NIIST: NIST IPsec and IKE Simulation Tool

The design and Operations Guide

Version: niist-v0.2.0b (IKEv1)

Version: niist2-v0.3.1b (IKEv2)

December 8, 2003

Updated April 30, 2004

1NIIST: NIST IPsec and IKE Simulation Tool

1December 8, 2003

1Updated April 30, 2004

31. Introduction

52. NIIST Overview

52.1. Base software

62.2. NIIST System Architecture

62.2.1. Security Policy Database

72.2.2. IP Key Management Module

72.2.3. IP Security Module

72.2.4. PF_Key Key Management API

93. Implementation Detail

93.1. Cryptographic Functions

93.2. Re-keying

93.2.1. Phase 1 SA Re-keying

103.2.2. Phase 2 SA Re-keying

113.3. Retransmission

124. NIIST (IKEv1) Configuration

124.1. Modeling A Security Gateway

144.2. Modeling Cryptographic Functions

154.3. Modeling IKE

154.3.1. IKE SPD

164.3.2. IKE Configuration Parameters

174.4. Modeling IPSec

204.4.1. IPSec Configuration Parameters

20Configuration Hint

215. NIISTv2 (IKEv2) Model

215.1 IKEv2 Features

215.1.1 Re-Keying

215.1.2 Retransmission

215.1.3 Dead Peer Detection

215.1.4 Window Management

225.2 Modeling A Security Gateway

235.3 Modeling IKE

245.4 Modeling IPsec

276. NIIST Player

276.1 Main Window

286.2 System Status Window

296.3 SADB Window for A Gateway

327. Conclusions

5Figure 1: SSFNet: Internet Modeling

6Figure 2: Overall NIIST System Architecture

12Figure 3: A Security Gateway Protocol Graph

13Figure 4: A Simple Security Gateway Model

14Figure 5: Example Specification for Cryptographic Processing Delay

15Figure 6: Part of the Specification for IKE Policy

17Figure 7: IKE Parameters

19Figure 8: Part of the Specification for IPSec Policy

20Figure 9: IPSec Parameters

23Figure 10: A Simple Security Gateway Model

24Figure 11: Part of the Specification for IKE Policy

26Figure 12: Part of the Specification for IPsec Policy

27Figure 13: NIISTPlayer Main Window

28Figure 14: System Status Window

30Figure 15: SADB Window for A Security Gateway

1. Introduction

The IETF IP Security Working Group has defined a set of IP security protocols to provide cryptographic network security services to protect datagrams in the Internet: this is IP security architecture [RFC2401], IP security protocols (IPsec) [RFC2402, RFC2406], and Internet key exchange protocols (IKEv1)[RFC2407, RFC2408, RFC2409].

To date, the IPSec protocol suite is fairly mature and has been successfully developed and deployed to provide the VPN services between security gateways. However, the integration of these security technologies for building automated key management infrastructures is becoming complex. This is particularly so in the areas of interoperability, scalability, and analysis of protocol interactions in large-scale networks. It is economically desirable to study and analyze those issues listed above in an integrated security simulation environment to help bring about improvements in, and deployment of those technologies.

NIST has developed a NIST IPsec and IKE simulation tool (NIIST), which includes the models of IPsec, IKE, Internet security policy and PF_Key API. This would help study and investigate behavioral and relative performance characteristics, including the issues of interoperability, scalability and performance of interacting suite of security protocols in large-scale IPsec-based VPN environments. The NIIST can also be used to evaluate alternative strategies or techniques that address the current open issues such as re-keying [REKEYING]. The NIIST also provides the ability to parameterize IPsec VPN models such as security policies, IPsec/IKE parameters, cryptographic transforms, and operational processing options (e.g., re-keying techniques and packet handling options), which allows the user to dynamically specify alternate options in different environments.

Furthermore, the IETF IP security community is currently in the process of defining version 2 of Internet key exchange protocol (IKEv2) [IKEv2], aiming to resolve the complexities of the current IKE version 1 specification (IKEv1). We have also modeled the version 2 of IKE [IKEv2] based on Revision 12, to enable the analysis of the relative performance trade-offs between IKEv1 and IKEv2. This would also help evaluate the behavioral characteristics of IKEv2.

This report describes the design, operations and modeling of NIIST for both IKEv1 (niist) and IKEv2 (niist2). The remainder of this guide is organized as follows: Section 2 describes the NIIST architecture and an overview of its major components and functions. In Section 3, we discuss the implementation details of some major features, which can impact the overall behavior and performance of interacting protocols and security systems, such as cryptographic algorithm processing, re-keying and retransmission. Section 4 describes the modeling of security systems and each component of the system. Section 5 discusses the IKEv2-specific features and models of IKEv2 components included in NIISTv2. NIIST player is described in Section 6. Finally, Section 7 gives our conclusions.

2. NIIST Overview

2.1. Base software

The NIIST is implemented in Java and integrated in the Scalable

Simulation Framework (SSF) [SSF-WEB] and SSF Network Model (SSFNet) to provide an integrated Internet security modeling framework for large-scale networks. The SSF [SSF, SSF-WEB] is a discrete, event-driven, scalable modeling framework and SSFNet is a collection of Internet modeling tools for simulating Internet protocols and networks (as shown in Figure 1. It provides: 1) modeling of operating system components such as protocols and packets; and 2) modeling of network connectivity such as NIC (Network Interface Card), link, and queues. SSF places particular emphasis in scalability and high-performance for simulating very large networks [SSF]. To achieve these goals, the message processing in SSF takes zero processing time within a specific host or router. However, it provides a mechanism that allows the user to advance logical time when needed.

[image: image1.png]Host/Router

Host/Router

Protocol Graph

Application

Socket

TCPIUDP

P

NIC

Protocol Graph

Application

Socket

TCPIUDP

P

NIC

1

 Figure 1: SSFNet: Internet Modeling

Each component and its parameters are configured using Domain

Modeling Language (DML). DML [SSF-WEB] is an object-oriented, self-configurable, hierarchical, scalable parameter database for model configuration. It allows efficient description of very large network models.

2.2. NIIST System Architecture

[image: image2.png]SA Messummens
WEsPD [ey Management Daeman
(IKE Manager)
IKE Key Mamagel
SA Table
Usee Space
PFKey PEINET
05 Kemel
IPSec SPD 1pSee Key Mamager upe
IPSec Manager || [P/PSec
SADB |- SA Measicement Nie
Network

 Figure 2: Overall NIIST System Architecture

As shown in Figure 2, NIIST consists of the four major components:

1. IP security policy database (SPD);

2. IP key management daemon (IKE Manager);

3. IP security module (IPSec Manager); and

4. PF_Key key management API (IKE and IPSec Key Managers).

These components are described below and their configuration specifications are discussed in Section 4. Note that the modeling schema for IKEv2 is somewhat different than that for IKEv1 to reflect the changes made in IKEv2. Section 5 provides the IKEv2-specific specifications for IKEv2 where the changes exist.

2.2.1. Security Policy Database

The Security Policy Database (SPD) specifies what services are to be offered to IP traffic and in what mode of behavior. It is an ordered list that is always searched from the beginning, so that matching of packets against SPD entries is always deterministic. IKE and IPSec maintain their own SPD independently. The SPDs in a security gateway are on per-interface, per-direction basis with separate inbound and outbound tables. A security policy schema is defined for both IKE and IPSec to specify the local security policy. The user is responsible for the total ordering of the list through a DML specification.

More detailed policy specifications are described in Section 4.

2.2.2. IP Key Management Module

The IP key management module (IKEManager) is used to negotiate IKE and IPSec Security Associations with a peer. It manages Security Association (SA) exchanges (a two-phase negotiation):

1. Phase 1; and

2. Phase 2.

Phase 1 establishes an IKE SA through which the Phase 2 negotiation creates IPSec SAs. This module interacts with the IP security module (resided in the kernel) through PF_KEY that is discussed in subsection below. It manages the IKE SPD, and the SA state table by the system, whose values of each entry are continuously updated as messages are exchanged with the peer.

As described before, there are two versions of IKE (IKEv1 and IKEv2). Both versions use a two-phase SA negotiation, but differ somewhat on technical details such as, for example, the number of messages for each exchange, the semantics of an SA (i.e., encoding and parsing of an SA payload), mandatory use of a Delete message, and etc. The IKE SPD schema used for IKEv1 and the configuration parameters used for both IKEv1 and IKEv2 are described in Section 4. The IKEv2-specific specification is discussed in Section 5.

2.2.3. IP Security Module

The IP security module (IPSecManager) is used to provide IP security services for a gateway or host. It examines every single inbound and outbound packet to see if it requires secure communication and applies the local security policy, if required. IPSec is modeled as the extension of IP in this framework. It maintains inbound and outbound SPDs and SADBs independently. The SADB hash table is managed by the system. As discussed in the above Policy section, the SPD is an ordered list and total ordering of the list is provided by the user.

Each entry of the SPD contains the entry identifier, one or more selectors (e.g., traffic filtering mechanism), action to be applied, the identifier of a remote gateway as a mechanism of the remote gateway discovery, and attributes such as the threshold value and the mode of encapsulation. The entry also contains multiple proposals and policies, and SA attributes based on the local policy. Section xx describes the schema and SA attributes in more detail.

2.2.4. PF_Key Key Management API

The PF_Key key management API is a generic key socket API. It is used by IKEManager to communicate with IPSec that resides in the kernel. The SADB message sequence and message types are compliant to PF_Key Key Management API, Version 2 [RFC2367]. It also partially supports the PF_Key Extension [PFKEY-EXT], in which the kernel sends only a specified policy reference to key management instead of the contents of policy proposals for simplicity.

3. Implementation Detail

3.1. Cryptographic Functions

As discussed in Section 2.1, message processing in SSF assumes no logical time advance within a specific gateway or host. However, cryptographic operations in security protocols can significantly impact the behavior and performance of the overall system. We modeled their impact on protocol functions and performance by incorporating cryptographic processing delays. To model the performance impact of these functions of security protocols, the processing time taken by specific cryptographic algorithms along with digital signatures and Diffie-Hellman exchange is simulated.

The cryptographic algorithm processing delay is computed as a function of the performance (bytes/sec) of a specific cryptographic algorithm and the size of a packet. A mechanism is provided for the user to dynamically specify alternate cryptographic algorithms or even the same cryptographic algorithm with different key lengths or block size, as specified in Section 4.

3.2. Re-keying

A single key (or keys) contained in a valid SA can be safely used for encryption and authentication for a certain period of time or a certain amount of bytes. The lifetime of an SA can be specified in terms of elapsed time or number of bytes transmitted or both. When the lifetime of a SA expires, the SA can be re-established depending upon the local security policy.

A threshold is the percentage of the expiration of a SA lifetime, at which time it triggers the re-negotiation of the current SA, depending on the local security policy. Initially, the initiator starts Phase 1 followed by Phase 2. However, any security gateway can initiate the re-keying negotiation, if required by the local security policy.

There are various techniques for SA re-keying and transfer (e.g., when to set-up the new SA and when to remove the old SA). As pointed out in [REKEYING], there is a potential interoperability problem in the Phase 2 negotiation due to the lack of a standardized re-keying mechanism among alternative techniques. We modeled various techniques of re-keying and transfer for both Phase1 and Phase 2. In this section, we describe those re-keying and SA transfer techniques.

3.2.1. Phase 1 SA Re-keying

There are currently two mechanisms modeled for the phase 1 re-keying:

1. Continuous channel mode; and

2. Non-continuous channel mode.

For the continuous channel mode, a valid Phase 1 SA is always available between two security gateways and is re-negotiated when threshold of an existing SA triggers. The valid Phase 2 SAs currently belonging to the expiring IKE SA are transferred to the newly created Phase 1 SA. The non-continuous mode does not re-negotiate an expiring SA and removes the SA if expired, independent of the Phase 2 SAs (allowing dangling Phase 2 SAs). A new Phase 1 SA is only created whenever needed such as when the Phase 2 negotiation is required. Note that IKEv2 requires only continuous channel mode.

3.2.2. Phase 2 SA Re-keying

When the threshold of an existing outbound SA (only outbound SAs are allowed to be re-keyed) triggers a re-keying, IPSecManager sends a SADB_ACQUIRE message to IKEManager that initiates the Phase 2 negotiation. Before sending a re-keying request, the IPSec module checks to see if there already exists the new SA with the same policy criteria as the original one.

We modeled various Phase 2 SA transfer techniques (discussed in [REKEYING]) to examine the dynamic behavior and interoperability issues with regard to re-keying between a pair of security gateways.

The following options are modeled:

· Delete message: sets-up new SAs and removed old SAs when a Delete message for the old SA is received. The IKEv1 specifies that Delete messages are optional.

· Fixed delay: sets-up new SAs and deletes old SAs when either receiving inbound traffic with the new SA or, in the absence of inbound traffic, after a fixed amount of time (e.g., 30s) has elapsed.

· Twice measured round trip time (RTT * 2): sets-up after either receiving inbound traffic using the new SA or after twice the measured round trip time has elapsed. The IKEManager sends the kernel a SADB_UPDATE message with twice measured round trip time.

· Immediate use: new SAs are set-up and old SAs are removed immediately.

Once a replacement SA is received from IKEManager, IPSecManager then performs the following SA transfer procedure:

As the SA responder, after having received 3rd Quick Mode message:

1. Sets-up new inbound and outbound SAs;

2. Deletes old outbound SA; and

3. Deletes old inbound SA only when having received either a Delete message or inbound traffic with the new inbound SA.

As for the SA initiator, after sending 3rd Quick Mode message:

1. Sets-up new inbound SA;

2. Creates new outbound SA either in the presence of a Delete message or inbound traffic with new inbound SA or after a certain period of time in case no inbound user traffic with the new inbound SA exists.

3.3. Retransmission

IKE uses the UDP protocol, which is inherently unreliable. To make

IKE reliable as specified in [RFC2408], the transmitting entity in NIIST sets a retransmission timer and a retry counter when sending an ISAKMP message. The retransmission timer values are dynamically adjusted with the measured round trip time using exponential back-off.

Maintaining the retransmission timer in the responder can solve a potential problem of packet loss of the last message of an exchange, specifically for Phase 2 exchange. The sender of the last message of the Phase 2 exchange (i.e., initiator) will know if the last message has been received if the receiver does not re-send the previous message (it means the receiver has received the last message). The sender keeps the last message in case of retransmission.

4. NIIST (IKEv1) Configuration

This section describes on how to model a security gateway and its components under various network topologies, using DML that is discussed in Section 2.1.

4.1. Modeling A Security Gateway

Figure 3 shows a security gateway protocol graph together with a host behind it, and the relationship and communication path between two key management modules (IKEManager) in a pair of security gateways. Any router or host can be configured as a security gateway.

A security gateway (as shown in Figure 4) must specify a protocol graph and security policy, including cryptographic functions (Section 4.2), IKE security policy (Section 4.3) and IPSec policy (Section 4.4).

A protocol graph for the security gateway consists of a list of protocols to be configured: IKEManager (an IKE demon), NiistSocketMaster (PF_Key API module), udpSessionMaster and IPSec (IP security module) (as shown Figure 4).

[image: image3.png]Net 1 Net2
Host Security Gateway Security Gateway Host
Protocol Graph Protocol Graph Protocol Graph Protocol Graph

Application IKE IKE Application

Socket Socket Socket Socket
TCP/UDP upe upe TCP/UDP

» 1PSec/lP 1PSec/lP »
NIC NIC NIC NIC

 Figure 3: A Security Gateway Protocol Graph

In security section of a security gateway (as shown in Figure 4), the user can set an optional attribute use_encrypt_delay to indicate whether or not the cryptographic delay is applied. The user is also provided, for simplicity, an option of specifying global parameters for both IKE and IPSec, as specified below. The user can also specify an SA specific parameters related to SA lifetime in a specific SA policy, if preferred.

The following attributes can be specified globally:

· ike[ipsec]_lifetype

· ike[ipsec]_lifeduration
· user_ike[ipsec]_soft a global flag that indicates whether or not the user provides soft_threshold and random_delay. If the value is false (default), the system-provided values are used.

· ike[ipsec]_soft_threshold the percentage (%) of expiration of lifetime of an existing SA, which triggers the re-negotiation of the SA for a replacement SA. The value of 0 means that no re-keying of the SA is allowed. The value of 100 means that the re-negotiation starts after the life duration of the existing SA has been expired.

· ike[ipsec]_random_delay It is used to adjust (jitter) the calculated soft time in order to prevent the simultaneous negotiation from both ends.

 Figure 4: A Simple Security Gateway Model

4.2. Modeling Cryptographic Functions

As discussed in Section 2, processing delay for the cryptographic algorithm for encryption and authentication (encrypt and auth), digital signatures (signature_delay) and DH exchange (DH_exchange_delay) is modeled.

Figure 5: Example Specification for Cryptographic Processing Delay

The cryptographic algorithm processing delay is based on the function of the packet size and performance of a specific cryptographic algorithm provided with key length and block size. As shown in Figure

5, the cryptographic function specification (cryptoEntry) takes the following attributes:

· id the algorithm identifier.

· use the location of a class that provides the cryptographic functions of the specific algorithm.

· block_size the block size.

· key_size the key size.

· e_perf the performance of encryption in either bytes/sec, bytes/sec or Kbytes/sec.

· d_perf the performance of decryption in either bytes/sec, kbytes/sec or Kbytes/sec.

The encryption and decryption performances are separated to provide flexibility in anticipation of the need to test the performance separately. The same value can be provided for both encryption and decryption if the separate performance is not available. The user can have an option to specify alternate cryptographic algorithms or even the same cryptographic algorithm with different key lengths or block size, as shown in Figure 5. If a security policy entry contains a new algorithm (e.g., AES), then cryptographic functions can be dynamically provided (cryptoEntry) for the new algorithm.

The digital signature delay (signature_delay) requires the following attributes:

· id the signature identifier (e.g., RSA for the RSA digital signature and DSS for DSA digital signature);

· sign the delay time for signing; and

· verify the delay time for verification.

The following attributes are needed for DH delay (DH_exchange_delay):

· id the DH group identifier (e.g., group1 for MODP_768_G1, group2 for MODP_1024_G2); and

· delay the delay time for the group.

4.3. Modeling IKE

4.3.1. IKE SPD

Figure 6 shows the specification of IKE security policy.

 Figure 6: Part of the Specification for IKE Policy

Each IKE SPD entry (spdentry) specifies the following attributes:

· id: the identifier of the entry.

· remoteSG: the remote security gateway as a means of discovering remote gateway.

· ex_mode: the mode of exchange.

· identity_type: the type of identity.

· soft_threshold: specifies the percentage (%) of expiration of the life duration of an existing SA, which triggers the re-negotiation of the SA for a replacement SA. The value of 0 means that no re-keying of the SA is allowed. The value of 100 means that the re-negotiation starts after the life duration of the existing SA has been expired. Can be set either globally or locally.

· policy: one or more policies with the attributes below.

· encrypt: the specified encryption algorithm.

· hash: the specified authentication algorithm.

· auth_method: the authentication method. Pre-Shared is currently supported.

· lifetype: either time-based or byte-based. Can be set either globally or locally.

· lifetime: the duration of the SA. Can be set either globally or locally.

The attribute soft_threshold is also associated with the parameter p1_rekeying_mode below, which is automatically set to the value of 0 if p1_rekeying_mode is configured as non-continuous.

4.3.2. IKE Configuration Parameters

Figure 7 shows the configurable DML attributes used in the key management module:

 Figure 7: IKE Parameters

4.4. Modeling IPSec

The IPSec module maintains separate inbound (spd_inbound) and outbound (spd_outbound) SPD databases. As shown in Figure 8, each SPD entry

(spdentry) is specified in preferential order. The following are the list of attributes:

· id: the entry identifier.

· selector: one or more selectors which is used to map traffic to a specific SA or SAs. The following selector parameters are defined:

· type: the selector parameter identifier. The parameters currently supported are SRC_IP, DEST_IP, DEST_PORT, RC_PORT, TP_PROTOCOL;

· value_type: the type of the value: either the single value (S) or the range of values (R).

· value or value_range: the specific value. If the value type is R, value_range must be used and the range of values must be provided.

· action: the specific action to be applied. The options are apply, bypass, or discard. If an SPD entry requires secure communication (APPLY), the entry must specify SA attributes as follows:

· encap_mode: the encapsulation mode. The TUNNEL mode is supported.

· remoteSG: the remote security gateway.

· usepfs: the use of pfs.

· soft_threshold: the percentage value of expiration of the SA lifetime.

· proposal: one or more proposals. These proposals are ORed in preferential order. A proposal specifies:

· protection one or more protections. If more than one protection is specified, those entries are ANDed, which is generally used when required both ESP and AH protections. A protection, in turn, specifies:

· protocol a security protocol to be used;

· policy one or more policies which are ORed in preferential order. A policy specified:

· encryption (encrypt) algorithm;

· authentication (auth) algorithm;

· life type (lifetype) (can be set either globally or locally); and

· life duration (lifetime) (can be set either globally or locally).

 Figure 8: Part of the Specification for IPSec Policy

4.4.1. IPSec Configuration Parameters

The DML configurable attributes used in IP security module are shown in Figure 9.

 Figure 9: IPSec Parameters

Configuration Hint

· Inconsistent policies (e.g., Transform IDs) between two negotiating peers may end with a NULL pointer exception.

· Using undefined attributes may cause a NULL pointer exception. For instance, ESP_AH is not defined, but used.

· Use the reasonable values for some parameters/attributes such as:

a. IKE and IPsec life duration and soft threshold;

b. Link delay relative to IPsec life time;

c. SA lifetime and timer timeout values.

 E.g., if life duration is shorter than the time takes to complete file transfer and the threshold value is 0, an ftp application may end abruptly with a max retransmission error.

5. NIISTv2 (IKEv2) Model

This section describes modeling of IKEv2-specific features, mechanisms and changes thereof. Unless otherwise specifically mentioned in this section, the same techniques and mechanisms such as cryptographic functions are used as described in Sections 3 and 4 for IKEv1.

5.1 IKEv2 Features

This section describes modeling of IKEv2-specific features, mechanisms and changes thereof. NIIST IKEv2 is based on IETF IKEv2 Proposal Revision 12. Unless otherwise specifically mentioned in this section, the same techniques and mechanisms such as cryptographic functions are used as described in IKEv1.

5.1.1 Re-Keying

Any security gateway can initiate the re-keying process depending upon the local security policy. In IKEv2, SA lifetimes are not negotiated. The user is provided an option of specifying global lifetime for both IKE and IPsec. The user can also use the system default values.

The IKE module supports only continuous channel mode if the policy requires. Once a new IKE SA is set-up, the new IKE SA inherits all the valid child SAs of the old IKE SA. These child SAs can be accessed from both the old and new SAs until the old SA expires. As for the IPsec re-keying, a Delete message is used to set-up new SAs.

5.1.2 Retransmission

In IKEv2, the message initiator is responsible for retransmission of an IKE request in case of no response for the request. The initiator sets a retransmission timer and a retry count when sending an IKE request message. The retransmission timer values are dynamically adjusted with the measured round trip time using exponential backoff.

5.1.3 Dead Peer Detection

As a mechanism for dead peer detection, an IKE endpoint sends a NULL query notify (i.e., IKE ping) message in the event of keep-alive timeout. The SA responder sets an Inactivity timer to check half-open connections when received an IKE SA initiation request.

5.1.4 Window Management

As specified in the IKEv2 specification, a security gateway as the initiator can initiate one or more IKE requests up to an agreed upon window size between peer gateways. The initiator maintains a couple of queues:

· Request send queue; and

· Response send queue.

The request send queue keeps copies of all the requests previously sent for retransmission in case it does not receive the matching responses. The responder accepts and processes requests out of order and maintains a response send queue that keeps copies of previously sent responses equal to the negotiated window size. This is in preparation for responding in case of retransmission requests from the initiator.

The Message ID counters are maintained for both requests and responses. These counters increase as requests are generated and responses received.

5.2 Modeling A Security Gateway

A new security policy schema for IKEv2, shown in Figure 10, is modeled due to the protocol change. Since the SA lifetime is not included in negotiating security attributes, the user is provided, for simplicity, an option of specifying global lifetime for both IKE and IPsec, as specified in Figure 10. The user can also specify an SA specific lifetime in the SA policy section, if preferred. The following attributes can be specified globally:

· ike[ipsec]_lifetype

· ike[ipsec]_lifeduration
· user_ike[ipsec]_soft a global flag that indicates whether or not the user provides soft_threshold and random_delay. If the value is false (default), the system-provided values are used.

· ike[ipsec]_soft_threshold the percentage (%) of expiration of lifetime of an existing SA, which triggers the re-negotiation of the SA for a replacement SA. The value of 0 means that no re-keying of the SA is allowed. The value of 100 means that the re-negotiation starts after the life duration of the existing SA has been expired.

· ike[ipsec]_random_delay It is used to adjust (jitter) the calculated soft time in order to prevent the simultaneous negotiation from both ends.

 Figure 10: A Simple Security Gateway Model
5.3 Modeling IKE

Figure 11 shows the specification of IKEv2 security policy.

Each IKE entry (spdentry) specifies the following attributes:

· id: the identifier of the entry.

· nhi_remoteSG: the remove security gateway as a means of discovering remote gateway.

· identity_type: the type of identity.

· auth_method: the method of authentication used.

· proposal: a proposal.

· protection: specifies a protocol IKE and consists of one or more policies which are ANDed when encoding. A preferential order is not required in this list.
A policy contains security policy with the following attributes:

· type: the type of transform. The supported transforms are:

· encrypt the encryption algorithm;

· prf the pseudo-random function (e.g., SHA1 or MD5);

· auth the integrity algorithm; and

· DH_group the Diffie-Hellman group (e.g., MODP_1024_G2);

· id: the value of the specific transform defined by type. Multiple values can be provided, which are ORed in preferential order.

 Figure 11: Part of the Specification for IKE Policy

5.4 Modeling IPsec

As in the IKEv1, the IPsec module maintains separate inbound (spd_inbound) and outbound (spd_outbound) SPD databases. As shown in Figure xx, each SPD entry (spdentry) is specified in preferential order. The following are the list of attributes:

· id: the entry identifier.

· selector: one or more selectors which is used to map traffic to a specific SA or SAs. The following selector parameters are defined:

· type: the selector parameter identifier. The parameters currently supported are SRC_IP, DEST_IP, DEST_PORT, SRC_PORT, TP_PROTOCOL.

· value_type: the type of the value: either the single value (S) or the range of values (R).

· value or value_range: the specific value. If the value type is R, value_range must be used and the range of values must be provided.

· action: the specific action to be applied. If an SPD entry requires secure communication (APPLY), the entry must specify SA attributes as follows:

· encap_mode: the encapsulation mode. The TUNNEL mode is supported.

· remoteSG: the remote security gateway as a means of discovering remote gateway.

· sourceSG: IP address of the source SG to be used. This attribute is needed to support BGP.

· usepfs: the use of pfs.

· proposal: one or more proposals which are ORed in preferential order. A proposal specifies:

· protection: one or more protections. If more than one protection is specified, those entries are ANDed, which is generally used when required both ESP and AH protections. A protection, in turn, specifies:

· id: the protection identifier.

· protocol: a security protocol to be used (e.g., ESP or AH);

· policy: one or more policies which are ANDed when encoding. A policy specifies the following attributes:

· type: the type of transform. The supported transforms are:

· encrypt: the encryption algorithm;

· auth: the integrity algorithm

· id: one or more values of the specific transform defined by type. The values of the transform are ORed in preferential order.

 Figure 12: Part of the Specification for IPsec Policy
6. NIIST Player

The NIIST Player is a simulation animation tool that allows the user to interactively browse the simulation log file and to dynamically reconstruct and visualize the state of the Ipsec and IKE events from the simulation results. The Player displays these events in sequence, in chronological order and provides performance statistics that are also dynamically displayed. It allows the user to freely move to specific points in time or to step through the events one at a time.

6.1 Main Window

[image: image4.png]NIISTPlayer

NIISTPlayer

Version: v0.2.3b
ANTD, ITL, NIST

[¥] System Status Window (default is on)

Each gateway diplays its own SAs as they are being
re) negotiated. Select gateways you would like to see:

[Gateway: 3:500(0){0.0.0.146}

 Figure 13: NIISTPlayer Main Window

The main window, as shown in Figure 13, allows the user to select items he/she would like to see and to start/close the simulation. The user can select System Status Window that is on as default and one or more security gateways.

Upon pressing the start button, the selected items will open up the corresponding frames. The close button exits the program.

6.2 System Status Window

The System Status Window, shown in Figure 14, displays all the events including IKE and Ipsec events that occurred during the simulation run.

[image: image5.jpg]System Status

i
[stn || swp [[sen | [Goto || Begin |[Ena |
fast slow
1Psec IKE
time (sec) Gateway local/remote time (sec) |_Gateway local/remote.

\@577.490830
(@580.772741
(©679.145136
(@679.346593
(@679.346503
@774.151988
@774.671902
@775.841705
@776.239777

@580.974053
@581.074478
@679.346593
@685.427205
@690.220835
©690.833363
@775.841705
@776.238754
@776.340052

[

N s

i
TP

any, src port start/en

spdiD
encap mode
encrypt = unknown, life type
threshold = 0% corr ID = 0
old SPI = 1107225754

any, dest port start/end
client init/init2 = 0.0.0.2/-1, client resp/resp2 = 0.0.0.18/-1

, nidlD = 1, SPI = 1107225754 salD = 0, protocol = not est
nknown, authen = unknown

@®775.841705 SA Complete: [INIT:OUTBOUND] REKEY SA
locallP = 1:500(1){0.0.0.34}, remote IP = 0:500(1{0.0.0.33}

065535
065535

unknown, life duration = Os

 Figure 14: System Status Window
The System Status Window contains the following components:

· Slider: is used to adjust the speed of display for each element to the table. If the slider is to the left of the middle of the slider, it sleeps anywhere from 30 to 210 microseconds. If the slider is to the right of the middle bar, the program sleeps anywhere from 670 to 1210 microseconds. The default (middle of the bar) is to sleep for about 210 microseconds.

· Start: is used to continue the addition of elements to the table if the Stop or the Step button was previously pressed.

· Stop: is used to suspend the addition of elements to the table temporarily.

· Step: is used to add one element to the table, then awaits further user input.

· GoTo: is used to select a specific point in time that the user would like to view. A dialog box is provided to enter the specific time. The program displays all of the times up to, and including the time requested. In addition, the next time in the sequence is also displayed, so the user can see what two events the time one entered falls between.

· Begin: is used to move the view of the table from the current view to display the first element added to the table.

· End: is used to move the view of the table from the current view to display the last element added to the table.

· The Text area: is used to display the full information about the specific element if the user selects a specific element.

· The Ipsec and IKE tables: displays the Ipsec and IKE events respectively.

· Each element for the Ipsec table provides the following:

· Time in seconds

· Local and remote gateway

· Status of the event

· Client initiator and client responder

· SPI

· Current SA ID

· Corresponding SA ID: if the current SA is for inbound, then the corresponding SA would be for outbound, and vice versa.

· Old SA ID

· Each element for the IKE table provides the following:

· Time in seconds

· Local and remote gateway

· State of the IKE exchange: phase 1, phase 2, new key or re-keying.

· Initiator and responder cookies

· Client initiator and client responder

· My SPI

· Peer SPI

· Message ID

6.3 SADB Window for A Gateway

The SADB Window (shown in Figure 15) shows a snapshot of the SA database contained in the Ipsec module in a particular gateway that is chosen by the user, from the Main Window.

[image: image6.jpg]File Options Look Up

DI

#SAs - initiat: [, rekeyed: [17

Avg Delay: [0.4075 |

fast real

GmeGed | sab | saus | clemtiijreso | pesrip | |
(@1.262003 (0 T drop ertor: no sa entry
|@1.262003 o (1) req new
l@1.759348 o pkt drop
|@1.759348 o (1) req new 0.
|@1.930500 161 (1) est. in new 0.0.0.2/0.0.0.18 00() 14
|@1.930500 16501 (1) est. out new 0.0.0.18/0. 2 00D 10:
|@2.333418 163 (1) est. in new 0.0.0.3/0.0.0.19 1:500¢D) 131
|@288.337770 o (1) req rekey 0.0.0.19/0. 3 00
|@288.469276 173 (1) est. in rekey 0.0.0.2/0.0.0.18 00(D) 790, |

Pkt drop (o s [127

©1.930500 SA Complete: [INIT:INEOUNDINEW
locallp
T

any, src port start/end
any, dest port start/ent
dlient init/init2
spdiD = 2, nicl
encap mode

065535
065535
0.0.2/-1, dlient resp/resp2
1,SPI = 1472980855 salD
unnel, authen = pre sharect
3dkes, life type
5% corr ID

encrypt
threshold
old SN

-1

seconds, life duration
-1

sA
0:500(1)(0.0.0.33), remote IP = 1:500(1{0.0.0.34}

0.0.0.18/-1
161, protocol = ESP

0.000001s

 Figure 15: SADB Window for A Security Gateway
The following Menus are available:

· File: is used to close the window.

· Options:

· Go To: is used to select a specific point in time that the user would like to view. A dialog box is provided to enter the specific time. The program displays all of the times up to, and including the time requested. In addition, the next time in the sequence is also displayed, so the user can see what two events the time one entered falls between.

· Reset: clears the widow.

· Mode: provides two options:

· Show full data: displays all the events in the simulation. All options are available in this mode.

· Show current sa: displays the events for the currently active SAs. The buttons Start, Step and Next SA are disabled in this mode. If one of those buttons is pressed, a pop-up message is displayed to change to the Full mode.

· Look Up: the user can look-up SAs by either SPI or SA ID:

· SPI

· SA ID

Each window contains the following components:

· Slider: is used to adjust the speed of display for each event to the table. The default is to display events based on a simulation time. If the slider is to the furthest left of the middle of the slider, the program displays the elements one after another, without regard to any simulation time ratio. The amount of time that the program sleeps when the slider in on simulation time and to the left is about from 10 ms to 10 times the difference between the current time just added and the next time that is going to be added. The default is 10 times the difference between the time just added and the time to be next added. When the slider is the right of the middle point, then the value is from 50 times the difference between the times, to 1000 times the difference between the times. When the time between two successive elements is very small (e.g., less than one second) or large (e.g., greater than 100 seconds), the program increases or decreases, respectively, the time between the addition of the elements.

· Start: is used to continue to add elements to the table if the Stop or Step button was previously pressed.

· Stop: is used to suspend the addition of elements to the table temporarily.

· Step: is used to add one element to the table, then awaits further user input.

· Next SA: allows the user to move the next related event. When the button is pressed, the program moves to the next event involving the same two nodes from the highlighted element. This can be used to locate, for example, the completed or re-keyed SA from the new SA request.

· Begin: is used to move the view of the table from the current view to display the first element added to the table.

· End: is used to move the view of the table from the current view to display the last element added to the table.

· Table: each element of the table provides the following:

· Time in seconds

· SA ID

· Status of the event

· Client initiator and client responder

· Peer IP address

· SPI

· Protocol

· Old SA ID

· SPD ID

· The encryption/integrity algorithm

· #SAs – initial: displays the current number of initial SAs

· rekeyed: displays the current number of re-keyed SAs

· Avg Delay: displays current average SA latency

· Pkt drop (no SA): displays the current number of packets dropped due to no SAs

· The Text area: displays the full information about the specific element if the user selects a specific element.

7. Conclusions

In this report, we have described the design, operations and modeling of NIIST that includes the most recent IETF specifications of IPSec, IKE (both the current version 1 (NIISTv1) and a proposal for version 2 (NIISTv2)), security policy and PF_Key. The NIIST would help study and investigate behavioral and performance characteristics, including the issues of interoperability, scalability and performance of interacting suite of security protocols in large-scale VPN environments. The NIIST can also be used to evaluate alternative strategies or techniques of the current open issues and proposed extensions to IPSec such as various re-keying techniques and IPsec packet handling options.

References

[RFC2401] S. Kent and R. Atkinson, "Security Architecture for the

Internet Protocol", RFC 2401, November 1998.

[RFC2402] S. Kent and R. Atkinson, "IP Authentication Header",

 RFC 2402, November 1998.

[RFC2406] S. Kent and R. Atkinson, "IP Encapsulating Security

Payload (ESP)", RFC 2406, November 1998.

[RFC2407] D. Piper, "The Internet IP Security Domain of

Interpretation for ISAKMP", RFC 2407, November 1998.

[RFC2408] D. Maughan, M. Shertler, M. Schneider, J. Turner,

"Internet Security Association and Key Management Protocol

 (ISAKMP)", RFC 2408, November 1998.

[RFC2409] D. Harkins and D. Carrel, "The Internet Key Exchange (IKE)",

RFC 2409, November 1998.

[RFC2367] D. McDonald, C. Metz and B. Phan, RFC2367, "PF_KEY

Key Management API, Version 2", July 1998.

[PFKEY-EXT] Jari Arkko, draft-arkko-pfkey-reference-00.txt, "PF_KEY

Extensions for Reducing Policy Information in Kernel'',

July 14, 2000

[REKEYING] Tim Jenkins, draft-jenkins-ipsec-rekeying-06.txt,

"IPsec Re-keying Issues", May 3, 2000

[SSF-WEB] http://www.ssfnet.org/homePage.html

[SSF] J. Cowie, and et al, ``Towards Realistic Million-Node Internet

Simulations'', June, 1999.

[IKEV2] Charlie Kaufman, Editor, ``Internet Key Exchange (IKEv2) Protocol'', draft-ietf-ipsec-ikev2-12.txt, January 6, 2004.

[CERBERUS] http://www.antd.nist.gov/itg/cerberus/

crypto_delay [

 encrypt [

 cryptoEntry [

id THREE_DES_CBC

use SSF.niist.cryptoDelay.THREE_DES_CBC_Delay,

 	block_size 8 key_size 24 e_perf 811K d_perf 810K

]

 # if the user wishes to use the diff performance for the same

 # transform;

 cryptoEntry [

id THREE_DES_CBC_8

use SSF.niist.cryptoDelay.THREE_DES_CBC_Delay_8,

 	block_size 8 key_size 8 e_perf 805K d_perf 802K

]

 # .. more entries

]

 auth [

 cryptoEntry [

id HMAC_SHA1

use default block_size 64 key_size 20

e_perf 7174K d_perf 7313K

]

]

 # The time taken to sign and verify the digital signature in seconds.

 signature_delay [

 signature_entry [id RSA sign 0.03 verify 0.002]

 signature_entry [id DSS sign 0.017 verify 0.021]

]

 DH_exchange_delay [

 DH_group_entry [id group2 delay 0.1] # modp 1024bit, 100ms

]

]

graph [

 cpudelay true

 ProtocolSession [

 name ike use SSF.niist.IKE.IKEManager

 _find .dictionary.ikeinit

 _find .dictionary.ike_instrument]

 ProtocolSession [

 name socket use SSF.niist.keyAPI.NiistSocketMaster]

 ProtocolSession [

 name udp use SSF.OS.UDP.udpSessionMaster]

 ProtocolSession [

 name ip use SSF.niist.IPSec.IPSec

 _find .dictionary.ipsecinit

 _find .dictionary.ipsec_instrument]

]

 security [

 use_encrypt_delay true

 # the global default parameters

 ike_lifetype SECONDS ike_lifeduration 2400

 user_ike_soft true ike_soft_threshold 85 ike_random_delay 10

 ipsec_lifetype SECONDS ipsec_lifeduration 800

 user_ipsec_soft true ipsec_soft_threshold 85 ipsec_random_delay 10

 _extends .dictionary.crypto_delay

 _extends .dictionary.ikespd

 ipsec_policy [

 ipsec_interface [id 1

 _extends .dictionary.ipsec_spd

]

]

] # end of security

ikespd [

 spdentry [

 id 0

 nhi_remoteSG 1:500(1) ex_mode MAIN identity_type IPV4_ADDR

 soft_threshold default

 policy [

 encrypt THREE_DES_CBC hash SHA1 auth_method preshared

 lifetype default lifetime default

]

]

 # .. more ike spd entries

]

ikeinit [

 timer_interval 2.0 # IKE timer interval in seconds

 majorVersion 1 # IKE major version

 minorVersion 0 # IKE minor version

 debug false # if true, print debugging statement

 trace false # if true, print trace statement

 logfile "ike.log" # the name of the log file

 p1_rekeying_mode continuous #or non-continuous; re-keying methods

 # the user can specify the global default for both initiator

 # and responder (i.e., global_default) or provides the

 # specification of initiator (i.e., ike_initiator) and

 # responder (i.e., ike_responder) independently, as shown below.

 global_default [

 rxt_maxcount 4

 rxt_min 2.0 # in seconds

 rxt_max 64.0

 rtt_default 3.0

 replay true

 send_infoEx true

]

]

ike_initiator [

 rxt_maxcount 4

 rxt_min 2.0 # in seconds

 rxt_max 64.0

 rtt_default 3.0

 replay true

 send_infoEx true

]

ike_responder [

 rxt_maxcount 4

 rxt_min 2.0 # in seconds

 rxt_max 64.0

 rtt_default 3.0

 replay true

 send_infoEx true

]

ipsec_spd [

 spd_outbound [

 # the first two entries are for ISAKMP traffic.

 spdentry [id 0

 selector [type TP_PROTOCOL value_type S value UDP]

 selector [type DEST_PORT value_type S value 500]

 action bypass

]

 spdentry [id 1

 selector [type TP_PROTOCOL value_type S value UDP]

 selector [type SRC_PORT value_type S value 500]

 action bypass

]

 spdentry [id 2

 selector [

 type SRC_IP value_type R value_range [from 0:0(0) to 0:5(0)]]

 selector [

 type DEST_IP value_type R value_range [from 1:0(0) to 1:5(0)]

]

 # more selectors

action APPLY encap_mode TUNNEL remoteSG 1:500(1) sourceSG 0:500(1)

usepfs true

 proposal [# proposal 1

 protection [

 protocol ESP

 policy [encrypt THREE_DES_CBC auth HMAC_MD5]

 # more policies

]

]

 # .. proposal 2 and more

]

 # .. more ipsec spd entries

]

 spd_inbound [

 spdentry [id 0

 _extends .ipsec.bypass0

]

 spdentry [id 1

 _extends .ipsec.bypass1

]

 spdentry [id 2

 selector [

 type SRC_IP value_type R value_range [from 1:0(0) to 1:9(0)]

]

 selector [

 type DEST_IP value_type R value_range [from 0:0(0) to 0:9(0)]

]

 action APPLY encap_mode TUNNEL remoteSG 1:500(1) sourceSG 0:500(1)

 usepfs true

 proposal [

 _extends .ipsec.protectionESP2

]

]

] # end of spd_inbound

]

ipsecinit [

 # timer interval used for checking SAs and garbage collection

 timer_interval 2.0

 # Initial action when no SA is available.

 init_action DROP # KEEP or DROP;

 default_identity_type IPV4_ADDR

 anti_replay true

 # The user-provided replay window can be specified.

 replaywindow [use SSF.niist.IPSec.ReplayWindow32 window_size 32]

 # Various re-keying techniques

 rekeying_mode deleteMsg #rttd, deleteMsg, fixed, immediate

 default_fixed_time 30

 debug false

 trace false

 logfile "ipsec.log"

]

ipsec_spd [

 spd_outbound [

 # the first two entries are for IKE traffic.

 spdentry [id 0

 selector [type TP_PROTOCOL value_type S value UDP]

 selector [type DEST_PORT value_type S value 500]

 action bypass

]

 spdentry [id 1

 selector [type TP_PROTOCOL value_type S value UDP]

 selector [type SRC_PORT value_type S value 500]

 action bypass

]

 spdentry [id 2

 selector [

 type SRC_IP value_type R value_range [from 0:0(0) to 0:5(0)]]

 selector [

 type DEST_IP value_type R value_range [from 1:0(0) to 1:5(0)]]

 # more selectors

action APPLY encap_mode TUNNEL remoteSG 1:500(1) sourceSG 0:500(1)

usepfs true

 proposal [

 id 1

 protection [

 id 1 protocol ESP

 policy [type encrypt id AES_CBC]

policy [type auth id HMAC_SHA1]

 # more policies

]

]

 # .. more proposals

]

 # .. more ipsec spd entries

]

spd_inbound [

 spdentry [id 0

 _extends .ipsec.bypass0

]

 spdentry [id 1

 _extends .ipsec.bypass1

]

 spdentry [id 2

 selector [

 type SRC_IP value_type R value_range [from 1:0(0) to 1:9(0)]

]

 selector [

 type DEST_IP value_type R value_range [from 0:0(0) to 0:9(0)]

]

 action APPLY encap_mode TUNNEL remoteSG 1:500(1) sourceSG 0:500(1)

 usepfs true

 proposal [id 1 protocol ESP

 policy [type encrypt id AES_CBC]

	 policy [type auth id HMAC_SHA1]

]

 # .. more proposals

]

 # .. more ipsec spd entries

] # end of spd_inbound

]

�

ikespd [

 spdentry [

 id 0

 nhi_remoteSG 1:500(1) identity_type IPV4_ADDR

 auth_method RSA_SIG

 	proposal [id 1

	 protection [id 1 protocol IKE

 policy [type encrypt id AESCBC]

policy [type prf id SHA1]

policy [type auth id HMAC_SHA1]

policy [type DH_group id MODP_1024_G2]

]

]

]

 # .. more ike spd entries

]

graph [

 cpudelay true

 ProtocolSession [

 name ike use SSF.niist2.IKE.IKEManager

 _find .dictionary.ikeinit

 _find .dictionary.ike_instrument]

 ProtocolSession [

 name socket use SSF.niist2.keyAPI.NiistSocketMaster]

 ProtocolSession [

 name udp use SSF.OS.UDP.udpSessionMaster]

 ProtocolSession [

 name ip use SSF.niist2.IPSec.IPSec

 _find .dictionary.ipsecinit

 _find .dictionary.ipsec_instrument]

]

 security [

 use_encrypt_delay true

 # the global default parameters

 ike_lifetype SECONDS ike_lifeduration 2400

 user_ike_soft false

 ipsec_lifetype SECONDS ipsec_lifeduration 800

 user_ipsec_soft false

 _extends .dictionary.crypto_delay

 _extends .dictionary.ikespd

 ipsec_policy [

 ipsec_interface [id 1

 _extends .dictionary.ipsec_spd

]

]

] # end of security

PAGE
4

