

Stress Coatings for Large Scale Membrane Mirrors F29601-03-C-0040 FA9453-03-C-0185

Presented by Capt Ryan Conk (Air Force Research Lab)

J.D. Moore B.G. Patrick D. Marker B. deBlonk (SRS Technologies) (SRS Technologies) (Air Force Research Lab) (Air Force Research Lab)

- Pressure Augmented Membrane Mirror Concept
- 0.25m Prototype/Model Correlation
- Stress Coating Distribution
- SRS Testing of 0.75m Membrane Mirror
- Summary and Conclusions

Technology Developed for Precision Membrane Mirror Systems

- Significant Milestones Have Been Achieved for Manufacturing Films With Specular Uniform Surfaces
- Static and Dynamic Global Figure Control Are Required for Further Implementation

Pressure Augmented Membrane Mirror (PAMM) with Active Boundary Control

- Target Application
 - Lightweight Optic for Imaging Applications
- Features
 - Reflector/Canopy Formed from 50 micron CP1-DE Polyimide (0.07kg/m²)
 - Pressure Between Clear Canopy and Reflector Induces Curvature
 - Active Boundary Control
 - Initial Flattening of Mount
 - Limited Correction of Figure Errors and/or Incident Wavefront Errors
 - Excellent Scaling Relationships (Boundary α R; Aperture α R²)

PAMM Design Review

- Evaluated 5+ Boundary Control Configurations.
- Used Finite Element Analysis and IODA to Explore Correctability for Typical Aberrations
 - Spherical
 - Astigmatism
 - Coma
 - Random

Astigmatism can be corrected with normal actuators

Coma aberrations with radial actuators

Spherical still a problem

0.25m Prototype

- 0.25m (10") clear aperture, focal length of 32-inches prototype mount fabricated.
- Predicted pressure: 0.0585 psi.

$$p_{d} = \frac{1}{f} \left[h \left(s + \frac{E}{(1-v)} \times \frac{a^{2}}{16f^{2}} \right) \right]$$

- Pressure required: 0.050 psi.
- Mount incorporates boundary actuators that allow radial and out-of-plane control (18 actuators each)
- This mount is used to correlate the FEM analysis to actual membrane mirror test.

- All normal actuators were stroked in 20 microns to establish a bias.
- RMS surface error reduced from 3.234 microns to 0.628 microns.
- Micrometers for normal actuators will be used in the 0.75-meter PAMM, which will further reduce the shape error.

Astigmatism Aberration Corrected with Normal Actuators (Both Plots have first order spherical, focus, coma terms removed)

)	Actuator	Iteration (Actuator Stroke in Microns)				
		1	2	3	4	5
	1	-5.44	-1.38	2.64	0.22	0.12
)	2	-11.30	-2.88	-0.69	7.87	0.16
	3	-9.12	-1.69	-3.25	5.21	0.10
	4	1.20	6.05	1.17	-5.92	-0.03
	5	8.30	10.02	5.70	-9.05	-0.06
)	6	7.49	2.88	1.51	-1.46	-1.11
	7	4.91	-5.44	-4.51	5.05	-2.63
)	8	2.67	-6.23	-3.83	5.90	-0.94
	9	-2.01	-4.63	-1.79	3.70	3.87
	10	-6.34	-3.58	-2.06	-1.57	5.14
	11	-6.34	1.29	1.84	-6.31	0.02
	12	-4.43	6.85	7.95	-3.64	-4.68
	13	-2.28	5.50	5.15	2.58	-3.28
	14	2.62	0.60	-4.17	3.11	0.52
	15	7.95	-0.86	-6.92	0.13	1.57
	16	7.98	-1.12	-2.37	-0.34	0.69
	17	4.07	-2.78	1.17	-1.51	0.32
	18	0.14	-2.53	2.51	-3.92	0.27
Astigmatism Error (in microns)		-1.10	1.46	2.44	1.32	0.26
Astigmatism Error (in microns)		-4.58	-1.63	0.92	0.70	0.20

Reduced Astigmatism Error

Coma Error Correction

- Testing was further conducted using radial actuators.
- RMS surface error decreased from 2.417 microns to 0.909 microns, with main reduction in coma aberration.
- Electrostatic pressure will be used for radial actuation in the 0.75-meter PAMM, which will further reduce the shape error.

Stress Coating For Reduced Spherical Aberration

$$h_{C}(R) = h_{0} + h_{2}(kR)^{2} + h_{4}(kR)^{4} + h_{6}(kR)^{6}$$

- Nonlinear coating Prescription for Parabolic Shape developed by Mike Wilkes (AFRL)
- Significant improvement in spherical aberration achieved.
- Coating thickness distribution theory will be used for the 0.75-meter PAMM.

10 Inch Test Article with Variable Coating

Uniform Coating Variable Coating 54% Reduction of Spherical Aberration

Stress Coating For Reduced Spherical Aberration

Comparison of Theoretical Stress Coating Thickness and Actual Coated Profile

- Coating thickness at edge is 18247 Angstroms.
- Expanded for large-scale test.

Uniformly Coated Testing

- Uniformly coated membrane mirror.
- Uniform opaque (~2000A) coating of VDA on front and back side of membrane
- Pressure set for focal length of 157cm (0.043psi)
- Uniform mirror will provide baseline test data.
- Varied stress coating membranes will be measured with reduction in spherical aberration the key comparison.

Uniformly Coated – Tuned Shape

- Only 50.8cm diameter out of 72.4cm CA was measurable due to error
- OPD plot after normal tuning based on computer model actuator calculations
- No coma correction possible due to limited aperture measurement.

1st Varied Stress Coating Testing

- Varied Stress Coating.
- Uniform opaque (~2000A) coating of VDA on mirror side, varied stress coating on back side of mirror.
- Pressure set for focal length of 157cm (0.047psi)
- Varied coating notable on back of membrane. Thickness is essentially zero in center.
- Main purpose of varied stress coating is to control spherical aberration.

1st Varied Stress Coating – Tuned Shape

RMS 11um PV 87um

- Full aperture is now available for measurement
- OPD plot after model aided tuning of normal actuators.
- RMS reduction of 65%, PV reduction of 57%.
- Boundary errors and slight coating roughness.

2nd Varied Stress Coating – Tuned Shape

K variedB.int _ 🗆 × 60.7703 microns 7.9844 7.47745 microns RMS 36.9815 16.7248 -3.53198 -23.7887

RMS 7um PV 60um •Better overall tuning on 2nd varied coating using both normal and electrostatic actuation.

- OPD plot after model aided tuning of normal actuators.
- RMS reduction of 82%, PV reduction of 76%
- Again, boundary errors and slight coating roughness.

Apertured Down Varied Coating Results

1st Varied, RMS 4.7um, PV 37um

2nd Varied, RMS 5um, PV 24um

 By reducing the measured aperture by ~15%, another reduction of RMS and PV of over 50%.

- Finite element modeling and design need further adjustments, but have shown good correlation through successful results with actuator influence
- Active boundary control effective in correcting mounting errors and other types of low order aberrations typically seen in membrane mirror applications
- Spherical aberration can be controlled (as required) through varied stress coatings on the membrane.
 - Improvements must be made to ensure no increase in surface roughness of membrane. Deposition rate and dwell time adjustments.
- Testing will continue at AFRL with inclusion of real-time DM secondary.