are taken. There
are many possible sources of randomness in the execution
of a test on a program. Some apply even to sequential al-
gorithmf, for example, the most obvious are random and
time functions. Less obvious sources might include using a
hash function, where the order of the objects taken out de-
pends on the location in memory and varies from execution
to execution. Another source of randomness is the thread
scheduler, which can choose a different location for the con-
text switches in different executions. Doing full replay [10]
may be difficult and may require the recording of a lot of
information as well as wrapping many functions. Partial re-
play, which causes the program to behave as if the scheduler
is deterministic and repeats the previous test [15], is much
easier and, in many cases, good enough. Partial replay al-
gorithms can be compared on the likelihood of performing
replay and on their performance. The latter is significant in
the record phase overhead, and not so much in the replay
phase.

Coverage -Malaiya et al [31] showed a correlation be-
tween good coverage and high quality testing mainly at the
unit level. The premise, albeit simplified, is that it is very
useful to check that we have gone through every statement.
This coverage measure is of very little utility in the multi-
threading domain. The most promising avenue for creat-
ing multi-threaded coverage models is to create models that
cover bug patterns. For example, checking that variables
on which contention can occur had contention in the test-
ing (ensuring possible races). A more concrete example is
a coverage model with a task for each synchronization that
check that this synchronization has been utilized. A syn-
chronization is utilized if it either stopped another thread
or was stopped by it. These two coverage models are im-
plemented in ConTest [15]. Additional coverage measures
should be created and their correlation to bug detection
studied. A new and interesting research issue uses coverage
to decide, given limited resources, how many times each
test should be executed. The reason a test should be exe-
cuted more than once is that even if the test can potentially
find a bug in the concurrent domain, it is not guaranteed, or
even likely, to do so.

Systematic state space exploration -Systematic state
space exploration [19] [42] [24] is a technology that in-
tegrates automatic test generation, execution and evalua-
tion in a single tool. The idea is to systematically explore
the state spaces of systems composed of several concurrent
components. Such tools systematically explore the state
space of a system by controlling and observing the execu-
tion of all the components, and by reinitializing their ex-
ecutions. They search for deadlock, and for violations of

4



user-specified assertions. Whenever an error is detected
during state-space exploration, a scenario leading to the er-
ror state is saved. Scenarios can be executed and replayed.
To implement this technology, replay technology is needed
to force interleavings, instrumentation is needed and cov-
erage is advisable so that the tester can make informed de-
cisions on the progress of the testing. Another systematic
state-space exploration tool, for C programs, is CMC [33].
Unlike VeriSoft, CMC uses traditional state-based search
algorithms, not state-less search, so it uses ”clone” proce-
dures to copy the system state, and does not rely on replay.

2.3. Cloning

Cloning, also called load testing, is the most commonly
used testing technique aimed at finding intermittent bugs
and evaluating performance. Cloning is used at the tail end
of development, either during system testing or as a special-
ized phase called stress testing. The idea, used in common
commercial tools for testing client-server applications such
as Rational Robot or Mercury LoadRunner, is to take se-
quential tests and clone them many times. This technique
has the advantage of being both relatively simple and very
efficient. Because the same test is cloned many times, con-
tentions are almost guaranteed. There are a number of prob-
lems that require careful design. The first is that the ex-
pected results of each clone need to be interpreted, so ver-
ifying wheather the test passed or failed is not necessarily
straightforward. Many times, changes that distinguish be-
tween the clones are necessary. This technique is a purely
black box technique. It may be coupled with some of the
techniques suggested above, such as noise making or cov-
erage, for greater efficiency.

3. Interactions between technologies

Figure 1 contains a high level depiction of a suggested
design as to how the different technologies can interact.
Different technologies talk to each other through the obser-
vation database. Instrumentation is an enabling technology
for all the technologies included in the dynamic and trace
evaluation boxes. Some technologies are orthogonal and
there is even no awareness that another technology is being
used. For example, coverage can be measured for cloned
tests. In such a case, the two technologies do not have to
share anything through the observation database. This sec-
tion uses examples to demonstrate ways in which technolo-
gies can be combined to yield additional value.

The observation database contains the following infor-
mation (partial suggestion):

• Interesting variables - for example variables that could
be involved in races or bugs

Figure 1. Interrelations between technologies

• Possible race locations - location in the programs that
are suspect

• Unimportant locations - areas which are well synchro-
nized, for example only one thread may be alive at that
time

• Coverage information - database showing which cov-
erage tasks were covered

• Traces of executions - to be used by off-line analyzers

Instrumentation is the process of automatically modify-
ing code by adding user exits. For example, at every state-
ment increase a counter and you get coverage. Instrumen-
tation is not a multi-threading testing technology but a very
important enabling technology. Instrumentation is used by
all the dynamic and trace evaluation technologies The in-
strumentor is told by the observation database what to in-
strument. Input to the instrumentor may include which parts
of code (e.g., files, classes, methods, lines), which subset of
the variables, where to instrument and what to put at each
point. A natural selection, which already has most of the
required features, is AspectJ [41]. Augmenting AspectJ so
it can do all the work required in this framework from an
instrumentor is not a very difficult job. As a side remark,
the instrumentation technology needed for all the dynamic
technologies, and for off-line trace analysis such as off-line
race detection, is virtually identical.

The static technologies (static analysis and formal veri-
fication), can be used directly for finding bugs, and can also
be used to create information that is useful for other tech-
nologies. Choi et al’s work [9, 36] and by von Praun and
Gross [45] are nice examples of the use of static analysis
to optimize run-time race detection. With the observation
database one may improve a race detector while using an
existing static analyzer.

The information gleaned in static analysis can also be
transfered to the instrumentor and used to reduce the over-

5



head, (i.e. instrument only what really needs instrument-
ing), or by attaching information that is used in run-time to
the instrumentation calls. For example, Stoller in [43] im-
proved over ConTest by finding locations that do not need
instrumentation. Had the suggested architecture been used
to implement Stoller’s idea, a small modification would
have been necessary without writing a project from scratch.

The technologies are already combined in a variety of
ways. For example, ConTest contains an instrumentor, a
noise generator, a replay and coverage component, and a
plan for incorporating static analysis and on-line race de-
tection. The integration of the components is integral to
the service that ConTest gives to testing multi-threaded Java
programs. With ConTest, tests can be executed multiple
times to increase the likelihood of finding bugs (instrumen-
tor and noise). Once a bug is found, replay is used to debug
it. Coverage is used to evaluate the quality of the testing,
and static analysis will improve the coverage quality and
the performance of the noise maker. Another example is
Java PathExplorer (JPaX) [25], a runtime monitoring tool
for monitoring the execution of Java programs. It automat-
ically instruments the Java bytecode of the program to be
monitored and inserts logging instructions. The logging in-
structions write events relevant for the monitoring to a log
file or to a socket in case online-monitoring is requested.
Event traces are examined for data races (using the Eraser
algorithm) and deadlock potentials. Furthermore, JPaX can
monitor that an execution trace conforms with a set of user
provided properties stated in temporal logic.

Creating such technologies can currently be done only in
large projects such as ConTest in IBM and JPaX in NASA.
One of the goals of this proposed project is to create a
standard interface between technologies and the observa-
tion database, so that improvement in one tool could be used
to improve the overall solution. The assumption is that a
good solution will have a number of components. It is im-
portant that a researcher can work on one component, use
the rest ”off-the shelf”, and check the global impact of his
work. To be more concrete: assume that an instrumented
application is available in which a call is placed in every
concurrent location that has information such as the thread
name location, bytecode type, abstract type (variable, con-
trol), read/write. The writer of a race-detection or noise
heuristic can then write his algorithm, without writing the
entire system in which it is used.

4. Benchmark

The different technologies for concurrent testing may be
compared to each other in: the number of bugs they can find
or the probability of finding bugs, the percentage of false
alarms, and performance overhead. Sometimes the technol-
ogy itself can not be compared as it is only part of a solu-

tion and the improvement in the solution, as a whole, must
be evaluated. In order to facilitate the comparison, we pro-
posed creating a benchmark that is composed of two parts:

1. a repository of annotated programs to be described,
with which technologies can be evaluated and

2. an architecture containing supplied components that
help in developing testing tools

The repository contains programs on which the technolo-
gies can be evaluated. Each program comes with artifacts
including:

• Source code (and bytecode) in standard project format

• Test cases, and test drivers

• Documentation of the bugs in each program

• Instrumented versions of the programs to be used by
noise, replay, coverage, and race applications

• Sample traces of program executions. Each record in
the traces contains information about the location in
the program from which it was called, what was in-
strumented, which variable was touched, thread name,
and whether it is a read or write.

The repository of programs should include many small
programs that illustrate specific bugs as well as larger pro-
grams and some very large programs with bugs from the
field. The fact that not only the programs with the bugs are
available but also the instrumented program and the traces,
makes evaluating many of the technologies much easier.
For example, race detection algorithms may be evaluated
using the traces, without any work on the programs them-
selves.

In the previous section, we talked about the technologies
with potential for impacting the concurrent testing problem.
We showed that the technologies are very interdependent.
The second component of the benchmark is a repository
of tools, together with the observation database. This way,
researchers can use a mix-and-match approach and com-
plement their components with benchmark components to
create and evaluate solutions based on the created whole.
The components include, at the very least, an instrumentor,
which is needed in most solutions, as well as some noise
makers and race detection components.

4.1 Experience gathered in starting the Bench-
mark

In an effort to start composing the benchmark we asked
students of an undergraduate software testing class to write
benchmark programs containing one (or more) concurrent

6



bugs. As programs created by the students are biased to-
ward bugs typical to novice programmers, this was just a
beginning.

As part of the course, the students studied the taxonomy
of concurrent bug patterns [35] and technologies for find-
ing such bugs [39, 14, 43, 42, 44]. They were told the as-
signment was to write a program (or find and modify an
existing program) that has at least one multi-threaded bug.
Because the course stressed documenting bugs as an im-
portant part of the tester work [12], this exercise offered
relevant practical experience. All the bugs in the program
were to be documented and points would be taken off for
every undocumented bug found. They were also asked to
write a report describing the program and its functions,
bugs, and possible outcomes. The assignment can be seen
in (http://cs.haifa.ac.il/courses/softtest/testing2003/).

Most of the students chose to write non-atomic bug pat-
terns, mostly missing a synchronized statement that leads to
unforeseen interleaving by the programmer (including data
races). Other bug patterns used include deadlock, the sleep
bug pattern and the orphaned thread bug pattern. Few of the
students created bugs that were dependent on interleavings
that happen only with specific inputs.

Using raceFinder [5] to produce test reports, and work-
ing with a large number of different users, allowed us to
study this tool further, better understand how to use it,
and discover its current capabilities and limitations. Us-
ing raceFinder with a large body of programs containing
bugs proved to be a valuable experience as we had to reason
about different bugs and the interleavings that caused them,
since most of the students did a poor job recording all of
the interleavings that caused a bug to appear. We learned
several important lessons:

• Given a proper explanation, students can fine-tune
raceFinder options to find their concurrent bugs. Con-
Test was built with the notion that it should be transpar-
ent to the user. raceFinder is built with the notion that
automated testing and debugging is not yet feasible,
and the user should assist this process. Future work
on raceFinder will try to combine both approaches to
achieve better usability, while continuing to achieve ef-
fective results.

• Comparing manual noise creation at the right spot with
raceFinder heuristics shows that there is still room for
improvement in the heuristics precision. This fact,
based on the raceFinder reports, supports the hunch
that creating noise in a few places is more effective for
finding concurrent bugs, than creating noise in many
program locations. For example, in some of the pro-
grams, adding a Yield() statement in the right program
location causes the bug to manifest at a high rate. In
contrast, raceFinder can achieve this manifestation rate

when applying a high noise level that causes a num-
ber of Yield() statements to be inserted in a few pro-
gram locations. It is advisable to apply more intelli-
gent heuristics that could use static analyses [48, 8],
dynamic analysis [18, 46], or both [9] to reduce the
number of program locations. This idea is now being
implemented in raceFinder with good results.

• Testing more programs with non-atomic bug patterns
supports the claim that raceFinder can effectively han-
dle this type of bug pattern, and that raceFinder’s cur-
rent heuristics can uncover non-atomic buggy inter-
leavings.

• Writing multi-threaded code is hard; even the small
programs contained undocumented bugs and buggy in-
terleaving. It was sometimes hard even for us, despite
our previous experience with concurrent bugs, to un-
derstand the undocumented buggy interleavings (even
with small programs).

A large number of programs containing concurrent bugs,
some of which were conceived in surprising ways, allowed
us to reason about the factors that contribute most to the
design and implementation of programs that contain con-
current bugs. There are three main factors upon which a
manifestation of a buggy interleaving depends:

• The scheduling policy of the JVM - this policy is usu-
ally deterministic and thus produces a limited subset of
interleaving space [10, 14].

• The input of the program (control flow) - some of the
interleavings that induce a concurrent bug are input-
dependent.

• The design of the program contains a fault (not the
implementation) and this fault manifests itself only in
rare circumstances requiring complex scenarios. In
such cases, while, noise could theoretically cause the
buggy interleaving to appear, it may remain very rare.

Another less important factor is the two levels of the Java
memory model. We saw a number of bugs that cannot be
uncovered with tools such as ConTest or raceFinder. Fur-
thermore, some of these bugs may actually be masked when
you look for them with these tools. Both tools instrument
at the bytecode level, which imposes inherent limitations.
For example, if a bytecode is not atomic, the tools cannot
create noise inside that bytecode. Bugs that have to cope
with scheduling inside the JVM (e.g., the JVM definition of
the order in which the waiting threads are awakened by a
notify) cannot be impacted. In addition, some bugs, notably
bugs related to two-tier memory hierarchy, will not be ob-
served on a one-tier memory Java implementation, regard-
less of the scheduling. Intelligent noisemakers can effec-
tively change JVM scheduling to manifest concurrent bugs.

7



However, they cannot control the input. Additionally, good
testing metrics are required when the bugs are dependent
not only on a specific interleaving (or a few interleavings),
but also related to specific input or inputs (if the input is
random, a partial replay procedure will not help). There are
tools designed to give coverage of the program’s logic (for
example ConAn [30]), and it may be interesting to combine
a noisemaker with such tools.

In addition to the bugs in the student applications, we
found bugs in our tools. Most of the bugs found were due
to the student non-standard programming practices, which
were not considered in the tool design. Bugs included:

• Some bugs in the implementation (mainly in the GUI
for entering noise parameters) of raceFinder were dis-
covered and fixed.

• When there are many memory accesses in the program,
delays (e.g., wait) caused overhead, which made it im-
possible to test the program.

• When running the program instrumented with
raceFinder, even slight changes in the program timing
can cause the program to run endlessly.

• RaceFinder currently doesn’t offer enough debugging
information to understand which interleaving caused a
bug to manifest and why.

• An interesting bug was found using ConTest. Con-
Test has a heuristic called halt-one-thread. When this
heuristic is activated, a thread is put into a loop, condi-
tioned on a flag called progress. In the loop, progress
is set to false and a long sleep is executed. In every
other thread, if something happens, progress is set to
true. This heuristic allows us to stay at this point for
a very long time. Only when the rest of the program
cannot proceed and waits for this thread will we get
out of this loop. This is useful for creating unlikely
timing scenarios. We reasoned that this couldn’t create
a deadlock, since when there is no progress, we would
get out of the loop. We did not take into account the
possibility that students (and by extension, other pro-
grammers) might implement a wait using a busy loop.
When a thread waits on a condition, instead of doing a
wait, it executes a loop in which it continuously asks if
the condition happened. In such a case, the thread that
entered the halt-one-thread will never extract itself, as
there is ”progress” outside. The other thread will for-
ever wait (busily), and nothing will progress.

Our benchmark is off to a good start with almost 40 pro-
grams, about half of which were created by students and the
rest by tool makers and taken of the Internet, mainly open

source. We would like to extend the benchmark with addi-
tional student programs. Hopefully, other universities will
join the effort.

5. Conclusions

In this paper, we discussed the problem of evaluat-
ing multi-threaded testing technology and how to create a
benchmark that will enable research in this domain. There
are many technologies involved and improvements in the
use of one technology may depend on utilizing another. We
believe that greater impact, and better tools, could result if
use was made of a variety of relevant technologies. Toward
this end we would like to start an enabling project that will
help create useful technologies, evaluate them and share
knowledge. There are specific attempts at creating tools that
are composed of a variety of technologies [15] [12] but they
do not provide an open interface for extension and do not
support the evaluation of competing tools and technologies.

The suggested framework is an ideal tool to be used in
education. The amount of code needed to build a coverage,
noise, race detection or replay tool is a few hundred lines
of code and is easily within the scope of a class exercise.
Indeed, this was one of the motivations of this paper as the
work reported in [4] started this way.

We discussed this project in PADTAD 2003 and PAD-
TAD 2004 and with additional groups such as AspectJ de-
velopers. Quite a few groups and researchers have ex-
pressed interest in participating in this project. We are look-
ing at formal structures under which this project could be
held.

In the direction of the benchmark we have had some
slow progress since suggesting the project in April 2003.
We gave our undergraduate software testing class students
an assignment to write programs containing one (or more)
concurrent bugs. In testing the homework assignments we
found some bugs in our tools, mainly because the students
programmed in ways we never even considered. Testing
tool creation follows a pattern: you see a bug, figure an au-
tomatic way to detect it, and create or augment a tool to do
it. For a toolmaker, it is beneficial to be exposed to dif-
ferent programming practices, different styles, and to many
programming guidelines. The assignments represent quite
a large number of bugs, written in a variety of styles, and
therefore useful for the purpose of evaluating testing tools.
There is a bias toward the kind of bugs that novice program-
mers create.

A good source for bugs created by experienced program-
mers is the open source code. One way to collect such bugs
for the benchmark is to follow the bug fix annotation and
ask the owners for the source code containing the bug. This
way we will have the bug and the correct fix for the bench-
mark, which will be useful for checking on some testing

8



tools comments.
We saw a number of bugs that cannot be uncovered with

tools such as ConTest or raceFinder. Furthermore, some of
these bugs may actually be masked when you look for them
with these tools. Bugs that have to cope with scheduling
inside the JVM, for example, the JVM definition of the or-
der in which the waiting threads are awakened by a notify,
cannot be impacted. In addition, some bugs, notably bugs
related to two-tier memory hierarchy, will not be observed
on a one-tier memory Java implementation, regardless of
the scheduling. The benchmark contains many bugs and we
are certain that no one tool can find all of them. By trying to
uncover the bugs with the different tools, we will enhance
the tools to detect more bug types, and figure out the correct
mix of tools to use for efficient verification

In the process, we learned about creating benchmarks
in general, and creating benchmarks using student assign-
ments in particular. We now know how to define the stu-
dents’ assignment more clearly, and where the pitfalls are
expected. As a result of our preliminary use of the bench-
mark, we also have a better idea of how to further expand
the benchmark. This is an ongoing work in which the
benchmark is expanded and more features are added. In
the near future, we expect to get additional feedback from
benchmark users,, which we will use in the next iterations
of this exercise.

References

[1] S. Asbury and S. R. Weiner.Developing Java Enterprise
Applications,. Wiley Computer Publishing, 1999.

[2] G. S. Avrunin, J. C. Corbett, M. B. Dwyer, C. S. Pasareanu,
and S. F. Siegel. Comparing finite-state verification tech-
niques for concurrent software. Technical Report UM-CS-
1999-069, Department of Computer Science, University of
Massachusetts at Amherst, USA, 1999.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Au-
tomatic predicate abstraction of c programs. InProc. ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 203–213, 2001.

[4] Y. Ben-Asher, Y. Eytani, and E. Farchi. Heuristics for
finding concurrent bugs. InInternational Parallel and
Distributed Processing Symposium, IPDPS 2003, PADTAD
Workshop, 2003.

[5] Y. Ben-Asser, Y. Eytani, and E. Farchi. Heuristics for find-
ing concurrent bugs. InIn the International Parallel and
Distributed Processing Symposium, IPDPS 2003, PADTAD
workshop, April 2003.

[6] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks.
In Proc. 17th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOP-
SLA), pages 211–230, Nov. 2002.

[7] A. S. Cheer-Sun Yang and L. Pollock. All-du-path cover-
age for parallel programs.ACM SigSoft International Sym-

posium on Software Testing and Analysis, 23(2):153–162,
March 1998.

[8] J.-D. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Mid-
kiff. Escape analysis for Java. InProc. ACM Conference
on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), Oct. 1999.

[9] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and precise datarace detection
for multithreaded object-oriented programs. InProc. ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 258–269, 2002.

[10] J.-D. Choi and H. Srinivasan. Deterministic replay of Java
multithreaded applications. InProceedings of the SIGMET-
RICS Symposium on Parallel and Distributed Tools, pages
48–59, Welches, Oregon, August 1998.

[11] J. C. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code. InProc. 22nd International
Conference on Software Engineering (ICSE). ACM Press,
June 2000.

[12] J. C. Cunha, P. Kacsuk, and S. C. Winter, editors.Parallel
Program Development For Cluster Computing. Nova Sci-
ence Publishers, Jan. 2000.

[13] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive pro-
gram verification in polynomial time. InProc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pages 57–68. ACM Press, 2002.

[14] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and
S. Ur. Testing multi-threaded java programs.IBM System
Journal Special Issue on Software Testing, 41(1), February
2002.

[15] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded Java program test generation.IBM Sys-
tems Journal, 41(1):111–125, 2002. Also available as
http://www.research.ibm.com/journal/-
sj/411/edelstein.html .

[16] D. R. Engler and K. Ashcraft. RacerX: Effective, static de-
tection of race conditions and deadlocks. InProc. 19th ACM
Symposium on Operating System Principles (SOSP), pages
237–252. ACM Press, Oct. 2003.

[17] C. Flanagan and S. N. Freund. Detecteing race conditions in
large programs. InProceedings of the Program Analysis for
Software Tools and Engineering Conference, June 2001.

[18] C. Flanagan and S. N. Freund. Atomizer: A dynamic atom-
icity checker for multithreaded programs. In31’st ACM
SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), January 2004.

[19] P. Godefroid. Model checking for programming languages
using verisoft. InSymposium on Principles of Programming
Languages, pages 174–186, 1997.

[20] D. Grossman. Type-safe multithreading in Cyclone. InProc.
ACM SIGPLAN International Workshop on Types in Lan-
guages Design and Implementation (TLDI), pages 13–25.
ACM Press, 2003.

[21] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 69–82,
2002.

9



[22] J. J. Harrow. Runtime checking of multithreaded applica-
tions with visual threads. InSPIN, pages 331–342, 2000.

[23] A. Hartman, A. Kirshin, and K. Nagin. A test execution
environment running abstract tests for distributed software.
In Proceedings of Software Engineering and Applications,
SEA 2002, 2002.

[24] K. Havelund and T. Pressburger. Model checking java pro-
grams using java pathfinder.International Journal on Soft-
ware Tools for Technology Transfer, STTT, 2(4), April 2000.

[25] K. Havelund and G. Rosu. Monitoring java programs with
Java PathExplorer. InIn Proceedings First Workshop on
Runtime Verification, RV’01, Paris, France, July 23,.

[26] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. InProc. ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 58–70, 2002.

[27] G. J. Holzmann and M. H. Smith. Software model check-
ing: Extracting verification models from source code. In
Proc. International Conference on Formal Description Tech-
niques and Protocol Specification, Testing and Verification
(FORTE/PSTV), pages 481–497. Kluwer, 1999.

[28] A. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai. To-
ward integration of data race detection in dsm systems.Jour-
nal of Parallel and Distributed Computing, 59(2):180–203,
1999.

[29] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting
static analysis to work for verification: A case study. In
Proc. ACM International Symposium on Software Testing
and Analysis (ISSTA), pages 26–38, 2000.

[30] B. Long, D. Hoffman, and P. Strooper. tool support for test-
ing concurrent java components.IEEE Transactions on Soft-
ware Engineering, 29(6), June 2003.

[31] Y. Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe.
Software test coverage and reliability. Technical report, Col-
orado State University, 1996.

[32] B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl. Fuzz revisited: A re-examination
of the reliability of UNIX utilities and services. Technical
report, University of Wisconsin, Madison, 1995.

[33] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L.
Dill. CMC: A Pragmatic Approach to Model Checking Real
Code. InProc. 5th Symposium on Operating Systems Design
and Implementation (OSDI), Dec. 2002.

[34] R. Netzer and B. Miller. Detecting data races in parallel
program executions. InAdvances in Languages and Compil-
ers for Parallel Computing, 1990 Workshop, pages 109–129,
Irvine, Calif., 1990. Cambridge, Mass.: MIT Press.

[35] Y. Nir, E. Farchi, and S. Ur. Concurrent bug patterns and
how to test them. InIn the International Parallel and
Distributed Processing Symposium, IPDPS 2003, PADTAD
workshop, April 2003.

[36] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race de-
tection. InProc. ACM SIGPLAN 2003 Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP), June
2003.

[37] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and
M. Sagiv. Deriving specialized program analyses for cer-
tifying component-client conformance. InProc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pages 83–94, 2002.

[38] B. Richards and J. R. Larus. Protocol-based data-race de-
tection. In Proceedings of the SIGMETRICS symposium
on Parallel and distributed tools, pages 40–47. ACM Press,
1998.

[39] S. Savage. Eraser: A dynamic race detector for multi-
threaded programs.ACM Transactions on Computer Sys-
tems, 15(4):391–411, November 1997.

[40] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: a dynamic data race detector for multi-
threaded programs.ACM Transactions on Computer Sys-
tems (TOCS), 15(4):391–411, 1997.

[41] A. Schmidmeier, S. Hanenberg, and R. Unland. Implement-
ing known concepts in aspectj.

[42] S. D. Stoller. Model-checking multi-threaded distributed
Java programs.International Journal on Software Tools for
Technology Transfer, 4(1):71–91, Oct. 2002.

[43] S. D. Stoller. Testing concurrent java programs using ran-
domized scheduling. InIn Proceedings of the Second Work-
shop on Runtime Verification (RV), volume 70(4) of Elec-
tronic Notes in Theoretical Computer Science. Elsevier,
2002.

[44] G. Vijayaraghavan and C. Kaner. Bug taxonomies: Use
them to generate better tests. InStar East 2003, Orlando,
Florida, May 2003.

[45] C. von Praun and T. Gross. Static conflict analysis for multi-
threaded object-oriented programs. InProc. ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (PLDI), pages 115–128. ACM Press, 2003.

[46] L. Wang and S. D. Stoller. Run-time analysis for atomic-
ity. In Proc. Third Workshop on Runtime Verification (RV),
volume 89(2) ofElectronic Notes in Theoretical Computer
Science. Elsevier, July 2003.

[47] J. A. Whittaker. How to Break Software. Addison-Wesley,
2003.

[48] E. Yahav. Verifying safety properties of concurrent java pro-
grams using 3-valued logic. InConference Record of the
28th Annual ACM Symposium on Principles of Program-
ming Languages, pages 27–40. ACM Press, 2001.

[49] E. Yahav and M. Sagiv. Automatically verifying concurrent
queue algorithms. InElectronic Notes in Theoretical Com-
puter Science, volume 89. Elsevier, 2003.

10


