NOAA Photo Library Banner


Voyage To Inner Space - Exploring the Seas With NOAA Collect
Catalog of Images

3100 thumbnail picture
Figure 40. Aime's mechanism devised by Georges Aime in 1841 for triggering the release of water sampling bottles. Although the records of Aime's tests of this mechanism are not available, it seems that by using this mechanism that he was the first to take a series of water samples from bottles strung on the same cable at a number of different levels within the water column.
3101 thumbnail picture
Figure 41. Helical mounting mechanism of Negretti and Zambra. This mechanism was meant to cause the reversing thermometer of Negretti and Zambra to flip at the required depth. The helical screw would measure the depth on the way down and release the mounting at the desired depth. James Ferguson of the CHALLENGER modified this mechanism and tested it in the Sulu Sea at over 4000 meters
3102 thumbnail picture
Figure 42. Negretti and Zambra portable ballast mounting mechanism upon returning to the surface. This was designed to eliminate some problems associated with the mounting mechanism used on the CHALLENGER. This modificatio n was made in 1878 and is described in the scientific literature of the day..
3103 thumbnail picture
Figure 43. Magnaghi helical mounting devised by Giovanni Battista Magnaghi in 1881 near the end of his command of the Italian oceanographic expedition on the WASHINGTON. This mechanism was certainly inspired by the Sigsbee bottle mounting as well as the 1874 Negretti and Zambra water bottle mounting. The helical principle was used profitably by a many inventors and instrument makers.
3104 thumbnail picture
Figure 44. Magnaghi helical mounting (improved model.) This model resulted from the suggestion of Giovanni Battista Magnaghi to the London instrument maker s Negretti and Zambra, in 1881, to follow the ideas developed on the Italian navy ship WASHINGTON. Left: before reversing. Right: after reversing.
3105 thumbnail picture
Figure 45. Milne-Edwards mounting developed by Professor Alphonse Milne-Edwards for use with reversing thermometers on the TALISMAN scientific expedition of the French National Marine Administration in the North Atlantic in 1883. Two innovations were associated with this instrument. A slightly modified version of this mounting made by Paul Duimage was used on the HIRONDELLE.
3106 thumbnail picture
Figure 46. Rung mounting designed by Captain George Rung, an assistant at the Meteorological Institute of Denmark. In 1883 he described a new mechanism for releasing the reversing thermometers by means of a messenger system. With this system numerous bottles mounted on a cable could be released at various depths in series. Details of the original testing of this mechanism are unknown.
3107 thumbnail picture
Figure 47. Scotch messenger mounting invented by Hugh R. Mill who was inspired by the mounting devised by George Rung. Mill also incorporated design elements of the Magnaghi mounting. This instrument was first used in a series of observations from the ARK in 1884 in studies undertaken from the Scottish Marine Station at Granton.
3108 thumbnail picture
Figure 48. Scotch messenger mounting. Left: before reversing. Right: after reversing. This equipment was probably used by Prince Albert I of Monaco. The design is very similar to that used in the Magnaghi helical mounting, but instead used a messenger activating a lever to invert the reversing thermometer.
3109 thumbnail picture
Figure 49. Tanner helical mounting devised by Commander Zera Luther Tanner, USN , commanding officer of the U. S. Fish Commission Steamer ALBATROSS. It is very similar to other types of helical mountings in its design and operation. Tanner reported that it was relatively light but was very robust in operation.
3110 thumbnail picture
Figure 50. Luksch mounting and messenger system for inverting reversing thermometers. Invented by the Austrian Joseph Luksch and used during the scientific campaign of 1895-1896 on the POLA in the Mediterannean Sea and Red Sea.
3111 thumbnail picture
Figure 51. Pettersson universal apparatus designed by Otto Pettersson in 1904. This instrument sampled plankton and water, as well as measuring temperature, current velocity, and current direction. It was used for the first time in the Skaggerak and also in the Baltic Sea. The thermometer is placed in the horizont al cylinder shown at the back of the image.
3112 thumbnail picture
Figure 52. Richter mounting and messenger. This mounting was used by Franz Doflein for the measuring the temperature of the water in shoal depths in Sagami Bay, Japan. The thermometers used in this mounting were manufactured by Negretti and Zambra. Left: before reversing. Right: after reversing.
3113 thumbnail picture
Figure 53. Richter mounting with helical reversing mechanism. This mounting is very similar to that in Figure 52 but was used in great depths. It was used by Franz Doflein off the coast of Japan in 1904.
3114 thumbnail picture
Figure 54. Richter mounting with messenger and pump brake for slowing reversing action. With the earlier models used by Doflein, the mounting would flop over too quickly and jar the mercury column sufficiently to cause its separation. To slow down the reversing motion, a piston pump mechanism was installed on the mounting. This mounting was employed by Doflein off the coast of Japan in 1904.
3115 thumbnail picture
Figure 55. Stahlberg mounting devised by Dr. Walter Stahlberg, conservator of the Museum fur Meereskunde at Berlin. This mounting could be used with either a messenger for reversing in relatively shallow water or a helical system for deep water. It was used on board the German vessel MOWE off the coast of Africa in 1911.
3116 thumbnail picture
Figure 56. Negretti and Zambra mounting with chain and messenger reversing system. This system was devised in 1912 by Negretti and Zambra as a modification of the "Scotch" mounting.
3117 thumbnail picture
Figure 57. Kohler mounting and messenger system. This system was commercialized by Fritz Kohler at about the beginning of the Twentieth Century. However, its simplicity and fragility caused it to be little used.
3118 thumbnail picture
Figure 58. Insulated water bottle and thermometer devised by Rudolph Fuess about the end of the Nineteenth Century. It was used notably by German vessels.
3119 thumbnail picture
Plate 2. Magnifying glass devised by Fridtjof Nansen for reading thermometer scales. The thermometer is placed such that the two notches designated "c" are on the thermometer; the thermometer is adjusted such that the top of the mercury column is located at point "d"; and the reading glass is focused for reading the thermometer by turning the interior tube "a" within tube "b".
3120 thumbnail picture
Figure 59. Nansen microscope for precise reading of thermometers. This instrument was designed by Fridtjof Nansen to facilitate the reading of thermometer scales and to better be able to estimate values between graduations of the scale and also to better remove parallax errors. This instrument was designed about 1910 and constructed by the German Ernst Leitz.
3121 thumbnail picture
Figure 60. Richter microscope for reading thermometers. Much less sophisticate d than the Nansen microscope, was frequently used to read with good precision the scales of reversing thermometers. This instrument was described and conceived by the firm of Richter and Wiese in the early 1900's.
3122 thumbnail picture
Figure 61. Nansen magnifying glass for reading thermometers. This magnifying glass was described in Plate 2, image ship4353. This magnifying glass differed little from that devised by Richter. This type of glass was commercialized about 1914.
3123 thumbnail picture
Plate 3. Clement metallic thermometer - cross sectional schematic of the model at the Oceanographic Museum at Monaco. The model at the museum was constructed by Negretti and Zambra in 1912 after the original made in 1839 by Leander Clement, the clock maker of Rochefort. The thermometer functioned by comparing the expansion (or contraction) of two strips of different types of metal.
3124 thumbnail picture
Figure 62. Breguet-Saxton metallic thermometer first invented about 1817 by the instrument maker Louis Abraham Breguet. The first of this type was composed of platinum, silver, and gold with the silver placed in the center. Differential expansion of the metals provided the temperature measurement. In 1848, Joseph Saxton made a similar one for the U. S. Coast Survey but it was inaccurate.
3125 thumbnail picture
Figure 63. Clement metallic thermometer, first mentioned in 1839 by the clock- maker of Rochefort, Leandre Clement. This thermometer functioned by the differential contraction or expansion of two strips of differing metals. They were soldered together in a spiral form. Left is the total assembly while above right is the indicating dial.
3126 thumbnail picture
Figure 64. Richard registering thermometer for use in great depths. This instrument recorded depths obtained by a bimetallic strip and was mounted in a water-tight caisson. Upper: registering device. Middle: recording paper. Bottom: water-tight caisson for protecting and housing the instrument. This instrument was first constructed between 1882 and 1891.
3127 thumbnail picture
Figure 65. Bounhiol thermometer register, used to record temperatures in an enclosed caisson lowered to depths. This instrument was devised by Jean -Paul Bounhiol, Professor at the higher school of sciences at Algiers, in 1908. He tested it at about 60 meters water depths in the vicinity of Algiers.
3128 thumbnail picture
Figure 65 (cont.) Recording paper used with Bounhiol thermometer register.
3129 thumbnail picture
Figure 66. Negretti and Zambra thermometer recorder. This instrument was developed in 1920 and was actuated by the principle of expansion and contraction of mercury in a Bourdon tube. Above: recording device. Bottom: sensor and conducting unit.
3130 thumbnail picture
Figure 67. The bathythermograph first conceived by Athelstan Spilhaus in 1936 and produced in 1937. This instrument measured a continuous profile of sea- temperature versus depth. It was the prototype of many types of instruments used either for studies of physical oceanography or for use by the undersea warfare community.
3131 thumbnail picture
Figure 67 (cont.) The recording of temperature versus pressure on the bathythermograph was done by etching a trace on smoked glass for reading upon recovery of the instrument at the observing vessel.
3132 thumbnail picture
Figure 68. Various models of Richard bathythermographs. These instruments are similar to the Spilhaus bathythermograph and were used between 1962 and 1967 by the firm of Jules Richard.
3133 thumbnail picture
Figure 69. Expendable bathythermograph made by Sippican Corporation. These instruments pay out a copper wire upon descent that has varying conductivity as the temperature changes. Depth is determined as a function of the rate of descent of the instrument. These are used by ships while underway to determine the temperature profile of the water column and corresponding velocity profile.
3134 thumbnail picture
Figure 70. Temperature sensor for deep water. This instrument was made by Crouzet Society of Valence, France and constructed by SAFARE-CROUZET. This was an early version of a CTD instrument in which temperature information was transmitted up a cable to a recording device. The pressure vessel protecting the sensor was rated to about 3,000 meters water depth.
3135 thumbnail picture
Catalog of the Oceanographic Equipment in the Collection of the Oceanographic Museum at Monaco. 7. "Miscellaneous Instruments, Deck Equipment, Laboratory Instruments, " by Christian Carpine. Bulletin of the Institute of Oceanography. Volume 76, 1998, No. 1443.
3136 thumbnail picture
Plate I. Aime apparatus for the study of oceanic wave motion at depth described by Georges Aime in 1845. Aime should be considered as the predecessor of modern oceanography as he designed and created many innovative oceanographic measuring and analysis instruments that were models for those who followed. He was a professor at the University of Algiers.
3137 thumbnail picture
Figure 1. Model of Aime's first wave study instrument, built in 1838 and tested in the anchorage at Algiers the same year at depths of 11 and 18 meters. A wood top furnished with fixed points in the center of a sheet of lead and tilted by the movement of the water left markings in the metal which were compared to observations made at the surface.
3138 thumbnail picture
Figure 2. Display model of Aime's second wave study instrument built in 1839 and tested in the anchorage at Algiers in 40 meters water depth for one month. This gave negative results even during periods of poor weather. The device weighed nearly 200 pounds.
3139 thumbnail picture
Figure 3. Model of Aime's instrument for the study of lateral movement of waves and the movement of particles within the waves, built and tested at the anchorage at Algiers in 1839 in depths of 10 and 14 meters in waves up to 1.5 meters in height.
3140 thumbnail picture
Figure 4. Stevenson dynanometer, designed by the Scotch engineer Thomas Stevenson in 1843. This instrument measured the pressure exerted by waves on a vertical surface. He used this instrument to measure the pressure of waves at the lighthouse at Skerryvore where pressures close to 30 tons per square meter were observed.
3141 thumbnail picture
Figure 5. An Aime tide gauge. Aime's tidal studies began at the port of Algiers in 1838. Aime designed a prismatic lead tube supported by wood and provided with a filtering mechanism at its base that attenuated wave motion. A wood float connected to a counterweight by a silk cord, indicated the level of the sea on a reverse graduated scale which was calibrated on a calm day.
3142 thumbnail picture
Figure 6. A tide meter or scale which was easily placed in areas where water level and observations of its changes were desired. Apparently this type of instrument was first used in the United States. One could make as observations during the day as required.
3143 thumbnail picture
Figure 7. Autonomous ultrasonic tide recorder. This instrument was mounted on the bottom and emitted sound waves that reflected off the water surface. As the water level changed, the instrument would record the apparent changes in depth. This instrument was developed for Crouzet Marine Oceanology Corporation from a prototype developed by the Studies and Research Department of France Electric.
3144 thumbnail picture
Plate 2. Piezometers used by John Buchanan on the CHALLENGER. On the right is a mercury piezometer and on the left is a water piezometer. Piezometers are devices used to measure the compressibility of liquids.
3145 thumbnail picture
Figure 8. Nepyric Turbidity Measurement Instrument. The Nepyric Corporation was involved for many years with studying numerous types of sediment samplers designed to retrieve suspended solids in flowing water, retained by dams, or in marine zones. One of these models was implemented in 1948 by Jean Serpaud and used for river sediment sampling.
3146 thumbnail picture
Figure 9. Buchanan piezometer (Water Model). John Buchanan was responsible for the systematic use of various apparatus for the study of sea water and its properties during the CHALLENGER Expedition. To that end, he invented and deployed numerous piezometers including this one that was tested March 6, 1876, in the south Atlantic at Lat. 37 S, Long. 43 W.
3147 thumbnail picture
Figure 10. Buchanan mercury piezometer - the second type of piezometer made by John Buchanan during the CHALLENGER Expedition. Like the preceding model, this type had thermometers which remained open to the hydrostatic pressure of the sea at the depth deployed. Buchanan credited Aime with this idea and used this instrument to study the compressibility of mercury.
3148 thumbnail picture
Figure 11. Buchanan mercury piezometer (VORINGEN model) - This piezometer was designed by Henrik Mohn who was inspired by Buchanan's earlier CHALLENGER design. Mohn had this instrument fabricated by Louis Casella and used it to determine depths of observation of Negretti and Zambra reversing thermometers used during the Norwegian VORINGEN expedition in 1877-1878.
3149 thumbnail picture
Figure 12. Buchanan piezometers (PRINCESS ALICE models) - These newer models were used on the PRINCESS ALICE II by their designer, John Y. Buchanan in 1902. The first test of these instruments was on July 31st, 1902 in 2589 meters at Lat . 37 31 00N, Long. 24 54 15 W. Subsequently readings were made as deep as 5943 meters.

PAGES - 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 |


Publication of the U.S. Department of Commerce, National Oceanic & Atmospheric Adminstration (NOAA),
NOAA Central Library
NOAA Privacy Policy | NOAA Disclaimer
Last Updated:
April 23, 2007