(4) Seek Office of High Energy Physics (OHEP) support for e-cloud research on HCX

Art Molvik & HCX and NDCX Groups

the Heavy-Ion Fusion Science Virtual National Laboratory (HIFS-VNL)

February 22, 2007

This work performed under the auspices of the U.S Department of Energy by University of California, Lawrence Livermore and Lawrence Berkeley National Laboratories under contracts No. W-7405-Eng-48 and DE-AC02-05CH11231.

UCRL-PRES-228123

The Heavy Ion Fusion Science Virtual National Laboratory

VNL-PAC 2/22/07 - Molvik

Office of High Energy Physics (OHEP) support – two approaches

(A) International Linear Collider (ILC) support, bolstered by

being formal collaborator on Cornell Electron Storage

Ring Test Accelerator (CesrTA) proposal

(B) Proposal to OHEP Advanced Technology R&D for halo

studies

(A) Formal collaborator on CesrTA – proposed testbed for ILC-Damping Rings

- Visited Cornell, 1/31-2/2/07 with 2 other e-cloud experts
- Discussed possible diagnostics for quantitative e-cloud measurements – Retarding field analyzer, grid-shielded electrode, and biased capacitively-coupled electrodes.
- Mark Palmer (ILC Coordinator at Cornell) commented favorably on these diagnostics and on VNL 3-D simulations during subsequent teleconference.

Funding will require a separate proposal from us – if CesrTA proposal funded. HCX support will require additional arguments.

(B) Proposal to OHEP Advanced Technology R&D for halo studies

- High brightness beams study group (Fall, 2006) identified halo formation as the highest priority issue – it is still not well understood or experimentally validated.
- 3-D self-consistent simulation, e- & gas diagnostics, and mitigation techniques developed to an unprecedented level in our e-cloud work.
- These new capabilities could push halo understanding to a new level.
- Proposal deadline Oct. 1, 2007.

Funding probable if American Competitiveness Initiative fully implemented; possible at moment with +\$200M for Office of Science in FY07, +\$300M in '08.

Backup slides

VNL-PAC 2/22/07 - Molvik

5

HIFS e-cloud effort

HCX Experiment

Art Molvik

Michel Kireeff Covo

Frank Bieniosek

Peter Seidl

NDCX Experiment

Peter Seidl

Joshua Coleman

Prabir Roy

Frank Bieniosek

Art Molvik

Simulation Jean-Luc Vay Bill Sharp Ron Cohen Alex Friedman Dave Grote Steve Lund

Prioritization of high-brightness beam transport issues – near term [Fall 2006 High Brightness Study Group]

- 1. Halo formation
 - a. Aperture beam at multiple (+)electrostatic quads (ESQ), then if necessary
 - b. Replace quad magnets to smoothly continue ESQ lattice
 - c. Study and improve ion injector
- 2. Reduce e-cloud induced beam degradation to negligible level (less halo, improved vacuum)
- 3. Reduce gas-cloud induced beam degradation to negligible level
- 4. Longitudinal dynamics (beam ends and emittance budget)
- 5. Negative ions to eliminate e-cloud issues, possibly lower emittance
- 6. Cause of Pulse Line Ion Accelerator (PLIA) break down
- Suppressing electrons and gas in unneutralized drift compression, but with neutralized final focus
- 8. Time dependent focal spot from beam energy variation

The Heavy Ion Fusion Science Virtual National Laboratory I

Prioritization of high-brightness beam transport issues – longer term

- 9. Multiple beam interactions in driver
- 10. Multiple beam interactions in chamber

New capabilities for e-cloud & relevant to halo growth

- Reconstructed beam distributions
- Measured scaling of gas desorption coef. with ion angle & energy
- Measured & modeled scaling (ion angle & energy) of e- emission coef.
- Simulate transport of e- & gas and interactions with beam
- Multiple methods that increase code speed by orders of magnitude –
 3-D self-consistent simulations feasible.
- Developed diagnostics to measure details of e- & gas within beam
- Simulations point way to "halo-free" injector, some exper. validation
- Demonstrated aperturing of beam with biased electrodes to control eemission, but halo increased:
 - Due to ion reflection, desorbed gas interaction, ...?
 - Mitigations: low-oxide metal, larger diameter to scrape less, closer to knife edge to reduce scattering, NEG coating(?), run hot, ...

The High Current Experiment (HCX) is a small, flexible heavy-ion accelerator (at LBNL)

HCX clearing current ~constant without aperture, grows in time with aperture – ionization of gas desorption?

NDCX – e-Trap and aperture are the main sources of e-			
Sole Trap 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	enoids	7.25 cm Trap	2 8.56 cm rap 1 2 3 4 1 3 4
4-STX Apertured 26-mA Beam 4-STX 43-mA Beam			
$\begin{array}{c} 20\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	6 8 10 12	Charge (nC)	$\begin{array}{c} 14\\ 12\\ 0\\ 10\\ 8\\ 6\\ 4\\ 2\\ 0\\ -2\\ -4\\ \end{array}$
Time (μs)			
	43-mA beam 26-mA	beam	
Diagnostic	Charge (nC) Charge	e (nC)	
e Cloud 1	-0.51	1.39	Collected capacitive charge
e Cloud 2	-1.00	<u>-41.08</u>	demonstrates dependence on
e Cloud 4	_0.04	-11.70	
e Cloud 5	-0.06	9.00	electrode length
e Cloud 6	-2.22	-1.50	
e Cloud 7	-0.85	-1.37	Magnetically connected to
e Cloud 8	-0.35	-18.69	anerture/e-tran - 40v
			apcillip c - li ap - TUA
Total Charge (nC)	6.33	85.97	current

The Heavy Ion Fusion Science Virtual National Laboratory

Desorption varies with material

TF _

F 1

Desorption increases with oxide layer

VNL-PAC 2/22/07 - Molvik