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Total Variance, an Estimator of Long-Term
Frequency Stability

Charles A. Greenhall, Member, IEEE, Dave A. Howe, and Donald B. Percival

Abstract—Total variance is a statistical tool developed
for improved estimates of frequency stability at averaging
times up to one-half the test duration. As a descriptive
statistic, total variance performs an exact decomposition of
the sample variance of the frequency residuals into compo-
nents associated with increasing averaging times. As an es-
timator of Allan variance, total variance has greater equiv-
alent degrees of freedom and lesser mean square error than
the standard unbiased estimator has.

I. Introduction

Almost by definition, there can never be enough data
when making long-term stability measurements of

clocks and frequency standards. Having collected data dur-
ing a time period T , we have to accept a tradeoff between
averaging time τ and confidence in the estimate σ̂y (τ, T )
of Allan deviation σy (τ). To improve this tradeoff, Howe
et al. [1] introduced the practice of incorporating all of
the available overlapping samples of the increment of τ -
average frequency into the estimate. Of course, for the
largest averaging time (τ = T/2), there is only one such
sample, the change in average frequency from the first half
of the run to the second. The resulting estimate σ̂y (T/2, T )
often appears to be unrealistically low; an example can be
seen in Fig. 1, the results of a test run of a pair of hydrogen
masers.

Two reasons for the droop at the right end can be given.
First, if the differences of the frequency residuals are mod-
eled as Gaussian random variables with mean zero, im-
plying no overall linear frequency drift, then σ̂2

y (T/2, T )
is proportional to a chi-squared random variable χ2

1 with
one degree of freedom. The distribution of such a random
variable is heavily skewed toward values lower than its
mean value σ2

y (T/2). Fig. 2 shows the probability density
of the random variable Q = log10 [σ̂y (T/2, T ) /σy (T/2)].
The probability that Q < 0 is 0.68, more than twice the
probability that Q > 0, and the left tail is much heavier
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Fig. 1. Sigma-tau plot of σ̂y (standard estimate of Allan devia-
tion), total deviation, and remainder deviation for a pair of hydrogen
masers. The error bars (offset vertical lines) are 90% confidence in-
tervals for Allan deviation based upon total deviation.

than the right tail. Second, to prevent frequency drift from
masking the long-term fluctuations, it is common practice
to remove an estimate of overall linear drift from the data;
in this case, σ̂2

y (T/2, T ) is likely to be reduced because
drift removal tends to match the earlier and later frequen-
cies. After drift removal, σ̂2

y (T/2, T ) still has one degree
of freedom; so it is subject to both effects.

In an effort to reduce these effects on the measurement
of σ2

y (τ) for large τ , the notion of total variance was de-
veloped over the last few years in a sequence of papers
[2]–[5]. Fig. 3 illustrates how the idea of total variance was
initially conceived. The top plot shows the frequency sam-
pling function for the estimated Allan variance at τ = T/2.
By sampling function we mean a function h (t) by which
the frequency residuals y (t) are to be multiplied; then,∫ T

0 h (t) y (t) dt is called the functional associated with the
sampling function. (For sampled data, we mean an analo-
gous summation.) Except for a scale factor, the absolute
value of the functional associated with the top sampling
function is just σ̂y (T/2, T ). Because this sampling func-
tion is odd about T/2, its functional rejects the even part
of y (t). If by chance or design (from the two effects dis-
cussed previously) it should happen that y (t) tends to be
even about T/2, then the functional could produce a value
much smaller than a practical notion of the size of the
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Fig. 2. Probability density function of the logarithm (base 10) of
the standard estimator σ̂y (T/2, T ) [normalized by σy (T/2)], whose
square has one degree of freedom.

Fig. 3. Illustrating the first concept of total variance: cyclic shifts of
the frequency sampling function (top plot) for σ̂2

y(T/2, T ).

long-term frequency variations. In this situation, it makes
sense to apply also the functional associated with the even
sampling function labeled by T/4, which is obtained by a
cyclic shift (modulo T ) of the top sampling function. Here,
the odd part of y (t) is rejected. One might suppose, then,
that the square root of the sum of the squares of these two
functionals is a better measure of long-term stability than
either functional by itself.

Let us take this idea further. Having admitted one T -
cyclic shift of the top sampling function, we might as well
admit all of the shifts, seven of which are shown in Fig. 3.
The goal is to improve on the fully overlapped unbiased
estimator σ̂2

y (τ, T ) [1], henceforth called the standard esti-
mator, for averaging times τ ≤ T/2. Consider the sampling
function hτ (t) = −1 for 0 ≤ t ≤ τ , 1 for τ < t ≤ 2τ . Its
support is the interval 0 ≤ t ≤ 2τ . The standard estima-
tor is the scaled mean square output of the linear func-
tionals associated with all of the available noncyclic time
shifts of hτ (t) whose supports fit within the data interval
0 ≤ t ≤ T . [See (5) for a formula that applies to discrete-

Fig. 4. Extension by reflection of time and normalized frequency
residuals for computation of total variance. The original data are
between the dotted lines.

time data.] The initial version of total variance for τ is the
scaled mean square output of the linear functionals associ-
ated with all of the possible T -cyclic shifts of hτ (t). (For
τ = T/2, one-half of the sampling functions are redundant
because they are the negatives of the other half.)

This version of total variance enjoyed some success as
an estimator of Allan variance with reduced variability and
sensitivity to drift removal [2], [3], although it seemed to
have a problem of increased variability for data dominated
by random-walk FM. The same estimator can be obtained
by fixing the sampling function hτ (t) and shifting the data
cyclically modulo T , or, what is the same, by applying
hτ (t) as a linear time-invariant filter to an input obtained
by extending the original data y (t) periodically with pe-
riod T . If y (t) , 0 ≤ t ≤ T , is viewed as a finite piece of an
ergodic process, then its T -periodic extension can some-
times be regarded as a substitute for lack of knowledge of
the data outside [0, T ] [6]. On the other hand, a piece of a
random walk, if continued periodically, has a large random
discontinuity at the data interfaces 0 and T , untypical of
the process as a whole; its effect on the hτ (t) function-
als cannot be neglected, even for small τ . This problem
of mismatched endpoints was solved by the technique of
reflecting the data about both endpoints, resulting in a vir-
tual dataset y# (t) that can be extended to a 2T -periodic
sequence consisting of alternating forward and backward
copies of y (t). The lower plot of Fig. 4 shows a portion
of y# (t) about three times as long as the original y (t) in
the middle section. The current version of total variance
is defined as the scaled mean square output of the hτ (t)
filter acting on this new sequence.

The intent of the present paper is to give a precise
definition of total variance and an account of some of
its properties. We abbreviate total variance for τ and T
as Totvar (τ, T ) or Totvar (τ) (pronounced tōt´-vär). The
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square root of total variance is called total deviation (Tot-
dev). The results given here fall into two categories.

A. Total Variance as a Descriptive Statistic

Both Totvar (τ, T ) and σ̂2
y (τ, T ) are statistics; that is,

they are functions only of the data at hand. By a descrip-
tive statistic, we mean a statistic that has something valu-
able to say about these data, regardless of any stochas-
tic model that might be fitted or any assumptions about
how the data might have evolved outside the interval of
observation. Simple examples are sample mean and sam-
ple variance. In Section III, we show that total variance
can be used to carry out an analysis of variance, an ex-
act decomposition of the sample variance s2

y of the fre-
quency residuals yn = y (nτ0), where τ0 is the sample pe-
riod. In particular, Totvar

(
2jτ0

)
(when rescaled) can be

regarded as the portion of s2
y to be associated with the

averaging time 2jτ0 or, equivalently, the octave frequency
band 2−j−2/τ0 < ν < 2−j−1/τ0. Thus, after evaluating
Totvar (τ) for τ = τ0, 2τ0, . . . , 2jτ0, one can tell how much
of the sample variance is yet unaccounted for, and one
can associate the low frequency band 0 < ν < 2−j−2/τ0
with the remainder. Analysis of sample variance is a cen-
tral theme in statistics; an exact decomposition is highly
desirable because it accounts for all of the observed vari-
ance in the data. The periodogram does such, as do most
spectrum estimators and other decompositions, but the
standard estimator σ̂2

y (τ, T ) of Allan variance does not
[7].

B. Total Variance as an Estimator of Allan Variance

Presented below are results for the bias and variance
of Totvar (τ, T ), regarded as an estimator of σ2

y (τ), in the
presence of three power-law FM noises: white FM, flicker
FM, and random-walk FM. For white FM, we find that
Totvar (τ, T ) is unbiased for 0 < τ ≤ T . At τ = T/2, the
bias is −24% for flicker FM and −37.5% for random-walk
FM. For 0 < τ ≤ T/2, the normalized bias has the simple
form −aτ/T , where a is a constant that depends on the
noise type. (These biases apply to σ2, not σ.)

Variance results are given in terms of the equivalent de-
grees of freedom [edf; see (24) below]. For 0 < τ ≤ T/2, the
edf of Totvar (τ, T ) is always greater than that of σ̂2

y (τ, T );
the edf of Totvar (T/2, T ) is 3 for white FM, 2.1 for flicker
FM, and 1.5 for random-walk FM; the edf of σ̂2

y (T/2, T ) is
1. Moreover, the edf of Totvar (τ, T ), 0 < τ ≤ T/2, can be
well approximated by first-degree polynomials in T/τ for
each noise type. The mean square error of Totvar (τ, T ) is
less than that of σ̂2

y (τ, T ), even though the former is biased
and the latter is not. Confidence intervals for σ2

y (τ) based
on a chi-squared assumption for Totvar (τ, T ) can easily
be constructed; these will be tighter than those based on
σ̂2
y (τ, T ), and there is evidence that such confidence inter-

vals are conservative.
In summary, total variance is presented as a tool for

squeezing a modest amount of extra information about

long-term stability from a set of clock residuals, informa-
tion that is often obscured by the standard Allan variance
estimator for τ at or near T/2. Analyzing frequency sta-
bility accurately in the long term has been problematic
even for experienced users. The properties of total vari-
ance presented here suggest that it uses the available data
more efficiently than the standard estimator for long-term
characterizations. Confident of these properties, the au-
thors expect to see wider usage of this tool.

II. Definition of Total Variance

The purpose of this section is to give a precise defi-
nition of Totvar (τ, T ) for an Nx-point time-residual se-
quence with sample period τ0. In the following description,
the indices m, n, and Nx are related to time by τ = mτ0,
t = t0 + nτ0, and T = (Nx − 1) τ0, where t0 is the time
origin and, without loss, may be made equal to 0.

We start with time-residual data x1, . . . , xNx , with nor-
malized frequency residuals yn = (xn+1 − xn) /τ0, 1 ≤ n ≤
Ny = Nx−1. Extend the sequence yn to a new, longer vir-
tual sequence y#

n by reflection as follows: for 1 ≤ n ≤ Ny,
let y#

n = yn; for 1 ≤ l ≤ Ny − 1 let

y#
1−l = yl, y#

Ny+l = yNy+1−l. (1)

An equivalent operation can be performed on the original
time-residual sequence xn to produce an extended virtual
sequence x#

n as follows: for 1 ≤ n ≤ Nx, let x#
n = xn; for

1 ≤ l ≤ Nx − 2, let

x#
1−l = 2x1 − x1+l, x#

Nx+l = 2xNx − xNx−l. (2)

This operation, illustrated in Fig. 4 by the data used for
Fig. 1, is called extension by reflection about both end-
points. The result of this extension is a virtual data se-
quence x#

n , 3−Nx ≤ n ≤ 2Nx − 2, having length 3Nx − 4
and satisfying y#

n =
(
x#
n+1 − x#

n

)
/τ0, 3 − Nx ≤ n ≤

2Nx − 3.
We now define

Totvar (m,Nx, τ0) =
1

2 (mτ0)2 (Nx − 2)

×
Nx−1∑
n=2

(
x#
n−m − 2x#

n + x#
n+m

)2
, (3)

for 1 ≤ m ≤ Nx − 1. Note that τ is allowed to go to
(Nx − 1) τ0 instead of the usual limit of �(Nx − 1) /2� τ0.
Because of the symmetry of the extended data, the number
of summands in (3) does not depend on m. Total variance
can also be represented in terms of extended normalized
frequency averages by

Totvar (m,Ny + 1, τ0) =
1

2 (Ny − 1)

×
Ny∑
n=2

[
ȳ#
n (m)− ȳ#

n−m (m)
]2

(4)
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where ȳ#
n (m) =

(
x#
n+m − x#

n

)
/ (mτ0).

The notations Totvar (τ, T ) and Totvar (τ) are to be
regarded as abbreviations for Totvar (m,Nx, τ0).

A. Remarks

• For comparison, the standard Allan variance estima-
tor, which we have been abbreviating as σ̂2

y (τ, T ), is
actually given by

σ̂2
y (m,Nx, τ0) =

1
2 (Nx − 2m)

×
Nx−2m∑
n=1

[ȳn+m (m)− ȳn (m)]2 (5)

where 1 ≤ m < Nx/2, ȳn (m) = (xn+m − xn) / (mτ0).
• Total variance, like Allan variance and its conventional

estimators, is invariant to an overall shift in phase and
frequency; that is, if a first-degree polynomial c0 +
c1n is added to the original sequence xn, then total
variance does not change.
• It is possible to program total variance without creat-

ing an extended data array in memory [5, eq. (9)].
• To simplify the scaling of total variance relative to the

decomposition of sample variance that it generates [see
(19)–(21)], one might wish to use Nx − 1 in place of
the denominator Nx− 2 in (3), and Ny in place of the
denominator Ny − 1 in (4).
• In Section III D, the definition of total variance is ex-

tended to arbitrarily large m.

III. Analysis of Variances

A. FIR Filters

To prepare for this section, we review some notation
regarding finite-impulse-response (FIR) filters acting on
discrete-time signals xn with a sample period τ0, where n
ranges over all integers. A FIR filter is an operator of form

Fxn =
∞∑

l=−∞
flxn−l (6)

where fn, the impulse response of F , is nonzero for only
a finite set of indices n. For causal filters (fn = 0 for
n < 0), we can write the impulse response as a list
[f0, f1, f2, . . . , fL]. The transfer function of F is defined by

F (ν) =
∞∑

n=−∞
fne
−i2πνnτ0 (7)

with F doing double duty as an operator on sequences
in (6) and a function of frequency ν in (7). The squared
frequency response is |F (ν)|2. Operator composition of fil-
ters corresponds to convolution of impulse responses and
multiplication of transfer functions.

Fig. 5. The effect of 3-upsampling on an impulse response.

Fig. 6. Multiresolution scheme that leads to variance decompositions
by Allan variance and total variance. The frequency bands associated
with the signals are shown for unit sample period.

If r is a positive integer, the r -upsampled version of
F is defined as the FIR filter F (r) with impulse response
f

(r)
n = fn/r, if n is a multiple of r , and f

(r)
n = 0 otherwise.

In other words, r−1 zeros are inserted between successive
entries of the original impulse response. (See Fig. 5 for
an example with r = 3.) Letting z = e−i2πντ0 , we see
that the upsampled filter has transfer function F (r) (ν) =∑
l f

(r)
rl zrl =

∑
l flz

rl = F (rν).

B. Multiresolution Scheme

The variance decomposition properties of Allan vari-
ance and total variance can be derived from an overlapped
Haar wavelet transform [8]. The scheme consists of a lad-
der of FIR filters (Fig. 6), which, acting on an input se-
quence yn with sample period τ0, decomposes the original
frequency range 0 < ν < 2−1/τ0 into successively lower
octave bands; each stage leaves a smoothed version of the
input for further analysis. The ladder is built from two
simple filters: a lowpass filter G0 with impulse response
1
2 [1, 1], and a highpass filter H0 with impulse response
1
2 [1,−1]. The corresponding transfer functions

G0 (ν) =
1
2
(
1 + e−i2πντ0

)
= e−iπντ0 cos (πντ0)

H0 (ν) =
1
2
(
1− e−i2πντ0

)
= ie−iπντ0 sin (πντ0)

satisfy

|G0 (ν)|2 + |H0 (ν)|2 = 1. (8)

Write Gj = G
(2j)
0 , Hj = H

(2j)
0 , the 2j-upsampled ver-
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Fig. 7. Squared frequency responses of the multiresolution filters.
The j indices are lettered alongside the curves. The label

∑
|Bj |2

means |B0|2 + · · ·+ |Bj |2.

sions of G0 and H0. These filters are applied to yn accord-
ing to the scheme shown in Fig. 6. Its jth stage has output
sequences vj,n = Ajyn and wj,n = Bjyn, where A0 = G0,
B0 = H0, and

Aj = GjGj−1 · · ·G0, Bj = HjGj−1 · · ·G0 = HjAj−1
(9)

for j ≥ 1. One can show by induction that Aj is a moving-
average filter with impulse response 2−j−1 [1, . . . , 1]
(2j+1 ones), a lowpass filter for the band 0 < ν <
2−j−2/τ0. Then, by (9), Bj has impulse response
2−j−1 [1, . . . , 1,−1, . . . ,−1] (2j ones, then 2j minus-ones),
which is 2−1/2 times the filter associated with σ2

y

(
2jτ0

)
.

This filter is an approximate bandpass filter for the octave
band 2−j−2/τ0 < ν < 2−j−1/τ0 [9]: the low frequency skirt
falls off smoothly at 6 dB per octave; the high frequency
skirt is a sequence of sidelobes alternating with deep nulls.
The squared frequency responses of Aj and Bj ,

|Aj (ν)|2 =
sin2 (2j+1πντ0

)

4j+1 sin2 (πντ0)
, |Bj (ν)|2 =

sin4 (2jπντ0
)

4j sin2 (πντ0)
,

are plotted in Fig. 7 against log2 (ντ0) for 0 ≤ j ≤ 4.
As we have seen, the approximate passbands of the

filters B0, . . . , Bj , Aj partition the original frequency do-
main 0 < ν < 2−1/τ0 into octaves, shown in Fig. 7 as the
intervals between the x-axis tick marks. All of the vari-
ance decompositions discussed subsequently follow from a
counterpart of this statement for the squared frequency
responses, which satisfy the frequency-domain decomposi-
tion equation

J∑
j=0

|Bj (ν)|2 + |AJ (ν)|2 = 1. (10)

Fig. 7 also shows
∑J
j=0 |Bj (ν)|2 for 0 ≤ J ≤ 4.

Equation (10) can be proved by induction on J from (8)
and (9) (or from the identity sin4 x = sin2 x − 1

4 sin2 2x).
If ντ0 is not an integer, then |Aj (ν)|2 → 0 as j →∞, and
it follows from (10) that

∞∑
j=0

|Bj (ν)|2 = 1 (11)

∞∑
j=J+1

|Bj (ν)|2 = |AJ (ν)|2 . (12)

Equation (11) says that the squared frequency responses
associated with Allan variance for τ = 2jτ0 sum to 2,
except at zero frequency and its aliases.

C. Ensemble Variance

Before we derive the sample variance decomposition
property of total variance, it is useful to understand how
an analogous property of Allan variance follows from the
frequency-domain decompositions. Let yn be a stationary
random process with variance var yn and one-sided spec-
tral density Sy (ν). Then, the stationary processes vj,n and
wj,n have spectra |Aj (ν)|2 Sy (ν) and |Bj (ν)|2 Sy (ν), re-
spectively, and varwj,n = 1

2σ2
y

(
2jτ0

)
. Accordingly, if we

multiply (10)–(12) by Sy (ν) and integrate over ν from 0
to 2−1/τ0, we obtain

var yn =
1
2

J∑
j=0

σ2
y

(
2jτ0

)
+ var vJ,n

=
1
2

∞∑
j=0

σ2
y

(
2jτ0

)
(13)

var vJ,n =
1
2

∞∑
j=J+1

σ2
y

(
2jτ0

)
. (14)

If yn has stationary first increments but is not station-
ary, like flicker FM and random-walk FM, then wj,n is sta-
tionary, vj,n is not stationary, and the frequency-domain
integrals giving var yn and var vJ,n are infinite, as are the
infinite series in (13) and (14).

D. Sample Variance

From the random-process setting, we return to the con-
sideration of a finite data sequence y1, . . . , yN with sample
period τ0. Before invoking the extension procedure of to-
tal variance, let us consider temporarily a simpler periodic
extension with period N ; that is, we agree that yn+N = yn
for all integers n. The sample mean my and sample vari-
ance s2

y of yn are conveniently expressed in terms of its
discrete Fourier transform (DFT), given by

Yk =
N∑
n=1

yne
−i2πkn/N
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and also indicated by the notation yn ↔ Yk. We have
my = Y0/N , and

s2
y =

1
N

N∑
n=1

y2
n −m2

y =
1

N2

N−1∑
k=1

|Yk|2 (15)

by Parseval’s theorem in the DFT setting.
Let F be a FIR filter with impulse response fn and

transfer function F (ν). Define the periodized impulse re-
sponse fn (N) to be the sum of fl over all l such that
mod (l, N) = n. Two facts about the periodic sequence
fn (N) must now be set down. First, if yn is N periodic,
then so is Fyn, and

Fyn =
∞∑

l=−∞
flyn−l =

N∑
l=1

fl (N) yn−l.

The second summation, which expresses a cyclic convo-
lution, can be taken over any period. Second, we have
fn (N)↔ F (νk), where νk = k/ (Nτ0). Because the DFT
maps cyclic convolutions to products, we conclude that
Fyn ↔ F (νk) Yk.

Let the input to our multiresolution scheme be an N -
periodic sequence yn. According to the previous para-
graph, all of the output sequences are periodic, and vj,n =
Ajyn ↔ Aj (νk) Yk, wj,n = Bjyn ↔ Bj (νk) Yk. By (15),

s2
vj =

1
N2

N−1∑
k=1

|Aj (νk)|2 |Yk|2 ,

s2
wj =

1
N2

N−1∑
k=1

|Bj (νk)|2 |Yk|2 .

(16)

Combining (15) and (16) with the frequency-domain par-
titions (10)–(12) yields the analogs of (13)–(14) for sample
variances, namely,

s2
y =

J∑
j=0

s2
wj + s2

vJ =
∞∑
j=0

s2
wj , (17)

s2
vJ =

∞∑
j=J+1

s2
wj . (18)

Observe also that mvj = my, mwj = 0 because Aj (0) = 1,
Bj (0) = 0.

In connection with the definition of total variance (Sec-
tion II), we now let the role of y1, . . . , yN in the previous
discussion be taken by y1, . . . , yNy , yNy , . . . , y1. Let y#

n be
the extension of this finite sequence to a 2Ny-periodic se-
quence; then y#

n agrees with the definition given in Sec-
tion II. We feed y#

n to the multiresolution ladder and pro-
ceed to interpret the meaning of (17)–(18). Because of
symmetry, the terms of the sample variance sums occur
in pairs; consequently, we have s2

y# = s2
y (the sample vari-

ance of y1, . . . , yNy), and

s2
wj =

Ny − 1
2Ny

Totvar
(
2jτ0

)
. (19)

Although total variance was previously defined only for
m < Ny, (4) retains meaning for all m if y#

n is extended
2Ny periodically as far as needed.

To interpret s2
vj , it is convenient to define a remainder

variance, [Remvar (mτ0)], such that

s2
y =

Ny − 1
2Ny

Remvar (τ0) (20)

s2
vj =

Ny − 1
2Ny

Remvar
(
2j+1τ0

)
. (21)

The square root of remainder variance is called remainder
deviation (Remdev). In this setting, the variance decom-
positions (17)–(18) become

Remvar (τ0) =
J∑
j=0

Totvar
(
2jτ0

)
+ Remvar

(
2J+1τ0

)

=
∞∑
j=0

Totvar
(
2jτ0

)
, (22)

Remvar
(
2J+1τ0

)
=

∞∑
j=J+1

Totvar
(
2jτ0

)
. (23)

In other words, the sum of all of the Totvar
(
2jτ0

)
equals

the sample variance of yn scaled by 2Ny/ (Ny − 1), or
2s2
y for practical purposes; Remvar

(
2J+1τ0

)
indicates how

much of this rescaled sample variance has not yet been
accounted for by Totvar

(
2jτ0

)
, 0 ≤ j ≤ J .

1. Remarks:

• Total variance is the first modern estimator of Allan
variance to mimic its ensemble variance decomposi-
tion properties (13)–(14); moreover, the sample vari-
ance decompositions (22)–(23) apply to any finite data
sequence.
• Because higher order Daubechies wavelet filters [10]

also satisfy (8), the previous development extends eas-
ily to higher order wavelet variances. (Allan variance
is essentially twice the Haar wavelet variance.) These
higher order wavelet variances are suitable substitutes
for some of the variations on Allan variance that have
been proposed and studied in the literature (modified
Allan variance, for example). For details, see [11].
• Even though one can evaluate Totvar (τ, T ) for arbi-

trarily large τ without taking more data, its value for
τ > T ought not to be regarded as an estimate of
σ2
y (τ); in particular, if Ny = 2K then Remvar

(
2jτ0

)
and Totvar

(
2jτ0

)
vanish for j ≥ K + 1.

• See [7] for a discussion of analysis of sample variance
by the nonoverlapped estimator of Allan variance.

2. Example: Fig. 1 shows σ̂y (τ, T ), Totdev (τ, T ), and
Remdev (τ, T ) for the hydrogen-maser data shown in
Fig. 4, with Nx = 1727, τ0 = 1024.1 s, and T = 1.77×106 s.
The averaging times include 2jτ0, 0 ≤ j ≤ 11, and
T/2 = 8.84×105 s. Relative frequency drift, −1.81×10−15

per day, was estimated from the data by the 4-point w
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method [12] and removed. As a result, σ̂y (T/2, T ) be-
comes severely depressed, a common consequence of drift
removal. (It would have been identically zero if the 3-point
x drift estimate [13] had been used.) On the other hand,
Totdev (τ) shows no depression until τ exceeds T/2. The
flatness of remainder deviation at the lower τ indicates
that the first several values of total variance contribute lit-
tle to Remvar (τ0), which is approximately twice the sam-
ple variance of the frequency data. At τ = 210τ0, remain-
der deviation and total deviation are almost equal; by (23),
this indicates that the values of Totvar

(
2jτ0

)
for j ≥ 11

also contribute little to Remvar (τ0).
The error bars, which are confidence intervals for σy (τ)

based upon Totdev(τ, T ), are discussed in Section IV B.

IV. Total Variance as an Estimator of

Allan Variance

Although total variance can stand on its own as a de-
scriptive statistic that performs an analysis of variance on
a data sequence, its usefulness for time and frequency mea-
surement is based mainly on its statistical properties as
an estimator of Allan variance under assumptions about
the underlying random noise processes. Because we are
interested mostly in long-term frequency-stability statis-
tics, and for mathematical convenience, we treat only the
power-law FM noise processes that are likely to domi-
nate long-term measurements: white FM, flicker FM, and
random-walk FM. With these assumptions, the proper-
ties of Totvar (m,Ny + 1, τ0) depend mainly on the ratio
m/Ny = τ/T for large m and Ny. It is convenient, then,
to approximate Totvar (τ, T ) by a continuous-time analog
in which sums involving xn are replaced by integrals in-
volving x (t), a power-law process with spectral density
proportional to να−2 (α = 0, −1, −2) for 0 < ν < ∞ (no
high-frequency cutoff) [5]. The theoretical computations
assume that x (t) is a process with stationary Gaussian
zero-mean second differences.

A. Bias and Variance

Although total variance is most conveniently expressed
as a function of the extended data x#

n or y#
n , each term

of (3) can also be thought of as the square of a linear
functional of the original data xn or yn. These functionals,
although complicated by the fold-over implicit in the ex-
tension by reflection, are still second-order functionals of
the xn, that is, they are invariant to time and frequency
shifts. (See [5] for formulas and pictures of the sampling
functions.) This property makes it possible to compute the
mean and variance of total variance by means of manipu-
lations on the generalized autocovariances of the three FM
noise processes [14].

The mean E [Totvar (τ, T )] is compared to σ2
y (τ) to

give normalized bias (nbias); the variance is communicated
through the eqluivalent degrees of freedom (edf), defined

Fig. 8. Ratios of edf and root mean square error for total variance
over those of the standard estimator of Allan variance.

for a random variable V by

edf V =
2 (EV )2

var V
. (24)

The results can be expressed by the formulas:

nbias (τ) :=
E [Totvar (τ, T )]

σ2
y (τ)

− 1 = −a
τ

T
,

(25)

edf (τ) := edf[Totvar (τ, T )] ≈ b
T

τ
− c,

0 < τ ≤ T

2
(26)

where a, b, and c are given in Table I. The values
of nbias and edf for the important longest term case
τ = T/2 are also tabulated. The edf formula (26) is
empirical, having an observed error below 1.2% of nu-
merically computed exact values; the tabulated values of
edf (T/2) are the exact ones. As is obvious from their
form, a and b were derived from theory; in particular,
b = limT/τ→∞ (τ/T ) edf

[
σ̂2
y (τ, T )

]
[15]. The only coef-

ficient that had to be chosen empirically was c. These
results were checked by simulations of Totvar (m,Nx, τ0),
with Nx = 101. The simplicity, accuracy, and range of ap-
plicability of (26) are striking in view of existing approx-
imations for edf

[
σ̂2
y (τ, T )

]
[1], [15], [16]; although total

variance is more complicated than the standard estima-
tor, some of its statistical properties are simpler.

Fig. 8 compares Totvar (τ, T ) to the standard unbiased
Allan variance estimator σ̂2

y (τ, T ) in two different ways:
the upper plot shows the ratio of the edf of the two esti-
mators for the three FM noises; the lower plot shows the
ratio of their root mean square errors (

√
bias2 + variance)

as estimators of σ2
y (τ).

1. Remarks:

• Because of the continuous-time analog used for the
theoretical calculations, (26) should be used only if
τ ≥ 8τ0 for white FM, τ ≥ 3τ0 for flicker FM.
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TABLE I
Coefficients for Computing nbias and edf of Total Variance in the Presence of FM Noises.

Tabulated Also are the Exact Quantities for τ = T/2.

Noise1 a b c nbias(T/2) edf(T/2)

WHFM 0 3/2 0.000 0 3.000
FLFM (3 ln 2)−1 24 (ln 2)2 π−2 0.222 −0.240 2.097
RWFM 3/4 140/151 0.358 −3/8 1.514
1 WHFM = white FM, FLFM = flicker FM, RWFM = random walk
FM.

• For white FM, Totvar (τ, T ) is an unbiased estimator
of σ2

y (τ) for τ ≤ T . This fact appeared as an outcome
of algebraic manipulations; unfortunately, the authors
cannot give a simple reason why it is so. The result
that edf (τ) = 3

2T/τ for white FM, although obtained
numerically, seems to be exact for τ ≤ T/2 and for τ =
T . No calculations of edf were performed for T/2 <
τ < T .

B. Confidence Intervals

In the tradition of time and frequency statistics, it is
customary to derive confidence intervals for frequency sta-
bility by assuming that the probability distribution of a
frequency stability estimator V , when scaled appropri-
ately, follows the chi-squared distribution with the same
edf as V [1]. Fix τ , and write V = Totvar (τ, T ), σ2 =
σ2
y (τ). Let r = 1 + nbias = E (V ) /σ2, q = edf (V ). Then,

the random variable

X =
qV

rσ2 (27)

has the same mean and edf, namely q , as a χ2
q variable has.

Presume for the moment that X has a χ2
q distribution. For

0 ≤ p1 < p2 < 1, let ξ1 and ξ2 be the corresponding levels
of this distribution. (A simple approximation algorithm for
χ2
q levels can be found in [17].) Then, ξ1 < X < ξ2 with

probability p = p2−p1. Substituting (27) and rearranging,
we have the confidence statement that

qV

rξ2
< σ2 <

qV

rξ1
(28)

with probability p. A negative bias (r < 1) pushes the
confidence interval upward.

The error bars in Fig. 1, shifted horizontally for visibil-
ity, are 90% confidence intervals for σy (τ) as computed by
this method (p1 = 0.05; p2 = 0.95) under the assumption
of flicker FM and random-walk FM noise models. Both sets
of error bars suggest the hypothesis that random-walk FM
is the dominant noise type for 105 s < τ < 106 s, although
a flicker FM hypothesis is not ruled out. A longer test run
(T = 4.23× 106 s) of the same pair of standards supports
the random-walk hypothesis, with σ̂y (τ, T ) increasing like
τ1/2. On the other hand, the longer run has a sharp fre-
quency step of about 4 × 10−14, untypical of the shorter
run (Fig. 4), so that the authors hesitate to declare a suc-
cessful characterization.

We note that (25)–(26) have not been shown to be
accurate when estimated frequency drift is removed, as
was done for Fig. 1; the authors have not carried out the
required theoretical computations, which depend on the
method of drift estimation and are more intricate than be-
fore. It seems clear, though, that the effect of drift removal
on total variance is less than its effect on conventional
σ2
y (τ) estimators, which tend to be severely depressed for

τ near T/2 [3].
The χ2

q assumption for total variance has been investi-
gated, for τ = T/2 only, by simulation of the three FM
noise types [5]. The empirical distributions of X as de-
fined by (27) were observed to have heavier left tails than
those of the corresponding χ2

q distributions. If this turns
out to be true in general, it means that the upper ends
of confidence intervals (28) based on the χ2

q distribution
are pessimistic. For now, use of the χ2

q distribution for this
purpose seems to be a conservative policy.
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