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The FAA seeks to characterize the ability of UAV viewing systems to support target detection and 
identification. Existing system evaluation methods require expensive and time consuming subjective ex-
periments. We hope to replace those experiments with the Spatial Standard Observer, a simple model of 
human detection and discrimination. This report describes progress on two elements of this project: simu-
lation of an existing subjective data set using the Spatial Standard Observer (SSO), and development of a 
web-based application for demonstrating SSO-based visibility calculations. Preliminary results indicate 
the utility of both elements. 

Introduction 
The FAA seeks to compile and review the 

characteristics and performance of existing opti-
cal/digital viewing systems that could be used to 
enhance the human UAV operator’s ability to 
see-and-avoid potential conflicts with other 
manned and unmanned aircraft. The systems will 
be characterized by their performance character-
istics:  field-of-view, field-of-regard, modulation 
transfer function, focal point, and lens quality, as 
well as bandwith and compression. This com-
parison will be used to determine the ability of 
these systems to allow detection of static images 
of differing sizes, at a range of distances in, vari-
ety of visibility conditions, i.e., sense-and-avoid. 

In this context there is a need to supplement 
the Army’s target acquisition model with a hu-
man vision model to predict observers’ probabil-
ity of detection and recognition of aircraft and 
other targets. In the current Army target acquisi-
tion model, these tasks are associated with par-
ticular values of N50 for particular image sets 
and classes, which are obtained by expensive and 
time consuming subjective experiment. We pro-
pose to create and evaluate a tool for computing 
N50 from a given image set and given classifica-
tions, thus obviating the need for subjective 
measurements. The predicted N50s would be en-
tered in the Army’s target acquisition perform-
ance model, Night Vision Thermal Imaging Sys-
tem Performance Model (NVTherm), to deter-
mine the effects of camera field-of-view, camera 
field-of-regard, camera modulation transfer func-
tion, opposing aircraft size, contrast, distance, 

and atmospheric conditions on observers’ detec-
tion and recognition of an aircraft[1]. 

We have developed a model called the Spatial 
Standard Observer (SSO) that allows predictions 
of visual detection and discrimination of foveal 
spatial targets (Watson & Ahumada, 2004). The 
goal of this project was to assess the feasibility of 
using the SSO to compute N50 values for target 
image sets.  

The first effort in this project has been to 
simulate the results of a recent psychophysical 
experiment that estimated N50 for a set of mili-
tary vehicles[2]. A second concurrent effort has 
been the development of a prototype tool for cal-
culation of the visibility of manned or unmanned 
aircraft under specified viewing conditions. 

Target Identification Model 
Here we describe the development and 

evaluation of a model to predict image and object 
identification. We begin with a description of the 
experiment whose data will be modeled. 

Psychophysical Experiment 
The experiment has been more extensively 

described in another report[2]. Here we provide a 
brief summary. The experiment consisted of two 
parts, using visible and infrared imagery respec-
tively. 

In each part of the experiment, the source im-
ages consisted of 144 digital images, of 12 “ob-
jects” in 12 “aspects.” An illustration of two of 
the objects and three of the aspects are shown for 
the visible and infrared imagery in Figure 1. Each 
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object  is a particular military vehicle, and each 
aspect is a view of that vehicle. The twelve as-
pects are approximately the same from vehicle to 
vehicle. Of the twelve aspects, eight are views 
from an elevation of seven degrees, while the 
remaining four are from 0 degrees.  

These source images were blurred with Gaus-
sian kernels of 6 possible scales, 
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The scales ranged from 5 to 30 pixels in steps 
of 5. This yields a total of 6 x 144 = 864 images 
for each image set (visible or infrared). The six 

levels of blur are illustrated in Figure 2. 

Identification experiments using trained hu-
man observers were run separately on each level 
of blur. Each observer viewed a subset of 144 
images of one type (visible or infrared), consist-
ing of 2 aspects for all 12 objects in all 6 blurs. 
The two aspects were chosen in a quasi-random 
fashion. The observers were previously trained 
on identification of these vehicles, using different 
images. On each trial, the observer attempted to 
identify the object. The percent correct was re-
corded. The results are shown in Figure 3. 

Figure 1. E
visible and

Watson 
 

 
xample images. Two objects (rows) and four aspects (columns) are shown for both the 

 infrared image sets. The last aspect shows an example of the 0 degree elevation. 
Figure 2. Examples of the six levels of blur applied to one image of each type (visible and infrared). 
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Figure 3. Percent correct identification as a 
function of blur scale for visible and infrared 
targets. 

Model 
The first model we have considered is a sim-

ple image classification machine operating on the 
basis of a normalized correlation matching rule.  
This model computes a set of N discriminant 
functions, where N is the number of possible im-
ages (in this case, N = 144). One discriminant 
corresponds to each candidate image, and the 
model selects the image with the largest dis-
criminant. 

The matching is assumed to occur in a “neural 
image” space, which is reached by transforming 
the image. The transformation consists of a con-
version to contrast and filtering by a contrast sen-
sitivity filter (CSF). The CSF is derived from our 
Spatial Standard Observer (SSO), a simple model 
of foveal contrast detection[3]. 

The templates consist of the transformed im-
ages. If the presented transformed image is writ-
ten s (for sample), then the discriminant for im-
age i is given by  

  
di s( )= sgti  (2) 

where ti is the normalized template. It is not nec-
essary to divide by the norm of s, since it is the 
same for all discriminants. 

Each transformed image can be expressed as a 
product of its normalized form and its energy 

 gk = ektk  (3) 

Thus if image k is presented, 

 s = ektk + n  (4) 

where n is a neural noise image (noise in the neu-
ral image space). Then 

di s( )= ektk + n( )gti
= ektk gti + ngti

 (5) 

We can divide through by ek without changing 
the ranking of the discriminants, 

di s( )= tk gti +
ngti
ek

= ρi,k +
ngti
ek

 (6) 

where ρi,k is the correlation (dot product) between 
each pair of neural images. 

If the noise is white and normally distributed 
with standard deviation σ, then the second term 
in this expression will be a normally distributed 
random variable with standard deviation σ/ek. So 
finally, each discriminant will be be a normal 
random variable distributed as  

di s( )= Normal ρi,k , σ
ek
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To simulate performance of this model, we 
simply pick a noise σ, and generate N discrimi-
nant values for a number of trials T for each of N 
sample images. On each trial, the image selected 
is the largest discriminant, and from these results 
we can compute percent correct  (we can also 
generate confusion matrices). We compute both 
percent correct image identification and correct 
object identification. The performance of the 
model is controlled by a single parameter: σ, the 
standard deviation of the “neural noise” added to 
the sample neural image. In Figure 4, we plot the 
percent correct for image identification and ob-
ject identification for images blurred by 30 pix-
els. 

As expected, increasing noise reduces per-
formance. The red and green lines in the figure 
show the asymptotic guessing performance ex-
pected given the numbers of images and objects, 
and the larger values of noise reach these asymp-
totes. 

Another question of interest is whether the 
image and object identification performance can 
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be related by a simple guessing model: is the ob-
ject identification performance what would be 
expected by assuing that if the model does not 
pick the correct image, that it then guesses 
among th other images.  In that case the percent 
correct object identification (PO) can be com-
puted from the percent correct image identifica-
tion (PI) as 

  
PO = PI + 1− PI( ) N − 1

N 2 − 1
. (8) 

This prediction is shown by the gray curve in 
Figure 4. Clearly, in this example, the object 
identification is better than would be expected 
from this prediction. We call this the "object ad-
vantage" (OA).�The OA is negligible at 5 pixels 
blur, but increases to a max of about 0.13 at 30 
pixels.�Without an aperture (see below), it is 
about the same for VIS and IR.�With an aper-
ture, it is smaller for IR than for VIS.�Possible 
sources for the OA are: background (without ap-
erture), object color (for visible), and overall ob-
ject size. We will return to this point later. 

 
Figure 4. Percent correct image (lower black 
curve) and object (upper black curve) identifi-
cation for various levels of the noise standard 
deviation. These results are for visible targets 
at blur scale = 30 pixels. Green and red lines 
indicate predicted guessing performance. The 
gray curve is object identification predicted 
from image identification using a guessing 
model (see text). 

Object Identification vs Blur Scale 
The results for image identification can also 

be plotted as a function of blur scale, as shown in 
Figure 5. The value plotted is percent correct ob-
ject identification (as in the upper curve in Figure 
4), and each curve is for a different noise sigma. 

The figure also includes (blue and red curves) the 
data from the human observers. No attempt has 
been made at this point to find the best fitting 
value of noise σ, but it is clear that a value of 
around -2.25 yields a rough approximation to the 
human data for visible images, and -2 for infrared 
images. 

A  

B  
Figure 5. Simulated percent correct object 
identification as a function of blur scale for 
several different values of neural noise (Log σ 
= -2.5, -2.25, -2., -1.75). The blue and red 
curves are the human data. A) visible, B) in-
frared. 

Removing the Background 
As noted above, object identification per-

formance is better than expected from the guess-
ing model, which indicates that on average dif-
ferent aspects of one object are more similar (as 
images) than are aspects of another image. This 
could be due in part to the object background, 
which is nearly constant from aspect to aspect. 
To test this we have computed results for images 
with the background removed. Aperture images 
defining the object area were provided by the 
U.S. Army Night Vision and Electronic Sensors 
Directorate. The apertured image was constructed 
as image * aperture + 2048 * (1 - aperture). An 
example of the construction of one apertured im-
age is shown in Figure 6. 
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Figure 6. Construction of an apertured image. 
A) Original image, B) aperture, C) apertured 
image. 

The model results obtained using the aper-
tured images are shown in Figure 7. Overall, per-
formance is somewhat better than for the original 
images. The visible image performance for –Log 
σ = –2.25 is now closer to the data, while the in-
frared data lie between Log σ = -2.5 and -2.25. 

 

 
Figure 7. Object identification performance vs 
blur scale for apertured images. Details as in 
Figure 5. 

Visible vs Infrared 
One purpose of the original psychophysical 

experiment was to determine the relation between 
N50 for visible and infrared images of similar 
objects. If the N50s were the same, that would 
allow the same metric to be used regardless of 
the iamge type. However, in that experiment the 
estimated N50s differed by about 50% (7.5 visi-
ble, 11.5 infrared)[2]. 

Figure 8 compares model results for visible 
and infrared. A short summary is that perform-
ance is somewhat better for infrared than for 
visible, but that this advantage largely vanishes 
with apertured images. Recall that human per-
formance is slightly lower for infrared, so this 
consititutes a small discrepancy between model 
and data. 

 

 
Figure 8. Object identification performance vs 
blur scale for visible (black) and infrared (red) 
images. A) Original, B) apertured. Other de-
tails as in Figure 5. 

Summary 
A very simple identification model incorpo-

rating the Spatial Standard Observer can generate 
performance similar to human data for both visi-
ble and infrared imagery. Some discrepancies 
remain, notably the slightly steeper decline with 
blur, and the poorer performance with infrared 
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imagery, found in the human results. We hope to 
investigate these matters further in the second 
stage of this project. 

Future work on this part of the project will in-
clude alternative SSO-based models, as well as 
other human data sets[4]. We hope to understand 
better the reasons for infrared vs visible perform-
ance. We also want to work with aircraft rather 
than tank images. 

Visibility Calculator 
In a second part of this project, we have be-

gun development of a prototype application to 
predict visibility of aircraft targets as they might 
be seen from a UAV. Conversely, the tool could 
be used to predict visibility of the UAV from an-
other aircraft. A screen shot of the prototype ap-
plication is shown below. 

The tool allows the user to select an aircraft, 
as well as various viewing parameters. The tool 
then computes the visibility of the aircraft, ex-
pressed in units of JND. The tool is currently 
online and operational at the URL shown in the 
figure.  

The tool operates by computing a rendered 
image from a selected 3D model. The rendered 
image is then processed using the current version 
of the Spatial Standard Observer (SSO). The tool 
is implemented using webMathematica, an exten-
sion of the Mathematica language[5]. The current 
version of the prototype is only a proof of con-
cept, and must be augmented by realistic optical 
and atmospheric effects, and must be calibrated 
in both geometric and photometric aspects. We 
plan to accomplish these augmentations in the 
second phase of this project. 
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Figure 9. Screen shot of web-based visibility tool. 
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