Chapter 8

GAS-PHASE CHEMISTRY

Gerald L. Gipson^{*}

Human Exposure and Atmospheric Sciences Division National Exposure Research Laboratory U. S. Environmental Protection Agency Research Triangle Park, NC 27711, USA

Jeffrey O. Young^{**} Atmospheric Modeling Division National Exposure Research Laboratory U.S. Environmental Protection Agency Research Triangle Park, NC 27711, USA

ABSTRACT

This chapter describes the manner in which gas-phase chemistry is treated in the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. The CMAQ system currently includes two chemical mechanisms -- RADM2 and CB4 -- with plans to incorporate a third -- the SAPRC97 mechanism -- in the near future. Each of these mechanisms is described, and the manner in which the first two are linked to the aqueous chemistry and aerosol formation processes is discussed. Enhanced isoprene chemistry that has been included in the RADM2 mechanism is also described, and procedures for entering new chemical mechanisms in the CMAQ system are addressed. The representation of reaction kinetics in the CMAQ system and the numerical modeling of gas-phase chemistry are also presented. The CMAQ system currently employs two numerical solvers, SMVGEAR and a variant of the QSSA method. The numerical procedures used in each are presented, and the relative computational efficiencies of each on different computing platforms are noted.

^{*}Corresponding author address: Gerald L. Gipson, MD-80, Research Triangle Park, NC 27711. E-mail: ggb@hpcc.epa.gov

^{**}On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.

8.0 GAS-PHASE CHEMISTRY

Since atmospheric chemistry plays a major role in many air pollution problems, the representation of chemical interactions among atmospheric constituents is often an essential element of an air quality model. All important chemical transformations relevant to the problem being studied must be included to make accurate predictions of ambient pollutant concentrations. Many atmospheric pollutants or their precursors are emitted as gases and interact primarily in the gaseous phase. However, some important atmospheric processes such as acid deposition and the formation of aerosols involve the interaction of constituents in the gas, liquid, and solid phases, so transformations taking place in all three phases often need to be represented. For computational efficiency, these processes are usually modeled separately. This approach has been adopted in the Chemical Transport Model (CTM) that is part of the Community Multiscale Air Quality (CMAQ) modeling system (hereafter referred to as the CCTM). This section addresses the modeling of gas-phase transformations alone in the CCTM. Descriptions of the linkages of gas-phase constituents with aerosols and with aqueous chemistry are discussed below and in Chapters 10 and 11, respectively. A potential future improvement to the CCTM would involve more closely coupling the chemical interactions taking place in all three phases. Nevertheless, the current formulation still enables the investigation and assessment of environmental problems using a multi-pollutant, one-atmosphere modeling concept.

Interactions in the gas-phase are represented in air quality models by means of chemical mechanisms. The CMAQ system currently includes two base chemical mechanisms that have been developed primarily to address issues associated with urban and regional scale ozone formation and acid deposition -- the CB4 (Gery et al., 1989) and RADM2 (Stockwell et al., 1990) mechanisms. Variants of these two mechanisms have been developed for the CMAQ system to provide the necessary linkages to the aerosol and aqueous chemistry processes. Current plans also call for adding a third mechanism -- the SAPRC-97 mechanism (Carter, 1997). Although these mechanisms should be adequate for many air pollution applications, it may be necessary to modify or even replace these mechanisms to address some issues. To facilitate changing mechanisms and adding new ones, the CMAQ system has been equipped with a generalized chemical mechanism processor. It must be emphasized, however, that supplemental data for other CMAQ processors may be required when one of the predefined mechanisms is modified or replaced. This is addressed in more detail section 8.2.5.

The remainder of this chapter addresses different aspects of the representation of gas-phase chemistry in the CMAQ system. The first section includes background information on chemical mechanisms and provides the rationale for including the predefined chemical mechanisms in the CMAQ system. The subsequent section describes the predefined chemical mechanisms as implemented in the CMAQ system and addresses adding new mechanisms or changing existing ones. This is followed by a description of reaction kinetics as it relates to the CCTM representation, and the final section describes the mathematical procedures used internally in the CCTM to solve the equations that arise from the mathematical representation of gas-phase chemistry.

EPA/600/R-99/030

8.1 Background

A chemical mechanism is a collection of reactions that transforms reactants into products, including all important intermediates. Chemical mechanisms developed for air quality modeling are highly condensed, parameterized representations of a true chemical mechanism. They include artificial species and operators, and many of the mechanism reactions are parameterizations of a large set of true atmospheric reactions. In some cases, mechanism reactions may include elements which have no physical significance (e.g., products with negative stoichiometry). While it would be difficult to design a generalized mechanism, some degree of generalization in the CMAQ system is achieved by using special conventions for entering chemical mechanisms. First, all reactions in the mechanism are treated as if they are elementary, and the stoichiometric coefficients for all reactants must be one. Since all reactions are assumed to be elementary, a reaction can have no more than three reactants. These conventions permit the reaction rate to be derived directly from the stoichiometric equation, thereby simplifying the mathematical representation of the reactions. Other conventions adopted for the CMAQ generalized mechanism processor are included in Section 8.3 and in Chapter 15.

Mechanism species can be divided into two categories: inorganic and organic. The number of important inorganic species is relatively small, and they are almost always represented explicitly in chemical mechanisms. The important inorganic species included in these mechanisms are ozone, nitric oxide, nitrogen dioxide, nitric acid, nitrous acid, hydrogen peroxide, sulfur dioxide, and several radicals formed through their interactions with other species. Although most of the chemical reactions involving these species are common to all mechanisms, some differences do exist. For example, some of the mechanisms omit a few reactions because they are normally minor pathways and thus do not affect modeling results significantly. Also, different rate constants may be used for some reactions, especially those that are photolytic. The representation of organic species usually differs more substantially, however. Some species in the mechanism represent real organic compounds, but others represent a mixture of several different compounds. The manner in which the grouping of organic compounds is carried out typically distinguishes one mechanism from another, and that is described next. In this chapter, the phrase *mechanism species* is used to refer to any species in the gas-phase mechanism, regardless of whether it is an explicit species or not.

Although explicit mechanisms have been developed for many organic compounds, the resultant number of reactions and species needed to represent their atmospheric chemistry is too large to model efficiently in photochemical grid models such as the CCTM. In addition, explicit mechanisms have not yet been developed for most organic compounds, thereby requiring that some reaction pathways be postulated. Thus, both compression and generalization are necessary when depicting organic reactions. Although chemical mechanisms differ in the manner in which organic species are represented, the mechanism developer usually chooses some distinguishable organic property to group similar organics into classes that reduce both the number of mechanism species and reactions. The three most common representations include the lumped structure technique, the surrogate species approach, and the lumped species method. In the lumped structure approach, organic compounds are apportioned to one or more mechanism species on the basis of chemical bond type associated with individual carbon atoms (Whitten et al., 1980). In the surrogate species method, the chemistry of a single species is used to represent compounds of the same class (e.g., Lurmann et al., 1987). Generalized reactions are then written based on the hypothetical model species. The lumped species method is very similar to the surrogate species approach, but various mechanism parameters associated with a particular surrogate are adjusted to account for variations in the composition of the compounds being represented by the surrogate species (e.g., Carter, 1990, and Stockwell et al., 1990).

The construction of a compact chemical mechanism necessarily introduces varying levels of distortion, generalization, and omission in the representation of atmospheric chemistry (Jeffries, 1995). Although mechanisms are routinely tested using results obtained from environmental chamber experiments, the data are often insufficient to resolve uncertainties associated with some of the chemical representations. For example, Carter (1990) noted that much is unknown about several important reaction types, and that their representations "... continue to be largely speculative or are based on empirical models derived from fits to environmental chamber data." Further, rate constants for some reactions are either unknown completely, or significant disagreement exists as to their accuracy. Several studies have been conducted to compare different chemical mechanisms (e.g., Leone and Seinfeld, 1985; Hough, 1988; and Dodge, 1989). These comparisons revealed that the mechanisms often yield results that are similar for some species. This could indicate that the fundamental atmospheric chemistry is fairly well understood for these species, or that the mechanisms were derived from the same experimental kinetic or mechanistic data, which may or may not be accurate. Larger differences tend to occur for those species for which the atmospheric chemistry is more uncertain. Thus, it is often difficult to assess the relative merits of different mechanisms when applied to any one situation. Therefore, the CMAQ system includes the capability to use more than just one chemical mechanism.

Given the inherent uncertainties in existing chemical mechanisms, alternate approaches for representing gas-phase chemistry are needed. One approach being explored involves decreasing uncertainties associated with the simplifications that are introduced to reduce mechanism size. This approach is based on the concept that much of the information needed for an expanded chemical representation does not necessarily have to be included in the mechanism explicitly, but rather can be maintained in auxiliary variables linked to a relatively small number of core species that are included in the mechanism (Jeffries et al., 1993). Thus, it may be possible to expand chemical representations without greatly increasing the size of the basic mechanism, and this could be a future enhancement to the treatment of gas-phase chemistry in the CMAQ system.

8.2 Chemical Mechanisms in the CMAQ System

This section includes summary descriptions of the two basic chemical mechanisms included in the CMAQ system -- the CB4 (Gery et al., 1989) and the RADM2 (Stockwell et al., 1990). Since the SAPRC-97 mechanism (Carter, 1997) is to be added in the near future, some discussion of it is also included. These mechanisms require that information be supplied to the CCTM in a form that is unique for each mechanism, and this is carried out in several sub-systems incorporated in

the CMAQ system. These include the emissions processing system which generates emissions for key mechanism species; the initial conditions/boundary conditions processor that generates ambient starting and boundary concentrations for mechanism species; and the photolysis rate processor that produces mechanism specific photolysis rates. The reader is referred to the chapters describing those sub-systems for a description of the treatment of mechanistic data, and to the mechanism references for a more detailed description of each chemical mechanism.

In addition the base mechanisms, both the base CB4 and RADM2 mechanisms have been modified in the CMAQ system to provide necessary linkages for aerosol and aqueous chemistry processes, and the RADM2 mechanism has also been modified to create two new mechanism variants that include enhanced isoprene chemistry representations. Note that the existing sub-systems provide all of the necessary information for the extensions to the base mechanism. The modifications to the base mechanisms are discussed below in the section on mechanism extensions. Complete listings of all mechanisms currently available in the CMAQ system are included in Appendix 8A. The last portion of this section briefly discusses changing the base mechanism or their variants or adding new mechanisms to the CMAQ system.

8.2.1 CB4 Mechanism

The CB4 mechanism is a lumped structure type that is the fourth in a series of carbon-bond mechanisms, and differs from its predecessors notably in the detail of the organic compound representation. It has been used in models such as EPA's Empirical Kinetic Modeling Approach (EPA, 1989) and Regional Oxidant Model (Lamb, 1983), and in versions IV and V of the Urban Airshed Model (EPA, 1991 and SAI, 1993). The CMAQ implementation of the basic CB4 mechanism includes 36 species and 93 reactions, including 11 photolytic reactions.

The CB4 uses nine primary organic species (i.e., species emitted directly to the atmosphere as opposed to secondary organic species formed by chemical reaction in the atmosphere). Most of the organic species in the mechanism represent carbon-carbon bond types, but ethene (ETH), isoprene (ISOP) and formaldehyde (FORM) are represented explicitly. The carbon-bond types include carbon atoms that contain only single bonds (PAR), double-bonded carbon atoms (OLE), 7-carbon ring structures represented by toluene (TOL), 8-carbon ring structures represented by xylene (XYL), the carbonyl group and adjacent carbon atom in acetaldehyde and higher molecular weight aldehydes represented by acetaldehyde (ALD2), and non-reactive carbon atoms (NR). Many organic compounds are apportioned to the carbon-bond species based simply on the basis of molecular structure. For example, propane is represented by three PARs since all three carbon atoms have only single bonds, and propene is represented as one OLE (for the one carbon-carbon double bond) and one PAR (for the carbon atom with all single bonds). Some apportionments are based on reactivity considerations, however. For example, olefins with internal double bonds are represented as ALD2s and PARs rather than OLEs and PARs. Further, the reactivity of some compounds may be lowered by apportioning some of the carbon atoms to the non-reactive class NR (e.g., ethane is represented as 0.4 PAR and 1.6 NR). Apportioning rules have been established for hundreds of organic compounds, and are built into

the emissions processing sub-systems to produce the appropriate emission rates for the CB4 mechanism species.

The CB4 mechanism described by Gery et al. (1989) has undergone several changes since its publication. In 1991, the PAN rate constants were changed and a termination reaction between the XO2 operator and the HO2 radical were added. Subsequently, terminal reactions for the XO2N operator were also added. An updated CB4 isoprene chemistry mechanism based on the work of Carter (1996) was developed in 1996. All of these changes have been incorporated in the CMAQ version. It should also be noted that the original CB4 mechanism incorporated simple Arrhenius type rate constant expressions that were derived from more complex expressions for temperature and pressure dependent rate constants. Since the top of the CCTM domain may extend to heights that makes pressure dependencies important, the CMAQ version incorporates the original expressions rather than the derived ones.

8.2.2 RADM2 Mechanism

The RADM2 mechanism is a lumped species type that uses a reactivity based weighting scheme to adjust for lumping (Stockwell et al., 1990). It has evolved from the original RADM1 mechanism (Stockwell, 1986), and is employed in version 2 of the Regional Acid Deposition Model (Chang et al., 1987). The base mechanism as implemented in the CMAQ system contains 57 model species and 158 reactions, of which 21 are photolytic.

In RADM2, the primary organics are represented by 15 mechanism species, five of which are explicit because of their high emission rates or because of special reactivity considerations (methane, ethane, ethene, isoprene, and formaldehyde). The other ten represent groups of organic compounds aggregated on the basis of their reactivity with the hydroxyl radical (HO) and/or their molecular weights. To account for varying reactivities of the different organics that are lumped into a single group, emissions of each organic within a group are weighted by a reactivity factor (F) that is computed as the ratio of the fraction of emitted organic compound that reacts to the fraction of the mechanism species that reacts:

$$F = \frac{1 - \exp(-k_{\text{HO Emiss}} \int [\text{HO}] \, dt)}{1 - \exp(-k_{\text{HO Mech}} \int [\text{HO}] \, dt)} \,. \tag{8-1}$$

The integral term is estimated from a daily average integrated HO radical concentration of 110 ppt min that was derived from RADM simulations (Stockwell et al., 1990). Note that F approaches unity if the reactivity of the emitted organic nearly equals that of the mechanism species or if the reactivities of both are very large. As with CB4, the RADM2 lumping and weighting rules have been built into the CMAQ emission processing system.

The implementation of the RADM2 mechanism in the CMAQ system is almost identical to that described by Stockwell et al. (1990), with only two minor modifications. First, the reaction of HO

with cresol (CSL) was reformulated as follows to eliminate negative stoichiometry in the mechanism:

(Note that negative stoichiometry is permitted in the CMAQ system, but was removed here for consistency with previous implementations of RADM2.) Second, the concentration of methane in the CCTM is assumed to be constant at 4.5×10^{13} molecules/cc. Thus, methane was removed as a reactant in the reaction of OH with methane and the corresponding rate constant changed from second-order to pseudo first-order using the assumed CCTM methane concentration.

8.2.3 SAPRC-97 Mechanism

The SAPRC-97 mechanism (Carter, 1997) employs the lumped surrogate species approach, but offers the capability to incorporate semi-explicit chemistry of selected organics. The SAPRC series of mechanisms evolved from the "ALW" mechanism of Atkinson et al. (1982). SAPRC-97 is similar to its predecessors SAPRC-90 and SAPRC-93, but incorporates improvements to aromatic chemistry and updates to reactions of many individual organic compounds. Although many of the reactions for organic compounds are generalized and incorporate non-explicit species, product yield coefficients and rate constants are tabulated for over 100 individual organic compounds. Thus, each of these organics can be modeled individually by including their semi-explicit chemistry in the mechanism. Due to computational constraints, however, the full set of organic compounds cannot be incorporated in an Eulerian model. For this situation, the mechanism is condensed by lumping individual organic compounds into groups with corresponding rate constants and product yield coefficients that have been weighted by mole fractions of the individual organics. The mole fractions are typically derived from emission inventory data used in the model simulation. Thus, unlike the previous mechanisms, the SAPRC-97 mechanism can potentially change with each application since new rate constants and product yield coefficients can be computed for each application.

The SAPRC-97 mechanism has been developed with supplemental software to facilitate constructing mechanisms of varying levels of condensation. Documentation of the procedures include three distinct levels of detail, differing primarily in the number of organic species that are included in the mechanism (Carter, 1988). Since no decisions have made on the form of the mechanism that will be added to the CMAQ system, listings for this mechanism are not included in Appendix 8A. Documentation will be provided when the CMAQ version is made available however.

8.2.4 Extended Mechanisms

Each gas-phase chemical mechanism has been linked to aqueous chemistry and to aerosol formation processes. Since these linkages required some modifications to the original gas-phase mechanisms, different versions of the same mechanism were created for modeling gas-phase chemistry alone or for modeling gas-phase chemistry with or without aerosols and/or aqueous chemistry. Different versions of the mechanisms are distinguished by means of a special naming convention. Gas-phase mechanisms that have not been modified are referred to by their base name (e.g., CB4, RADM2, and SAPRC when the latter is available). Mechanisms that have been modified to account for aerosol production have their names appended with "_AE", mechanisms modified for aqueous chemistry are appended with "_AQ", and mechanisms modified for both are appended with "AE AQ". Thus, CB4 AE AQ refers to the CB4 gas-phase mechanism that has been modified to include linkages to both aerosols and aqueous chemistry. A second set of RADM2 gas-phase mechanisms that incorporates new isoprene chemistry has also been included in the CMAQ system. These mechanisms include either " CIS1" or " CIS4" in their names to denote that the mechanism incorporates enhanced isoprene chemistry. Methods used to develop the extended mechanisms are described below according to the three types of extensions: aerosol, aqueous chemistry, and isoprene chemistry.

8.2.4.1 Aerosol Extensions

A major pathway leading to the formation of aerosols is the oxidation of sulfur dioxide (SO₂) to sulfate, primarily by the gas-phase reaction of SO_2 with the hydroxyl radical (OH). All mechanisms in the CMAQ system incorporate this reaction. Because organics are represented differently in the base mechanisms, however, aerosol formed from the reactions of organic compounds must be handled somewhat differently. In the CCTM, organic aerosol formation is quantified using aerosol yields, i.e., µgm⁻³ of aerosol produced per ppm of organic reacted with OH, ozone or nitrate radical (NO₃). The yields used in the CCTM are those reported by Bowman et al. (1995) that were derived from the work of Pandis et al. (1992). These yields are given in terms of the SAPRC-90 chemical mechanism species, so some adjustments were required to adapt them to the CMAO mechanisms. In the CMAO system, aerosol production is assumed to occur from reactions involving five different generic organic groupings. Individual mechanism species are then mapped to these general groupings to obtain the aerosol yields. The five generic groups are defined as: 1) long-chain alkanes; 2) alkyl-substituted benzenes such as toluene and xylene; 3) cresol and phenols; 4) long-chain olefins; and 5) monoterpenes. Note that the aerosol yields vary significantly among these five groups, so it is important to map the organic species in each mechanism to the proper aerosol production group. The remainder of this section describes the mapping that is used for the CMAQ base mechanisms and how the aerosol production rates are determined from the gas-phase reactions. The derivation of the yields used in the CCTM and the manner in which they are used in the aerosol module are described in Chapter 10.

To apply the aerosol yields, the amount of reactant consumed by reaction must be determined for several mechanism species. In the CMAQ system, this is accomplished by using "counter" species that have been added as products to those reactions involving the mechanism species of interest (e.g., Bowman et al., 1995). These counter species are essentially "dummy" species with no physical significance, and are not subjected to any other model process such as advection or

diffusion. Thus, changes in their concentrations reflect the effect of chemical reaction alone. Also, their inclusion in the mechanisms does not affect basic gas-phase chemistry since they do not interact with any of the other species in the mechanism.

Special procedures are used in the CCTM to determine aerosol production from monoterpenes since their aerosol yields are relatively large and they are either lumped with other organic compounds into a single mechanism species or are apportioned among several mechanism species. The approach involves tracking the rate of reaction of monoterpenes separately from the rates of their mechanistic representation. The CMAQ emission processor generates emissions for monoterpenes as a unique species *in addition to* lumping or apportioning the emissions into the appropriate mechanism species. Whenever aerosols are being modeled, the unique monoterpene species is included in the mechanisms and is modeled as a separate species. As with the counter species, however, the monoterpene species is incorporated in the mechanisms such that it does not affect the basic gas-phase chemistry. This is described in more detail below. A potential future modification to the CMAQ system would involve incorporating a more explicit representation of monoterpenes in the base mechanisms that would eliminate the need for this special treatment and would also improve the chemical representation of these species in the gas-phase mechanisms (e.g., Stockwell et al., 1997).

• **RADM2_AE.** Much of the linkage between the RADM2 mechanism and aerosol formation is relatively straightforward. Aerosol production from SO2 and long-chain alkanes is derived from the amount of SO2 and HC8 reacted with OH, respectively. Similarly, aerosol production from alkyl-substituted benzenes is derived from the sum of the TOL and XYL reactions with OH. The production from phenols and cresols is based upon the sum of the CSL reactions with OH and NO₃. Thus, special counter species named SULAER, HC8AER, TOLAER, XYLAER, and CSLAER have been added to track these reactions.

In the RADM2 mechanism, both monoterpenes and other olefinic compounds are lumped into the mechanism species OLI. As noted above, however, monoterpenes are modeled separately whenever aerosols are modeled. The monoterpenes are represented in the RADM2 mechanism by the species TERP, and the following reactions are added:

 $TERP + HO \rightarrow TERPAER + HO$ $TERP + NO_3 \rightarrow TERPAER + NO_3$ $TERP + O_3 \rightarrow TERPAER + O_3$

These reactions use the same rate constants as the reaction of OLI with these species, and have the TERPAER counter species added to track the throughput of this reaction. Note that concentrations of the reactants OH, NO_3 and ozone are unaffected by these reactions since their production equals their loss.

The final pathway for aerosol production in the RADM2 mechanism is via reaction of long-chain olefins with OH, NO₃ and ozone. The RADM2 mechanism species OLI is used as the surrogate for long-chain olefins, and thus a counter species product named OLIAER is added to each of the reactions of OLI with OH, NO₃ and ozone. Since OLI includes both monoterpenes and other olefins, however, OLIAER tracks the reaction rate of both. The amount of long-chain olefins reacted is determined by subtracting the concentration of the counter species TERPAER from that of OLIAER. The yield of aerosols from long-chain olefins is then applied to this difference to obtain aerosol production by this pathway.

• **CB4_AE.** Since the CB4 gas-phase mechanism is structure-based, individual organic molecules are often disaggregated and assigned to more than one mechanism species. For example, long-chain alkenes are apportioned to both the PAR and OLE mechanism species. Thus, many of the organic mechanism species contain fragments of molecules, and the identity of the original contributing organic compound is lost. As a result, it is not possible to ascertain with certainty the amount of long-chain alkanes and alkenes reacting in the CB4 mechanism, and thus aerosol production via these pathways is omitted. The production of aerosols from the reactions of toluene, xylene, and cresol is included, however, by tracking the amounts of TOL, XYL, and CRES that react using the counter species TOLAER, XYLAER, and CSLAER. The manner in which aerosol production from monoterpenes is modeled is identical to that used in the RADM2 mechanism. Monoterpenes are modeled independently as the mechanism species TERP, with rate constants for the reactions of TERP with OH, O₃, and NO₃ set to the same values as those used in the RADM2 mechanism extension.

8.2.4.2 Isoprene Extensions

Over the past few years, the importance of isoprene in ozone formation has become a major concern. Its representation in the original gas-phase mechanisms was substantially condensed, partially because of computational resource considerations and partially due to significant uncertainties about the pathways of its reaction products. Recent mechanistic and environmental chamber studies have led to a greater understanding of its atmospheric chemistry and thus improved mechanistic representations (Carter and Atkinson, 1996). In the CMAQ system, two different levels of more detailed isoprene chemistry have been included in the RADM2 mechanism, and these are referred to as the one-product and the four-product Carter isoprene mechanisms (Carter, 1996). Both are condensed forms of the more detailed mechanism developed by Carter and Atkinson (1996). Since this detailed mechanism may be too large to use in full-scale Eulerian modeling studies, Carter condensed the detailed mechanism to two levels of detail: one in which isoprene products are represented by four products, and one in which only one product is used. The four-product mechanism is the lesser condensed of the two, and includes the explicit representation of many of the isoprene's unique products (e.g., methacrolein, methyl vinyl ketone, and methacrolein's PAN analogue). The one-product form lumps the major products into a single species, thereby yielding a more compact albeit less explicit mechanism. As noted above, these two mechanisms are named RADM2 CIS4 and

RADM2_CIS1, and both have been linked to aerosols and aqueous chemistry as well. It should also be noted that the isoprene chemistry incorporated in the CMAQ CB4 mechanism corresponds to the Carter 1-product form, but the 4-product form is not available for the CB4 mechanism in the CMAQ system

8.2.4.3 Aqueous Chemistry Extensions

The base RADM2 mechanism does not have to be modified to link it to the aqueous chemistry processes since the aqueous processes in the CMAQ system are similar to those incorporated in the original RADM model. As described in Chapter 15, other aspects of the linkages require a separate mechanism with a unique name. The linkages to aqueous chemistry do require some minor changes to the CB4 mechanism however. These changes were based on a variant of the CB4 mechanism developed for acid deposition modeling by Gery et al. (1987). In this version, the following product species that were omitted in the base CB4 mechanism are included: formic acid, acetic acid, peroxyacetic acid, and methylhydroperoxide (MHP). Since these species are products only, their inclusion in the mechanism does not affect the concentrations of any of the other mechanism represents an upper limit for two reasons. First, known decomposition pathways for it are not included in the mechanism. Second, the production of MHP will be overstated since it is produced by an operator that includes radicals other than the methylperoxy radical (Gery et al., 1987).

8.2.5 Changing or Adding Mechanisms in CMAQ

As noted in the introduction to this chapter, the CMAQ system has been instrumented with a generalized chemical mechanism processor to facilitate making changes to existing mechanisms or adding new mechanisms. The procedures for altering or adding a new mechanism are described in EPA (1998), and will not be repeated here. It should be emphasized, however, that the addition of a new mechanism will likely require modifications to the previously mentioned subsystems that provide key mechanism-specific information, i.e., emissions, initial/boundary condition, and photolytic rate processors. Changes to an existing mechanism would also likely require modifications to these processing subsystems if new organic species are added or if an alternative organic grouping scheme is implemented. If changes are limited such that they affect only the reactions of intermediate and/or product species, however, these subsystems may not need to be changed at all, and the modifications can then be implemented solely within the generalized chemical mechanism processor. For example, the modifications to the base mechanisms to provide linkages to aerosol and aqueous chemistry and to expand isoprene chemistry that were described previously did not require any major changes to the other processors except to add a photolysis rate for acrolein in the photolytic rate processor for the CIS1 and CIS4 versions of RADM2.

Although the CMAQ system provides a convenient tool for making mechanism changes, some caution should be exercised in modifying existing CMAQ mechanisms. The mechanisms currently in the CMAQ system have been evaluated outside of the CMAQ system using

environmental chamber data and/or more detailed chemical mechanism representations. Any proposed changes to reactions or reactions rates that significantly affect model predictions should normally be subjected to similar independent testing before being introduced into the CMAQ system and subsequently used in modeling applications. Thus, it would be expected that the introduction of most changes to a mechanism in the CMAQ system would only be performed by a researcher who is experienced in atmospheric chemistry and is familiar with the base mechanism. Finally, it should be noted that the existing CMAQ mechanisms are fully specified. In most instances, it will only be necessary for a user to choose one of the existing mechanisms for their application, and it will not be necessary to make any changes to that mechanism.

8.3 Reaction Kinetics

The rates of chemical reaction determine whether a species is formed or destroyed by gas-phase chemistry. Since the CMAQ system treats all reactions as if they are elementary, the laws of reaction kinetics can be used directly to develop mathematical expressions for the rates of each chemical reaction. This section describes the rate expressions and the forms of the rate constants that are used in those expressions, with special emphasis placed on the conventions used in the CMAQ system. The reader may also wish to refer to Chapter 15 and EPA (1998) for details on how mechanism data are entered in the CMAQ system.

8.3.1 Reaction Rates

The rate of a chemical reaction $l(r_l)$ can be expressed as the product of a rate constant (k_l) and a term that is dependent on the concentrations of the reactants:

$$r_1 = k_1 f(\text{concentration})$$
 (8-2)

For elementary reactions, the concentration dependent term is simply the product of reactant concentrations, and the rate of reaction takes one of the following forms:

$$r_{l} = \begin{cases} k_{l}C_{1} & \text{for first-order reactions} \\ k_{l}C_{1}C_{2} & \text{for second-order reactions} \\ k_{l}C_{1}C_{2}C_{3} & \text{for third-order reactions} \end{cases}$$
(8-3)

where C_1 , C_2 , and C_3 refer to the concentration of reactants 1, 2 and 3, respectively. Note that when a species reacts with itself, the concentration dependent term includes the species concentration squared. Thus, the rate for the reaction NO + NO + O₂ \rightarrow 2NO₂ is equal to $k[NO][O_2]$ and not $k[NO][O_2]$.

Several important ter-molecular reactions involve O_2 and/or N_2 which mediate those reactions by absorbing energy from exothermic bi-molecular reactions. When either N_2 or O_2 serves this role, the third body is usually referred to as "M", where $M = N_2 + O_2$. Since their concentrations are relatively stable in the atmosphere, some mechanism developers convert second- or third-order

reactions that include these species to a reaction one order lower by multiplying the higher-order rate coefficient by the concentration of M, O₂, or N₂. The CMAQ convention is to include thirdbody reactants in the reaction rate calculations if they are explicitly shown in the reaction, and to omit them if they are not shown or included only as comments. For example, consider the bimolecular reaction: $O^1D + O_2 \rightarrow O^3P + O_2$. If the reaction is written in this form, the reaction is assumed to be second-order and the CCTM will use the appropriate concentration for O₂ in the rate computation. If the reaction is written as $O^1D \rightarrow O^3P$ (or as $O^1D \{+O_2\} \rightarrow O^3P$, where here the braces denote a comment), the reaction rate will be assumed to be first-order and the CCTM will *not* include the O₂ concentration in the reaction rate calculation. In the latter case, the mechanism developer must specify a pseudo first-order rate constant for the reaction. The same convention also applies to H₂O.

8.3.2 Rate Constant Expressions

As shown in Equation 8-3, the rate of reaction is related to the concentration term by a constant of proportionality k_l . The rate constant k_l can take many forms depending upon the characteristics of the reaction. One important class of uni-molecular reactions involves the absorption of radiant energy and subsequent dissociation of the reactant into product species. The rate constants for these types of reactions are functions of the incident radiant energy and properties of the absorbing molecule, such as the absorption cross section and the quantum yield. In the CMAQ system, these rate constants are calculated by the photolytic rate processor, and the details of these calculations are described in Chapter 14. The remainder of the reactions are classified as thermal, and their rate constants are typically functions of temperature and sometimes pressure. The calculation of these rate constants is discussed below.

To facilitate incorporating rate constant information for thermal reactions, the CMAQ generalized mechanism processor (discussed in Chapter 15) has been designed to accept the standard rate constant expressions used in NASA (1997). Rate constant information is most often supplied in cms units (i.e., gas concentrations in molecules/cc and time in seconds), but some mechanisms use mixing ratio units (i.e., gas concentrations converted to mixing ratios in parts per million and time in minutes). The CMAQ generalized mechanism reader is designed to accept either, but they must be consistent throughout the mechanism (i.e., the same units must be used for all rate constant forms that can be expressed in either set of units). Some rate constant expressions (e.g., falloff expressions and other special forms discussed below) can be expressed only in cms units, however, and must always be in these units even when mixing ratio units are being used for all other types of rate constants. The CCTM will automatically perform the necessary units conversions during the model simulation. Nevertheless, since the CMAQ domain typically extends through the entire troposphere, cms units are usually preferred because differences in number density differences with height are explicitly accounted for with those units.

Descriptions of the forms of rate constant expressions currently used in the CMAQ system are presented next.

• **Arrhenius Equation**. Many rate constants exhibit a temperature dependence that corresponds to the Arrhenius equation:

$$k = A e^{(-E/T)}$$
(8-4)

where A is the pre-exponential factor, E is the activation energy divided by the gas constant R, and T is the temperature in degrees Kelvin. For this form of reaction, either cms or mixing ratio units may be used, and only A and E need to be specified.

• **Temperature Dependent A-factors.** For some reactions, the temperature dependence of the pre-exponential factor can become significant, and the Arrhenius equation does not hold. These rate constant expressions can often be put in the following form that is available in the CMAQ system:

$$k = A (T/300)^{B} e^{(-E/T)}$$
(8-5)

where A, E, and T are defined as above, and B is an empirically derived constant that provides a best fit to the data (Pitts-Finlayson and Pitts, 1986). For this form, either set of units can be used, and only A, E and B need to be specified.

• **Falloff Expressions.** Several ter-molecular reactions exhibit pressure dependencies that can be significant when modeling atmospheric chemistry. These can be especially important when modeling from the troposphere through the stratosphere. In these cases, the rate constant increases with increasing pressure. In effect, the behavior of these reactions approaches second-order at high pressure and third-order at low pressure. Equation 8-6 gives an effective second-order rate constant for the falloff region between these two limits.

$$k = \frac{k_0[\mathbf{M}]}{1 + k_0[\mathbf{M}]/k_{\infty}} F_C^{\{1 + [N^{-1}\log(k_0[\mathbf{M}]/k_{\infty})]^2\}^{-1}}$$
(8-6)

In Equation 8-6, k_0 and k_∞ are the low- and high-pressure limiting rate constants, respectively, and are calculated using the temperature dependent A-factor form described above. The parameters F_c and N are also reaction specific, but for atmospheric conditions are very often 0.6 and 1.0 respectively (Finlayson-Pitts and Pitts, 1986). For this type of rate constant expression, A, E, and B must be specified for both k_0 and k_∞ , and only cms units are allowed. If the parameters N and Fc are not specified, the values listed above will be used.

Special Forms. The following special rate constant forms are also in general use and have been included in the CMAQ system:

$$k = k_1 + k_2[M]$$
(8-7)

$$k = k_0 + \left(\frac{k_3[M]}{1 + k_3[M]/k_2}\right)$$
(8-8)

$$k = A (1.0 + 0.6P) \tag{8-9}$$

Equation 8-7 is used for the rate constants of the reactions forming hydrogen peroxide from hydroperoxy radicals (HO₂ + HO₂ \rightarrow H₂O₂ and HO₂ + HO₂ + H₂O \rightarrow H₂O₂). Equation 8-8 is used for the reaction of the hydroxyl radical with nitric acid (HO + HNO₃ \rightarrow NO₃ + H₂O), and Equation 8-9 is used for the reaction of the hydroxyl radical with carbon monoxide (HO + CO \rightarrow HO₂ + CO₂). In these equations, k_0 , k_1 , k_2 , and k_3 are calculated using the Arrhenius equation, and A and E must be specified for each, with A given in cms units. In Equation 8-9, P is the atmospheric pressure in atmospheres and A can be specified in either set of units.

Reverse Equilibria Forms. The CMAQ system also includes a special reverse equilibrium form for first-order decomposition reactions. With these types of reactions, the equilibrium constant is input in a form similar to the Arrhenius equation. Thus, the rate constant can be expressed as follows:

$$k = k_{f} / A e^{(-E/T)}$$
(8-10)

In Equation 8-10, k_f is the rate constant for the forward reaction forming a species, and the denominator is an Arrhenius-like form for the equilibrium constant. These reaction rate coefficient types are used, for example, for the decomposition of pernitric acid and nitrogen pentoxide (i.e., HNO4 \rightarrow HO₂ + NO₂ and N₂O₅ \rightarrow NO₂ + NO₃). In the CMAQ system, *A*, *E*, and the corresponding forward reaction must be specified. Either set of units may be used with this form.

8.4 Mathematical Modeling

.

This section describes the mathematical modeling concepts used in the CCTM to simulate gasphase chemical reactions. The first sub-section describes the fundamental equations that must be solved and some of the difficulties encountered in obtaining solutions to them. The next two subsections describe the two gas-phase chemistry solvers that are currently available in the CCTM. The last sub-section summarizes some of the important solver characteristics.

8.4.1 Governing Equations

As described in Chapter 5, operator splitting allows gas-phase chemistry to be de-coupled from physical processes such as advection, diffusion and deposition, and, as noted in the introduction to this chapter, gas-phase chemistry is modeled separately from aerosol formation and aqueous chemistry. As a consequence, continuity equations for each gas-phase mechanism species can

be formulated and solved independently on a cell-by-cell basis. By using the kinetics laws for elementary reactions and applying a mass balance to each species, the following equation for the rate of change of each species concentration can be derived for a single cell:

$$\frac{\mathrm{d}C_i}{\mathrm{d}t} = P_i - L_i C_i \tag{8-11}$$

where

$$P_i = \sum_{l=1}^{m_i} \mathbf{v}_{i,l} \mathbf{r}_l \tag{8-12}$$

and

$$L_{i}C_{i} = \sum_{l=1}^{n_{i}} r_{l}$$
(8-13)

In Equations 8-11 through 8-13, C_i is the concentration of species *i*, $v_{i,l}$ is the stoichiometric coefficient for species *i* in reaction *l*, and r_l is the rate of reaction *l*. The sum $l = 1...m_i$ is over all reactions in which species *i* appears as a product, and the sum $l = 1...n_i$ is over all reactions in which species *i* appears as a reactant.

Equation 8-11 states that the change in species concentration is equal to the chemical production of that species minus its chemical loss, and it is the fundamental species continuity equation for gas-phase chemistry that is solved in the CCTM. If the concentration of species i is known at some particular time, its concentration can be computed at a later time by solving Equation 8-11. Since the production and loss terms contain references to other species concentrations, however, Equation 8-11 must be solved as part of a coupled set of ordinary differential equations.

It should also be noted that the CCTM contains an option for including emissions in either the vertical diffusion process or in gas-phase chemistry. When emissions are included in gas-phase chemistry, the fundamental form of the Equation 8-11 is not altered since an emission source term is simply a zeroth-order production rate. Thus, for the discussions that follow, the production term P_i is assumed to include an emission source term if species *i* is emitted and emissions are included in gas-phase chemistry.

The system of non-linear, ordinary differential equations (ODEs) arising from Equation 8-11 for *N* species can be expressed as follows:

$$\frac{dC_i}{dt} = P_i(\mathbf{c},t) - L_i(\mathbf{c},t) C_i = f_i(\mathbf{c},t) \quad i = 1,2,...,N$$
(8-14a)

with the initial conditions:

$$\mathbf{c}(t_0) = \mathbf{c_0} \tag{8-14b}$$

where **c** is the vector of species concentrations and *N* is the total number of species in the chemical mechanism. Numerical "marching" methods are typically employed to obtain approximate solutions for this class of problem. In these methods, the concentrations of all species are given at the starting point and a solution is computed at selected time intervals (i.e., time steps) using the right hand side of Equation 8-14a. Two sources of difficulty arise in obtaining numerical solutions to these equations as they apply to atmospheric chemistry problems. First, the system is nonlinear because the production and loss terms include secondand third-order reactions. Second, the system of equations is "stiff" because of the widely varying time scales of the chemical reactions and complex interactions among species. A stiff system can be described mathematically as one in which all the eigenvalues of the largest-to-smallest real parts of the eigenvalues is much greater than one. Systems are typically termed stiff if the latter ratio is greater than 10^4 . For atmospheric chemistry problems, the ratio is often greater than 10^{10} , making the system very stiff (Gong and Cho, 1993).

The stiffness problem coupled with the fact that these equations must be solved for tens of thousands of cells in a typical modeling application require that special numerical methods be employed. The use of standard explicit methods is often precluded because relatively small time steps are required to maintain numerical stability and obtain accurate solutions. On the other hand, classical implicit methods that are both accurate and stable have not often been used because of high computational demands. As a result, several special techniques have been developed to obtain reasonably accurate solutions in a computationally efficient manner. At present, two solution techniques are available in the CCTM: the implicit Sparse-Matrix Vectorized Gear algorithm (SMVGEAR) and a variant of the explicit Quasi-Steady State Approximation (QSSA) method. Each of these is described in detail below. Although each of these techniques, as well as others that have been used in atmospheric chemistry models, have been designed to be computationally efficient, they still consume 50 to 90% of the total CPU time used in a model simulation. Thus, obtaining a numerical solution to Equation 8-14a,b is normally the most computationally intensive portion of the CCTM.

8.4.2 SMVGEAR

Numerical solvers based on the algorithm developed by Gear (1971b) have traditionally been used to obtain accurate solutions to stiff ODE problems. The technique is implicit in method, does not amplify errors from one step to another and incorporates automatic step size and error control. In fact, solvers based on this method have often been used to evaluate other faster solution methods for accuracy (e.g., Odman et al., 1992; Gong and Cho, 1993; Dabdub and Seinfeld, 1995; and Saylor and Ford, 1995). Past versions of this code have rarely been installed

in Eulerian models, however, because of the high computational cost. Jacobson and Turco (1994) have modified the Gear algorithm to obtain considerable speedups on vector computers. The SMVGEAR algorithm is highly vectorized to improve computational performance on vector computers and it incorporates special sparse matrix techniques to increase computational efficiency. Further enhancements have been obtained by ordering the cells for processing. Each of these are described further below. Since the technique is based on Gear's original algorithm, it is briefly described first. For more details on the Gear method, the reader is referred to Gear (1971a) and Gear (1971b).

8.4.2.1 Standard Gear Algorithm

The Gear algorithm is one of a class of methods referred to as backward differentiation formulae (BDF). The generalized BDF that forms the basis for Gear's method can be expressed as follows:

$$\mathbf{c}_{n} = h\beta_{0}\mathbf{f}(\mathbf{c}_{n},t_{n}) + \sum_{j=1}^{p} \alpha_{j}\mathbf{c}_{n-j}$$
(8-15)

where *n* refers to the time step, *h* is the size of the time step, *p* is the assumed order, β_0 and α_j are scalar quantities that are functions of the order, and $\mathbf{f}(\mathbf{c}_n, t_n)$ is the vector of production and loss terms defined by the right hand side of Equation 8-14a. The method is implicit since concentrations at the desired time step *n* depend on values of the first derivatives contained in $\mathbf{f}(\mathbf{c}_n, t_n)$ that are functions of the concentrations at the same time. The order of the method corresponds to the number of concentrations at previous time steps that are incorporated in the summation on the right of Equation 8-15.

To facilitate changing step size and estimating errors, the multi-step method in Equation 8-15 is transformed to a multi-value form in which information from only the previous step is retained, but information on higher order derivatives is now used (Gear, 1971b). In this formulation, the solution to Equation 8-14a,b is first approximated by predicting concentrations and higher order derivatives at the end of a time step for each species using the following matrix equation:

$$\mathbf{z}_{i,n,(0)} = \mathbf{B} \mathbf{z}_{i,n-1} \tag{8-16}$$

where $\mathbf{z}_i = [c_i, hc'_{i}, ..., hpc_i^{(p)}/p!]^T$, the subscript n,(0) refers to the prediction at the end of time step n, and the subscript n-1 refers to values obtained at the end of previous time step (or the initial conditions when n = 1). **B** is the Pascal triangle matrix, the columns of which contain the binomial coefficients:

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & 3 & \cdots & p - 1 & p \\ & 1 & 3 & \cdots & & \\ & & 1 & 3 & \cdots & & \\ & & & 1 & \cdots & & \\ & & & & \ddots & & \\ 0 & & & 1 & p \\ & & & & & & 1 \end{bmatrix}$$
(8-17)

The prediction obtained from Equation 8-16 is then corrected by solving for $\mathbf{z}_{i,n}$ such that the following relations hold for all species:

$$\mathbf{z}_{i,n} = \mathbf{z}_{i,n,(0)} + \mathbf{r} [hf_i(\mathbf{c}_n, t_n) - hc'_{i,n,(0)}]$$
(8-18)

In Equation 8-18, **r** is a vector of coefficients that is dependent on the order, but r_2 , the element corresponding to the first derivative location in **z**, is always equal to one. Thus, the correct value of $c_{i,n}$ is obtained when the calculated value of $c'_{i,n}$ equals $f_i(\mathbf{c}_n, t_n)$ in Equation 8-18. An approximate solution for $c_{i,n}$ is obtained by applying Newton's method to the system of equations that correspond to the first equation in 8-18 for all species. This leads to the following corrector iteration equation:

$$\mathbf{c}_{n,(m+1)} = \mathbf{c}_{n,(m)} + [\mathbf{I} - h\beta_0 \mathbf{J}]^{-1} r_1 [h\mathbf{f}(\mathbf{c}_{n,(m)}, t_n) - h\mathbf{\delta c}_{n,(m)}]$$
(8-19)

where *m* refers to the Newton iteration number, the vector $\mathbf{f}(\mathbf{c}_n, t_n)$ is calculated using concentrations computed for the *m*-th iteration, $\delta \mathbf{c}$ is a vector containing the most recent estimates of first derivatives, **I** is the identity matrix, and **J** is the Jacobian matrix whose entries are defined as:

$$J_{ij} = \frac{\partial f_i(\mathbf{c}, t_n)}{\partial c_i} \qquad i, j = 1, 2, \dots N$$
(8-20)

At the end of each iteration, the vector containing the first derivatives (δc) is updated, but higher order derivatives in z need not be computed until convergence is achieved.

After convergence is achieved, the local truncation error for each species, e_i , is given by:

$$e_{i} = \frac{1}{p+2} h^{p+1} c_{i,n}^{(p+1)} + O(h^{p+2})$$
(8-21)

The error is estimated in the algorithm by neglecting the $O(h^{p+2})$ term and approximating $h^{p+1}c_i^{(p+1)}$ from the backward difference of $h^p c_i^{(p)}/p!$ which can be calculated using the last components of

the vectors $\mathbf{z}_{i,n(m)}$ and $\mathbf{z}_{i,n-1}$ defined above. These error estimates are used to control accuracy and to change both the time step size and the order of the method when warranted.

Although several variants of the basic Gear algorithm have been developed, the fundamental computational scheme can be described generically as follows. At the beginning of any integration interval, the order is set to one and the starting time step is either calculated or selected by the user. Each time step is initiated by predicting concentrations at the end of the time step using Equation 8-16. Corrector iterations are then carried out using Equation 8-19 until prescribed convergence criteria are achieved or non-convergence is deemed to have occurred. When convergence is achieved, the error is computed using the approximation for Equation 8-21. If the error is within prescribed limits, the solution for the step is accepted and the step size and order to be used in the next step are estimated. The size of the time step is estimated for the current order, the next lowest order, and the next highest order using error estimates derived from Equation 8-21 for the next step. From these, the largest time-step size and its corresponding order are then selected for use in the next step. If either the convergence or error test fails, the integration is restarted from the beginning of the failed time step after re-evaluating the Jacobian matrix, reducing the size of the time step, and/or lowering the order.

The individual operations described above are normally handled automatically in Gear algorithms. To reduce computational demands, the algorithms also utilize several empirically based rules. For example, the Jacobian matrix is only updated after a prescribed number of successful steps have been completed, if the order changes, or if a convergence or error test failure occurs. In the Newton iterations, progress towards convergence is monitored and the iterations halted if the progress is judged insufficient or if three complete iterations have been performed without convergence being achieved. To maintain numerical stability, changes to the size of the time step and the order are allowed no more than once every p+1 steps for a p-th order method.

8.4.2.2 Vectorized Gear Algorithm

Jacobson and Turco (1994) have modified the Gear algorithm to incorporate additional computational efficiencies that can achieve speedups on the order of 100 on vector computers. About half of the improvement is attributed to enhanced vectorization, and half to improved matrix operations. Because of the improved matrix operations, SMVGEAR also runs faster than traditional Gear solvers on non-vector machines, but the greatest benefit will be obtained with vector machines. The major enhancements incorporated in SMVGEAR are now described in more detail.

In the conventional application of the Gear-type algorithm, the method is applied to each grid cell individually. With this implementation, the length of the innermost loops in most computations corresponds to the number of species, which is typically on the order of 30 to 100. In SMVGEAR, the modeling domain is divided into blocks of cells, and the Gear algorithm is applied to each cell within a block simultaneously. With this structure, the length of the innermost loops for most calculations is equal to the number of cells in a block. Substantial

improvements in vectorization can therefore be obtained if the block size is larger than the number of species. Jacobson and Turco (1994) found that a block size on the order of 500 cells achieves about 90% of the maximum vectorization speed on a Cray C-90 computer. The use of larger block sizes may not substantially increase computational speed and may incur some additional penalties. For example, memory requirements increase with increasing block size. Furthermore, the size of a time step in SMVGEAR is the same for each cell within a block and is based on the time-step estimate for the stiffest cell in the block. Limiting the block size can therefore reduce excess calculations that need to be performed for the less stiff cells. Jacobson (1995) also achieved computational savings by ordering the cells by stiffness, thereby reducing excess computations for some cells. Jacobson found excess computations were reduced by about a factor of two, and that these reductions more than offset the additional work incurred with calculating and sorting the cells by stiffness.

Much of the computational intensity associated with the Gear method arises from the matrix operations that are needed to perform the Newton iterations in the corrector step. Jacobson and Turco have introduced two techniques to improve the efficiency of these operations. First, all known cases of multiplication by zero in matrix multiplication and decomposition are eliminated. This is particularly beneficial for atmospheric chemistry problems since the Jacobian matrices are almost always sparse (i.e., they contain a large number of zero entries). However, decomposition techniques that are applied to these matrices often result in substantial fill-in, thereby reducing the benefits of employing sparse-matrix techniques. To maintain maximum sparsity after the decomposition operation, SMVGEAR orders the species in the Jacobian such that those with the fewest partial derivative terms are located in the top rows, and those with the most are in the bottom rows. At the very beginning of the program, the ordering is done and a symbolic decomposition is performed to identify multiplies by zero. Since the computations associated with the matrix operations are determined entirely by the structure of the chemical mechanism, it is necessary to do this only once and the results can then be applied to every cell uniformly.

The SMVGEAR algorithm has been implemented in the CCTM with minor changes to the original algorithm but extensive changes to the original computer code. The code changes arose from linking the algorithm to the generalized chemistry processor used in the CMAQ system, and developing a driver routine specific to the CCTM structure. The only significant change to the algorithm involved modifying the code to eliminate the possibility of obtaining negative concentrations. With the standard Gear algorithm, negative concentrations can occur when a species is rapidly depleted, although the magnitudes of these concentrations are extremely small. In the CCTM implementation, a lower bound on allowable concentrations is applied, and the rates of change and the Jacobian matrix are modified to reflect that no changes in concentration are occurring when the lower bound is reached. Comparisons with the standard Gear algorithm show virtually no differences in species concentrations above the lower bound, but a small penalty in computational performance is incurred. Nevertheless, the approach insures a positive-definite solution.

The computational performance of SMVGEAR is also affected by the error tolerances used for the Newton iteration convergence tests and the local truncation error tests. Error control in SMVGEAR is similar to that used in LSODE (Hindmarsh, 1980). Both a relative and an absolute tolerance must be specified. In their discussion of ODE solvers, Byrne and Hindmarsh (1987) relate the relative error tolerance to the number of accurate digits and the absolute error tolerance to the noise level (i.e., the size of the largest concentration that can be neglected). If *r* is the number of accurate digits required, then Byrne and Hindmarsh suggest setting the relative tolerance to $10^{-(r+1)}$. The absolute error tolerances cannot be specified as generically because particular model applications may require different accuracies for the mechanismn species. In the CCTM implementation of SMVGEAR, the relative tolerance and absolute tolerances have been preset to 10^{-3} and 10^{-9} ppm, respectively. However, these values can be changed by the user relatively easily in the CCTM as described in EPA (1998).

8.4.3 QSSA Solver

The QSSA solver is a low order, explicit solver that exhibits good stability for stiff systems. Although less accurate than the Gear solver, it is still a reasonably accurate, fast solver that is especially suitable for large scale grid models. There are actually many versions of solvers that go by the name "QSSA" (e.g., Mathur et al., 1998). The solver developed for the CCTM is a predictor/corrector version based on the one developed by Lamb and used in the Regional Oxidant Model (Lamb, 1983, and Young et al., 1993).

The QSSA method originates from assuming integration time steps sufficiently small such that in Equation 8-11, the production and loss rate terms P_i and L_i can be considered constant. If the Jacobian is diagonally dominant, this assumption may be valid as $\Delta t \rightarrow 0$, and the time step solution at $t_{n+1} = t_n + \Delta t$ can be written formally as:

$$C_{i} = C_{i_{\infty}} + (C_{i_{n}} - C_{i_{\infty}}) e^{-L_{i}\Delta t}$$
(8-22)

where $C_i = P_i / L_i$ and C_i is the solution at t_n .

The CCTM QSSA makes no *a priori* assumptions about reaction time scales. For example, there are no assumed steady states. However, the algorithm separates the numerical computation into either an Euler step, a fully explicit integration, or an asymptotic evaluation based on photochemical lifetimes estimated from an initial, predictor calculation of P_i and L_i . The cut-offs and equations for each predictor step are:

Eulerstep:
$$L_i \Delta t \leq 0.01$$
 $C_i = C_{i_n} + (P_i + L_i C_{i_n}) \Delta i$
Explicit: $0.01 \prec L_i \Delta t \prec 10.0$ $C_i = C_{i_\infty} + (C_{i_n} - C_{i_\infty}) e^{-L}$ (8-23)
Asymptotic: $L_i \Delta t \geq 10.0$ $C_i = C_i$

The CMAQ QSSA algorithm proceeds in three stages: an optimal time step determination, a

predictor evaluation, and a corrector evaluation. In the first stage, an optimal chemistry time step interval Δt is determined at time t_n based on a tolerance parameter, λ , such that

$$|C_i - C_{i_n}| \leq \lambda C_{i_n}.$$
(8-24)

Substituting Equation 8-22 into 8-24 gives:

$$\Delta t \leq -\frac{1}{L_i} \ln \left(1 - \lambda \frac{C_{i_n}}{|C_{i_\infty} - C_{i_n}|} \right).$$
(8-25)

The algorithm attempts to weight the time step determination against species whose concentrations are very small compared to the primary oxidants. These usually include some of the fastest reacting radicals. The following quantity is defined as

$$C_{test} = [NO] + [NO_2] + [O_3]$$
 (8-26)

Then the following quantity is computed for only those species that satisfy $C_{\alpha} > \varepsilon C_{test}$ ($\varepsilon = 0.01$):

$$\delta t_{\alpha} = -\frac{1}{L_{\alpha}} \ln \left(1 - \lambda \frac{C_{\alpha_n}}{|C_{\alpha_{\alpha}} - C_{\alpha_n}|} \right)$$
(8-27)

If $L_{\alpha} = 0$,

$$\delta t_{\alpha} = \frac{\lambda C_{\alpha_n}}{P_{\alpha}} \tag{8-28}$$

The tolerance parameter λ is controlled by the rate at which the key NO species concentrations are changing; if they are changing too rapidly, the tolerance is tightened, otherwise it is relaxed:

$$\lambda = \begin{cases} 0.001, \text{ if } \frac{d[NO]}{dt} / [NO] \ge 0.5\% \text{ per minute} \\ 0.005, \text{ otherwise} \end{cases}$$
(8-29)

After determining a time scale for each species α , Δt is set to min{ δt_{α} }. For computational efficiency, Δt is further constrained to be no less than one second and of course is also constrained to be no greater than the total integration time.

In the predictor step, the species concentrations are updated $(C_i \rightarrow C_i^*)$ with the optimal time step using the Euler-step, explicit or asymptotic calculations described above. Once C_i^* is calculated, QSSA computes new production and loss rate coefficients P_i^* and L_i^* , respectively.

In the corrector step, the final production rate is set as the average of the initial and predictor values, $\tilde{P}_i = (P_i^* + P_i)/1$, and the new concentration C_i for time $t_{n+1} = t_n + \Delta t$ is computed using the same cut-offs based on L_i that were determined in the predictor step:

Eulerstep:	$C_{i} = C_{i_{n}} + (\tilde{P}_{i} + L_{i}^{*}C_{i_{n}}) \Delta t$	
Explicit:	$C_{i} = \tilde{P}_{i} / L_{i}^{*} + (C_{i_{n}} - \tilde{P}_{i} / L_{i}^{*}) e^{-L_{i}^{*} \Delta t}$	(8-30)
Asymptotic:	$C_i = \tilde{P}_i / L_i^*$	

The algorithm has been optimized for vector computers by moving the grid cell loops into the innermost position (Young et al., 1993) as is done in SMVGEAR described above. To minimize storage requirements, grid cell blocking has been implemented wherein blocks of cells are handed off to the solver in sequence. The CMAQ QSSA has also been optimized for the Cray T3D by utilizing various coding techniques aimed specifically at that architecture. Some of these optimizations are described in Chapter 19.

8.4.4 Summary

Gear type solvers have generally been considered the most accurate for gas chemistry, representing "exact solutions" (provided the controlling numerical tolerances are sufficiently tight). Until the advent of SMVGEAR, however, it has not been feasible to use these solvers in Eulerian models. SMVGEAR is designed to run optimally on high end vector computers such as the Cray C90, but its use on scalar machines may be impractical. Although less accurate, the QSSA solver may be more suitable for those types of computers.

The issue of accuracy versus computational speed is a continuing concern (Mathur et al., 1998), particularly since the availability of high-end machines like the Cray C90 is limited. The CMAQ QSSA solver presents a reasonable, numerically efficient alternative and, although not considered as accurate as a Gear-type solver, may be sufficiently accurate for modeling, taking into consideration the uncertainties of the other numerical modeling components. Accuracy can be somewhat improved by using shorter integration steps in the solver, but then computational work mounts, defeating the purpose. For the CMAQ QSSA, accuracy will be compromised when the ODE system is very stiff and the system Jacobian strays from diagonal dominance.

Nevertheless, the trade-off between solution efficiency and accuracy may still warrant its use in these cases.

Finally, both the SMVGEAR and the QSSA solvers have been incorporated in the CMAQ system with the predefined accuracy controls that were described in the previous two sections. Of course, these error controls can be changed by the user if desired, but that will of course affect both the prediction accuracy and the efficiency of obtaining a solution. Note also, that either solver can be used with any of the CMAQ chemical mechanisms that were described in section 8.2.

8.5 References

Atkinson R., Lloyd A. C. and Winges L. (1982) An updated chemical mechanism for hydrocarbon/NOx/SO2 photooxidations suitable for inclusion in atmospheric simulation models. *Atmos. Environ.*, **16**, 1,341-1,355.

Bowman F. M., Pilinis C., and Seinfeld J. (1995) Ozone and aerosol productivity of reactive. *Atmos. Environ.*, **29**, 579-589.

Byrne G. D. and Hindmarsh A. C. (1987) Stiff ODE solvers: a review of current and coming attractions. *J. Comput. Phys.* **70**, 1-62.

Carter W. P. L. (1988) Appendix C Documentation of the SAPRC Atmospheric Photochemical Mechanism Preparation and Emissions Processing Programs for Implementation in Airshed Models. Final Report for California Air Resources Board Contract No. A5-122-32.

Carter W. P. L. (1990) A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. *Atmos. Environ.* **24A**, 481-515.

Carter W. P. L. (1996) Condensed atmospheric photooxidation mechanisms for isoprene. *Atmos. Environ.* **24**, 4,275-4,290.

Carter W. P. L. and Atkinson R. (1996) Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx. *Int. J. Chem. Kinet.* **28**, 497-530.

Carter W. P. L., Luo D. and Malkina I. L. (1997) Environmental Chamber Studies for Development of an Updated Photochemical Mechanism for Reactivity Assessment. Final Report for California Air Resources Board Contract No. 92-345, Coordinating Research Council, Inc., Project M-9 and National Renewable Energy Laboratory, Contract ZF-2-12252-07.

Chang J. S., Brost R. A., Isaksen I. S. A., Madronich S., Middleton P., Stockwell W.R. and Waleck C.J. (1987) A three-dimensional Eulerian acid deposition model: physical concepts and formulation, *J. geophys. Res.*, **92**, 14,681 - 14,700.

Dabdub D. and Seinfeld J. H. (1995) Extrapolation techniques used in the solution of stiff ODEs associated with chemical kinetics of air quality models. *Atmos. Environ.* **29**, 403-410.

Dodge M.C. (1989) A comparison of three photochemical oxidant mechanisms, *J. geophys. Res.*, **94**, 5,121-5,136.

EPA (1989) Procedures for Applying City-specific EKMA. EPA-450/4-89-012.

EPA (1991) User's Guide for the Urban Airshed Model, Volume I: User's Manual for UAM (CB4). EPA-450/4-90-007a.

EPA (1998) EPA Third-Generation Air Quality Modeling System, Models-3 Volume 9b User Manual. EPA-600/R-98/069b.

Gear C. W. (1971a) *Numerical Initial Value Problems in Ordinary Differential Equations*. Prentice-Hall, Englewood Cliffs, NJ.

Gear C. W. (1971b) The automatic integration of ordinary differential equations. *Comm. ACM* **14**, 176-179.

Gery M. W., Morris R. E., Greenfield S. M., Liu M. K., Whitten G. Z., and Fieber J. L. (1987) Development of a Comprehensive Chemistry Acid Deposition Model (CCADM). Final Report for Interagency Agreement DW 14931498, U. S. Environmental Protection Agency and U. S. Department of Interior.

Gery M. W., Whitten G. Z., Killus J. P. and Dodge M. C. (1989) A photochemical kinetics mechanism for urban and regional scale computer modeling. *J. geophys. Res.* **94**, 12,925-12,956.

Gong W. and Cho H. R. (1993) A numerical scheme for the integration of the gas-phase chemical rate equations in three-dimensional atmospheric models. *Atmos. Environ.* **27A**, 2,147-2,160.

Hindmarsh A. C. (1980) LSODE and LSODI, two new initial value ordinary differential equation solvers. *ACM Newsl.* **15**, 10-11.

Hough A. (1988) An intercomparison of mechanisms for the production of photochemical oxidants. *J. geophys. Res.*, **93**, 3,789-3,812.

Jacobson M. and Turco R. P. (1994) SMVGEAR: A sparse-matrix, vectorized Gear code for atmospheric models. *Atmos. Environ.* **28**, 273-284.

Jacobson M. (1995) Computation of global photochemistry with SMVGEAR II. *Atmos. Environ.* **29**, 2,541-2,546.

Jeffries H. E. (1995) Photochemical Air Pollution. Chapter 5 in *Composition, Chemistry, and Climate of the Atmosphere*. Ed. H. B. Singh, Von Nostand-Reinhold, New York.

Jeffries H. E., Gery M. and Murphy K. (1993) Advanced Chemical Reaction Mechanisms and Solvers for Models-3. Progress Report for EPA Cooperative Agreement CR-820425.

Lamb, R.G. (1983) A Regional Scale (1000 km) Model of Photochemical Air Pollution. Part I - Theoretical Formulation. EPA-600/3-83-035, U. S. Environmental Protection Agency, Research Triangle Park, NC.

Leone J.A. and Seinfeld J.H. (1985) Comparative analysis of chemical reaction mechanisms for photochemical smog. *Atmos. Environ.*, **19**, 437-464.

Lurmann F. W., Carter W. P. L. and Coyner L. A. (1987) A Surrogate Species Chemical Reaction Mechanism for Urban Scale Air Quality Simulation Models Volume 1. EPA-600/3-87-014a.

Mathur R., Young J. O., Schere K. L., and Gipson G. L. (1998) A Comparison of Numerical Techniques for Solution of Atmospheric Kinetic Equations. *Atmos. Environ.*, **32**, 1,535-1,553.

NASA (1997). Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling Evaluation No. 12. JPL Publication 97-4, Jet Propulsion Laboratory, Pasedena, CA.

Odman, M. T., Kumar N. and Russell A. G. (1992) A comparison of fast chemical kinetic solvers for air quality modeling. *Atmos. Environ.* **26A**, 1,783-1,789.

Pandis S. N., Harley R. A., Cass G. R. and Seinfeld J. H.(1992) secondary aerosol formation and transport. *Atmos. Environ.* **26A**, 2,269-2,282.

Pitts-Finlayson B.J. and Pitts J.N. (1986) *Atmospheric Chemistry: Fundamentals and Experimental Techniques*, J. Wiley and Sons, New York.

SAI (1993) Systems Guide to the Urban Airshed Model (UAM-V). Systems Applications International, San Rafael, CA.

Saylor, R. D. and Ford G. D. (1995) On the comparison of numerical methods for the integration of kinetic equations in atmospheric chemistry and transport models. *Atmos. Environ.***29**, 2,585-2,593.

Stockwell W. R., Middleton P. and Chang J. S. (1990) The second generation regional acid deposition model chemical mechanism for regional air quality modeling. *J. geophys. Res.* **95** (d10), 16,343-16,367.

Stockwell W.R. (1986) A homogeneous gas phase mechanism for use in a regional acid deposition model, *Atmos. Environ.*, **20**, 1,615-1,632.

Stockwell W. R., Kirchner F., Kuhn M., and S. Seefeld (1997) A new mechanism for regional atmospheric chemistry modeling. *J. geophys. Res.* **102** (D22), 25,847-25,879.

Whitten G. Z., Hogo H. and Killus J. P. (1980) The carbon bond mechanism: a condensed kinetic mechanism for photochemical smog. *Envir. Sci. Technol.* **14**, 690-701.

Young J. O., Sills E., Jorge D. (1993) Optimization of the Regional Oxidant Model for the Cray Y-MP. EPA/600/R-94-065, U. S. Environmental protection Agency, Research Triangle Park, NC.

This chapter is taken from *Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System*, edited by D. W. Byun and J. K. S. Ching, 1999.

Appendix 8A Chemical Mechanisms Included in the CMAQ System

- Table 8A-1. CB4 Mechanism Species List
- Table 8A-2. RADM2 Mechanism Species List
- Table 8A-3. CB4 Mechanism
- Table 8A-4. CB4_AE Mechanism
- Table 8A-5. CB4_AQ Mechanism
- Table 8A-6. CB4_AE_AQ Mechanism
- Table 8A-7. RADM2 and RADM2_AQ Mechanisms
- Table 8A-8. RADM2_AE and RADM2_AE_AQ Mechanisms
- Table 8A-9. RADM2_CIS1 and RADM2_CIS1_AQ Mechanisms
- Table 8A-10. RADM2_CIS1_AE and RADM2_CIS1_AE_AQ Mechanisms
- Table 8A-11. RADM2_CIS4 and RADM2_CIS4_AQ Mechanisms

Table 8A-12. RADM2_CIS4_AE and RADM2_CIS4_AE_AQ Mechanisms

Notes to Tables 8A-3 through 8A-12:

- a) The mechanism listings are divided into two parts. The first lists the reactions and the second lists the rate constant expressions.
- b) The parameters for the rate constants are given in cms units. Rate constants calculated in cms units for T=298 $^{\circ}$ K and P= 1 atm are shown in the rightmost column of these listings.
- c) For photolytic reactions, photo table refers to the photolysis rates described in Chapter 14. The rate constant for all photolytic contains a zero entry in these tables, but is calculated in the CCTM as the product of the scale factor and the photolysis rate that is calculated by the CMAQ photolysis rate processor.
- d) The falloff rate expression referred to in these tables is Equation 8-6 in Section 8.3.2.

Nitrogen Species		PAR	Paraffin carbon bond (C-C)
NO	Nitric oxide	ETH	Ethene (CH ₂ =CH ₂)
NO2	Nitrogen dioxide	OLE	Olefinic carbon bond (C=C)
HONO	Nitrous acid	TOL	Toluene (C ₆ H ₄ -CH ₃)
NO3	Nitrogen trioxide	XYL	Xylene $(C_6H_5-(CH_3)_2)$
N2O5	Nitrogen pentoxide	ISOP	Isoprene
HNO3	Nitric acid		
PNA	Peroxynitric acid	Carbonyls and phenols	
		FORM	Formaldehyde
Oxidants		ALD2	Acetaldehyde and higher aldehydes
O3	Ozone	MGLY	Methyl glyoxal (CH ₃ C(O)C(O)H)
H2O2	Hydrogen peroxide	CRES	Cresol and higher molecular weight phenols
Sulfur Species		Organic nitrogen	
SO2	Sulfur dioxide	PAN	Peroxyacyl nitrate (CH ₃ C(O)OONO ₂)
SULF	Sulfuric acid	NTR	Organic nitrate
Atomic Species		Organic Radicals	
0	Oxygen atom (triplet)	C2O3	Peroxyacyl radical (CH ₃ C(O)OO·)
01D	Oxygen atom (singlet)	ROR	Secondary organic oxy radical
		CRO	Methylphenoxy radical
Odd Hydrogen Species			
OH	Hydroxyl radical	Operators	
HO2	Hydroperoxy radical	XO2	NO-to-NO ₂ Operation
		XO2N	NO-to-nitrate operation
Carbon oxides			
CO	Carbon monoxide		

Table 8A-1 CB4 Mechanism Species List

Hydrocarbons

Products of organics	
TO2	Toluene-hydroxyl radical adduct
OPEN	High molecular weight aromatic
	oxidation ring fragment
ISPD	Products of isoprene reactions

Species added for aerosols

SULAER	Counter species for H ₂ SO ₄ production
TOLAER	Counter species for toluene reaction
XYLAER	Counter species for xylene reaction
CSLAER	Counter species for cresol reaction
TERPAER	Counter species for terpene reaction
TERP	Monoterpenes

Species added for aqueous chemistry

FACD	Formic acid
AACD	Acetic and higer acids
PACD	Peroxy acetic acid
UMHP	Upper limit of methylhydroperoxide

Table 8A-2 RADM2 Mechanism Species List

Nitrogen Species			
NO	Nitric oxide		
NO2	Nitrogen dioxide	Organic peroxides	
HONO	Nitrous acid	OP1	Methyl hydrogen peroxide
NO3	Nitrogen trioxide	OP2	Higher organic peroxides
N2O5	Nitrogen pentoxide	PAA	Peroxyacetic acid
HNO3	Nitric acid		-
HNO4	Peroxynitric acid	Organic acids	
		ORA1	Formic acid
Oxidants		ORA2	Acetic and higher acids
03	Ozone	01012	Teette und inghet delds
H2O2	Hydrogen perovide	Perovy radicals from	alkanas
11202	Trydrogen peroxide	MO2	Mathul parovy radical
Cultur Creation		MO2	Denominational formed from ETH
Sultur Species		EIHP	Peroxy radical formed from ETH
SUL F	Sulfur dioxide	HC3P	Peroxy radical formed from HC3
SULF	Sururic acid	HCSP	Peroxy radical formed from HCS
		HC8P	Peroxy radical formed from HC8
Atomic Species			
O3P	Oxygen atom (triplet)	Peroxy radicals from	alkenes
O1D	Oxygen atom (singlet)	OL2P	Peroxy radical formed from OL2P
		OLTP	Peroxy radical formed from OLTP
Odd Hydrogen Species		OLIP	Peroxy radical formed from OLIP
HO	Hydroxyl radical		
HO2	Hydroperoxy radical	Peroxy radicals from	aromatics
		TOLP	Peroxy radical formed from TOL
Carbon oxides		XYLP	Peroxy radical formed from XYL
СО	Carbon monoxide		-
		Peroxy radicals with o	carbonyl groups
Alkanes		ACO3	Acetylperoxy radical
ETH	Ethane	KETP	Peroxy radical formed from KET
НС3	Alkanes w/ 2.7x10 ⁻¹³ > $k_{ou} < 3.4x10^{-12}$	TCO3	H(CO)CH-CHCO ₂
HC5	Alkanes w/ 2.4x10 ⁻¹² > $k_{\rm eff} < 5.4x10^{-12}$	1005	n(co)en=eneo3
HC9	Alterna $w/k \to 6.9 \times 10^{-12}$	Denorm redicale invol-	ing nitrogan
1100	Alkanes w/ $\kappa_{OH} > 0.8 \times 10^{-10}$	YO2	NO to NO. Oregeter
Alkenes		A02 VNI02	NO-to-NO ₂ Operator
OL2	Ethene	ANU2	NO-to-mirate operator
OLT	Terminal olefins	OLN	NO3-alken adduct
OLI	Internal olefins		
ISO	Isonrene	Species added for aer	<u>osols</u>
150	isopiene	SULAER	Counter species for H ₂ SO ₄ production
A		HC8AER	Counter species for HC8 reaction
TOL	Takana and loss mostive anomation	OLIAER	Counter species for OLI reaction
IOL	Toluene and less reactive aromatics	TOLAER	Counter species for toluene reaction
ATL	Xylene and more reactive aromatics	XYLAER	Counter species for xylene reaction
CSL	Cresol and other hydroxy substituted aromatics	CSLAER	Counter species for cresol reaction
		TERPAER	Counter species for terpene reaction
Carbonyls		TERP	Monoterpenes
НСНО	Formaldehyde		A.
ALD	Acetaldehyde and higher aldehydes		
KET	Ketones		
GLY	Glyoxal		
MGLY	Methyl glyoxal		
DCB	Unsaturated dicarbonyl		
Organic nitrogen			
PAN	Peroxyacetyl nitrate and higher PANs		
TPAN	H(CO)CH=CHCO ₃ NO ₂		
ONIT	Organic nitrate		

	Reac	tion L	ist									
>	1}	NO2	+ hv			>		 NO	+	0		<
ł	2}	0	+ [02]			>		03				
{	3}	03	+ NO			>		NO2				
{	4}	0	+ NO2			>		NO				
j	5}	0	+ NO2 + NO			>		NO3 NO2				
1	7	03	+ NO2			>		NO2 NO3				
{	8}	03	+ hv			>		0				
ł	9}	03	+ hv			>		OlD				
{	10}	01D	+ [N2]			>		0				
1	11}	01D	+ [02]			>		0				
í	⊥∠} 12l	OID	+ [H20]			>		2.000^0H				
}	14	03	+ HO2			>		OH				
ł	15}	NO3	+ hv			>		0.890*NO2	+	0.890*0	+	0.110*NO
ł	16}	NO3	+ NO			>		2.000*NO2				
{	17}	NO3	+ NO2			>		NO	+	NO2		
{	18}	NO3	+ NO2			>		N205				
ł	19}	N205	+ [H2O]			>		2.000*HNO3		NO 2		
}	20 }	NO NO	+ NO	+	[02]	>		2.000*NO2	Ŧ	NOZ		
{	22}	NO	+ NO2	+	[H2O]	>		2.000*HONO				
ł	23	OH	+ NO			>		HONO				
{	24}	HONO	+ hv			>		OH	+	NO		
{	25}	HONO	+ OH			>		NO2				
ł	26}	HONO	+ HONO			>		NO LINO 2	+	NO2		
Ĵ	281	OH OH	+ HNO3			>		NO3				
{	29	HO2	+ NO			>		OH	+	NO2		
ł	30}	HO2	+ NO2			>		PNA		1102		
ł	31}	PNA				>		HO2	+	NO2		
{	32}	PNA	+ OH			>		NO2				
{	33}	HO2	+ HO2		[]	>		H2O2				
ł	34}	HO2	+ HO2	+	[H20]	>		H2O2				
}	36}	H2O2	+ 0H			>		2.000 °OH HO2				
{	37}	CO	+ OH			>		HO2				
ł	38}	FORM	+ OH			>		HO2	+	CO		
ł	39}	FORM	+ hv			>		2.000*HO2	+	CO		
{	40}	FORM	+ hv			>		CO				
1	41}	FORM	+ 0			>		OH	+	HO2	+	CO
j	42}	FORM ATD2	+ NO3 + O			>		HNU3	+	HUZ	+	CO
{	44	ALD2	+ OH			>		C203	т	011		
ł	45}	ALD2	+ NO3			>		C203	+	HNO3		
{	46}	ALD2	+ hv			>		XO2	+	2.000*HO2	+	CO
,							+	FORM				
{	47}	C203	+ NO			>		NO2	+	XO2	+	FORM
J	481	C203	+ NO2			>	т	DAN				
{	49}	PAN	1 1102			>		C203	+	NO2		
ł	50}	C2O3	+ C2O3			>		2.000*XO2	+	2.000*FORM	+	2.000*HO2
{	51}	C2O3	+ HO2			>		0.790*FORM	+	0.790*XO2	+	0.790*HO2
	>						+	0.790*OH				
1	52}	OH				>		XO2	+	FORM	+	HO2
1	53}	PAR	+ OH			>	-	0.8/0^XOZ	+	0.130^XOZN	+	0.110^HOZ
							т	0.110 ADDZ	т	0.700 KOK		U.IIU PAR
{	54}	ROR				>		1.100*ALD2	+	0.960*XO2	+	0.940*HO2
	`						-	2.100*PAR	+	0.040*XO2N	+	0.020*ROR
ł	55}	ROR				>		HO2				
j	50} 571	OLE	+ 1NOZ + 0			>		NTR 0.630*ΔTD2	+	0.380*#02	+	0.280*x02
1	515		. 0			-	+	0.300*CO	+	0.200*FORM	+	0.020*X02N
							+	0.220*PAR	+	0.200*OH		
{	58}	OLE	+ OH			>		FORM	+	ALD2	+	XO2
							+	HO2	-	PAR		
{	59}	OLE	+ 03			>		0.500*ALD2	+	0.740*FORM	+	U.330*CO
							+	U.44U*HOZ סגס	+	U.22U*XO2	+	0.100*OH
{	60}	OLE	+ NO3			>	-	0.910*XO2	+	0.090*X02N	+	FORM
	· · J											

Table 8A-3. CB4 Mechanism

ſ	61)	DUIT		0		+	ALD2	-	PAR	+	NO2
۱ ۲	01}	EIH	+	0	>	+	1.700*HO2	+	0.300*OH	+	0
{	62}	ETH	+	OH	>	+	XO2 0.220*ALD2	+	1.560*FORM	+	HO2
{	63} 64}	ETH TOL	+	03 0H	>		FORM 0 080*X02	+	0.420*CO	+	0.120*HO2 0.440*HO2
ι r	(I)				-	+	0.560*TO2				0.000/0000
{	65}	102	+	NO	>	+	0.900*NO2 0.100*NTR	+	0.900*HO2	+	0.900*OPEN
{	66} 67}	TO2 CRES	+	OH	> >		CRES 0.400*CRO	+++	HO2	+	0.600*02
r	c 0]	GDEG		NO2		+	0.300*OPEN		101000		0.000 1102
í	601	CRES	+	NO3	>		CRU	+	HNO3		
ł	70}	XYI.	+	NO2 OH	>		0 700*HO2	+	0 500*X02	+	0 200*CRES
ι	, o j			011		+	0.800*MGLY	+	1.100*PAR	+	0.300*TO2
{	71}	OPEN	+	OH	>		XO2	+	2.000*CO	+	2.000*HO2
	,					+	C2O3	+	FORM		
{	72}	OPEN	+	hv	>		C203	+	HO2	+	CO
{	73}	OPEN	+	03	>		0.030*ALD2	+	0.620*C2O3	+	0.700*FORM
						+	0.030*X02	+	0.690*CO	+	0.080*OH
r	74)	MOTIN		011		+	0./60*HO2	+	0.200*MGLY		
ĺ	/4} 75)	MGLY	+	OH	>		X02	+	C203		CO
}	76	TSOP	+	0	>		0.750*TSPD	+	0.500*FORM	+	0.250*X02
ι	70]	1001		0		+	0.250*HO2	+	0.250*C203	+	0.250*PAR
{	77}	ISOP	+	OH	>		0.912*ISPD	+	0.629*FORM	+	0.991*XO2
Ľ	,					+	0.912*HO2	+	0.088*XO2N		
{	78}	ISOP	+	03	>		0.650*ISPD	+	0.600*FORM	+	0.200*XO2
						+	0.066*HO2	+	0.266*OH	+	0.200*C2O3
						+	0.150*ALD2	+	0.350*PAR	+	0.066*CO
{	79}	ISOP	+	NO3	>		0.200*ISPD	+	0.800*NTR	+	XO2
						+	0.800*HO2	+	0.200*NO2	+	0.800*ALD2
						+	2.400*PAR				
ł	80}	XO2	+	NO	>		NO2				
ł	81}	XO2	+	XO2	>						
ł	82}	XO2N	+	NO	>		NTR				
ł	83}	SO2	+	OH	>		SULF	+	HO2		
ł	84}	SOZ		1100	>		SULF				
í	85}	XOZ	+	HOZ	>						
Î	00} 07]	XO2N	+	HUZ	>						
ł	881	XO2N XO2N	+	XO2N XO2	>						
ł	89}	TSPD	+	OH	>		1.565*PAR	+	0.167*FORM	+	0.713*X02
ι	05)	1010		011	-	+	0.503*HO2	+	0.334*CO	+	0.168*MGLY
						+	0.273*ALD2	+	0.498*C2O3		
{	90}	ISPD	+	03	>		0.114*C2O3	+	0.150*FORM	+	0.850*MGLY
						+	0.154*HO2	+	0.268*OH	+	0.064*XO2
						+	0.020*ALD2	+	0.360*PAR	+	0.225*CO
{	91}	ISPD	+	NO3	>		0.357*ALD2	+	0.282*FORM	+	1.282*PAR
						+	U.925*HO2	+	U.643*CO	+	U.850*NTR
r	0.01	TOPP		h		+	0.075*C203	+	0.075*X02	+	0.075*HNO3
٤	92}	TRAD	+	117	>		U.333*CU	+	U.UO/*ALD2	+	0.900°FORM
						+	0.034°PAK 0.967*0202	+	1.033^HUZ	+	0./00"AUZ
				NO2	>	т	0.907*C203		0 800*NTP	+	x02
٢	021	TCOD			/		0.200-10PD			- τ	AUZ
{	93}	ISOP	+	1102		+	0 800*#02	+	0.200*NO	+	0 800*31.02
{	93}	ISOP	+	1102		+ +	0.800*HO2 2.400*PAR	+	0.200*NO	+	0.800*ALD2
{	93}	ISOP	+			+ +	0.800*HO2 2.400*PAR	+	0.200*NO	+	0.800*ALD2
{	93}	ISOP	+			+ + 	0.800*HO2 2.400*PAR	+	0.200*NO	+	0.800*ALD2
{	93}	ISOP	+			+	0.800*HO2 2.400*PAR	+	0.200*NO	+	0.800*ALD2
{ > R	93} 	ISOP Expres	+ 	 on		+ +	0.800*HO2 2.400*PAR	+	0.200*NO	+	0.800*ALD2 < Rate Constant
{ > Ri	93}	ISOP Expres	+ sic	202 Dn		+ +	0.800*HO2 2.400*PAR	+ +	0.200*NO	+	0.800*ALD2 < Rate Constant
{ > Ri =: k	93}	ISOP Expres ======) uses	+ sic pl	on noto table NO2	 2_CBI	+ + 	0.800*HO2 2.400*PAR	+ + ===	0.200*NO	+ == E+	0.800*ALD2
{ > R; = k	93}	ISOP Expres =====) uses) is a	+ sic pl fa	on noto table NO2 alloff express	 2_CBI	+ + ==: V8: us:	0.800*HO2 2.400*PAR 8 , sca ing:	+ + :==:	0.200*NO	+ == E+	0.800*ALD2
{	93} ate 1 ===== (1 (2 k0	ISOP Expres =====) uses) is a =	+ === pl fa	noz noto table NO2 alloff express 0000E-34 * (T/	 2_CBI 300)	+ + ==: V8: us: **	0.800*HO2 2.400*PAR 	+ +	0.200*NO	+ == E+	0.800*ALD2
{	93} ate 1 ===== (1 (2 k0 kin	ISOP Expres ======) uses) = = nf = 	+ sic ==: pl fa 6.(2.8	DDn noto table NO2 alloff express 0000E-34 * (T/ 3000E-12 * (T/	 2_CBI 2300) 2300)	+ + ===: V8: us: **	0.800*HO2 2.400*PAR 8 , sca ing: (-2.30) (0.00)	+ +	0.200*NO	+ E+	0.800*ALD2
{	93} ate 1 (1 (2 k0 kin F	ISOP Expres ======) uses) is a = = = 0.6) - 1	+ sic ==: pl fa 6.(2.8	noto table NO2 alloff express 0000E-34 * (T/ 3000E-12 * (T/ n = 1.00 000E-12 * corr	==== 2_CBI 300) 300)	+ + ===: V8: us: ** **	0.800*HO2 2.400*PAR 8 , sca ing: (-2.30) (0.00)	+ +	0.200*NO	+ E+	0.800*ALD2 Rate Constant 00 {0.00000E+00} {1.37387E-14}
{	93} ate 1 ====: (1 (2 k0 kin F : (3 (4	ISOP Expres ======) uses) is a = = 0.6) = 1) = 2	+ sic ==: ph fa 6.(2.% 0, .8(DD noto table NO2 alloff express 0000E-34 * (T/ 8000E-12 * (T/ n = 1.00 000E-12 * exp(000E-12	-13	+ + V8: us: ** *70	0.800*HO2 2.400*PAR 8 , sca ing: (-2.30) (0.00) .0/T)	+ + 	0.200*NO	+ E+	0.800*ALD2 Rate Constant 00 {0.00000E+00} {1.37387E-14} {1.81419E-14} {9.30000E-12}
{	93} ate 1 ====: (1 (2 k0 kin F : (3 (4	ISOP Expres ======) uses) is a = 0.6) = 1) = 9) is a	+ sic pl fa 6.0 2.8 0, .80 .30	Dn hoto table NO2 alloff express 000E-34 * (T/ 000E-12 * (T/ n = 1.00 000E-12 * exp(000E-12 * exp(-13	+ + + V83 us: ** ** 70	0.800*H02 2.400*PAR 8 , sca ing: (-2.30) (0.00) .0/T) ing:	+ +	0.200*NO	+ E+	0.800*ALD2 Rate Constant
{ R = k k k k k	93} ate 1 ===== (1 (2 k0 kin F 3 (4 (5 k0	ISOP Expres) uses) is a enf = = 0.6) = 1) = 9) is a =	+ sic ===: pl fa 6.(2.8 0, .8(.3(6.2)	DDn hoto table NO2 alloff express 0000E-34 * (T/ 000E-12 * (T/ n = 1.00 000E-12 * exp(000E-12 * exp(000E-12 * (T/ 000E-32 * (T/	-13	++ +- V8: us: ** 70 us: **	0.800*HO2 2.400*PAR 8 , sca ing: (-2.30) (0.00) .0/T) ing: (-2.00)	+ + 	0.200*NO	+ E+	0.800*ALD2 Rate Constant 00 {0.00000E+00} {1.37387E-14} {1.81419E-14} {9.30000E-12} {1.57527E-12}

	F = 0.60, n = 1.00	
k(6) is a falloff expression using:	{1.66375E-12}
	$k_0 = 9.0000E - 32 * (T/300) **(-1.50)$ $k_1nf = 3.0000E - 11 * (T/300) **(-0.00)$	
	F = 0.60, n = 1.00	
k($7) = 1.2000E - 13 * \exp(-2450.0/T)$	{3.22581E-17}
k(8) uses photo table NO2_CBIV88 , scaled by 5.30000E-02	{0.00000E+00}
K(レ(9) uses photo table 0301D_CB1V88 , scaled by 1.00000E+00 10) = 1 8000E-11 * exp(107.0/T)	{0.00000±+00} ∫2 57757₽_11}
k($10^{-1} = 1.8000E^{-11} \exp(-10^{-10}, 0^{-1})$ $11) = 3.2000E^{-11} \exp(-67.0/T)$	{4.00676E-11}
k(12) = 2.2000E - 10	{2.20000E-10}
k($13) = 1.6000E - 12 * \exp(-940.0/T)$	{6.82650E-14}
K(14) = 1.4000E - 14 * exp(-580.0/T) $15) uses photo table NO2 CRIV88 = scaled by 3.39000E+01$	{1.99920E-15} {0 00000E+00}
k(16) = 1.3000E-11 * exp(250.0/T)	{3.00805E-11}
k($17) = 2.5000E - 14 * \exp(-1230.0/T)$	{4.03072E-16}
k(18) is a falloff expression using:	{1.26440E-12}
	$k_0 = 2.2000E-30 - (1/300) + (-4.30)$ kinf = 1.5000E-12 * (T/300) * (-0.50)	
	F = 0.60, n = 1.00	
k(19) = 1.3000E-21	{1.30000E-21}
k(20) = k(18) / Keq, where Keq = 2.700E-27 * exp(11000.0/T)	{4.36029E-02} ∫1 05207E 20}
k(221 = $4.4000E-40$	$\{4,39999E-40\}$
k(23) is a falloff expression using:	{6.69701E-12}
	k0 = 6.7000E - 31 * (T/300) * (-3.30)	
	kinf = 3.0000E - 11 * (T/300) **(-1.00) $E = 0.60 n = 1.00$	
k(24) uses photo table NO2_CBIV88 , scaled by 1.97500E-01	{0.00000E+00}
k(25) = 6.6000E - 12	{6.60000E-12}
k(と(26) = $1.0000E-2027) is a falloff expression using:$	{1.00000E-20} ∫1 1/885E-11}
17 (k0 = 2.6000E-30 * (T/300) **(-3.20)	[1.140031 11]
	kinf = $2.4000E-11 * (T/300) **(-1.30)$	
1- (F = 0.60, $n = 1.00$	[1 4700CB 10]
К ($k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$	{1.4/230E-13}
	k0 = 7.2000E - 15 * exp(785.0/T)	
	k2 = 4.1000E - 16 * exp(1440.0/T)	
k ($k_3 = 1.9000E - 33 * exp(-725.0/T)$ 29) = 3.7000E - 12 * exp(-240.0/T)	{8 27883E-12}
k(30) is a falloff expression using:	{1.48014E-12}
	k0 = 2.3000E - 31 * (T/300) * * (-4.60)	
	kinf = $4.2000E - 12 * (T/300) ** (0.20)$	
k(31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T)	{9.17943E-02}
k($32) = 1.3000E - 12^* \exp(380.0/T)$	{4.65309E−12}
k($33) = 5.9000E - 14 * \exp(1150.0/T)$	{2.79783E-12}
K (34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol CRIV88 scaled by 2 55000E-01	{6.2392/E-30} {0 00000E+00}
k(36) = 3.1000E-12 * exp(-187.0/T)	{1.65514E-12}
k(37) = 1.5000E - 13 * (1.0 + 0.6*Pressure)	{2.40000E-13}
k(と(38) = 1.0000E-11 39) uses photo table UCUOrad CPIV88 gcaled by 1 00000E+00	{1.00000E-11}
k(40) uses photo table HCHOmol CBIV88 , scaled by 1.00000E+00	{0.00000E+00}
k($41) = 3.0000E - 11 * \exp(-1550.0/T)$	{1.65275E−13}
k(42) = 6.3000E - 16	{6.30000E-16}
K ($43) = 1.2000E - 11 * \exp(-986.0/T)$ $44) = 7.0000E - 12 * \exp(-250.0/T)$	{4.38/53E-13} {1 61972E-11}
k(45) = 2.5000E - 15	{2.50000E-15}
k(46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00	{0.00000E+00}
k(47 = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-12 * exp(380.0/T)	{⊥.90766E-11} {9 41356⊑-12\
k(49) = 2.0000E + 16 * exp(-13500.0/T)	{4.23268E-04}
k(50) = 2.5000E - 12	{2.50000E-12}
k(51) = 6.5000E-12 52) = 1.1000E+02 t cmm(1710.0/m)	{6.50000E-12}
к(k(52 = 1.1000E+02 * exp(-1/10.0/T) 53 = 8.1000E-13	\3.34242E-U1} {8.10000E-13}
k(54) = 1.0000E+15 * exp(-8000.0/T)	{2.19325E+03}
k(55) = 1.6000E+03	{1.60000E+03}
K (11.500008-11}
K (50 = 1.3000 E = 11 57 = 1.2000 E = 11 * exp(-324.0/T)	(4.04572E-12)
k($\begin{array}{l} 57) = 1.2000E-11 & \exp(-324.0/T) \\ 58) = 5.2000E-12 & \exp(-504.0/T) \end{array}$	{4.04572E-12} {2.82173E-11}

Table 8A-3. CB4 Mechanism

k(60)	= 7.7000E - 15		$\{7,70000E-15\}$
k(61)	= 1.0000E - 11 * exp(-792.0/T)		{7.01080E-13}
k (62)	= 2.0000E - 12 * exp(411.0/T)		$\{7,94340E-12\}$
k (63)	= 1.3000E - 14 * exp(-2633.0/T)		$\{1, 89105E-18\}$
k (64)	= 2.1000E - 12 * exp(322.0/T)		$\{6.18715E-12\}$
k (65)	= 8.1000E - 12		$\{8, 10000E - 12\}$
k(66)	= 4.2000E+00		$\{4, 20000E+00\}$
k (67)	= 4.1000E-11		$\{4, 10000E-11\}$
k (68)	= 2.2000E - 11		$\{2, 20000E-11\}$
k(69)	= 1.4000E - 11		{1.40000E-11}
k.	70)	= 1.7000E - 11 * exp(116.0/T)		{2.50901E-11}
k(71)	= 3.0000E-11		{3.00000E-11}
k(72)	uses photo table HCHOrad CBIV88	, scaled by 9.04000E+00	{0.00000E+00}
k(73)	= 5.4000E - 17 * exp(-500.0/T)	·	{1.00858E-17}
k(74)	= 1.7000E-11		(1.70000E-11)
k(75)	uses photo table HCHOrad_CBIV88	, scaled by 9.64000E+00	{0.00000E+00}
k(76)	= 3.6000E-11	-	{3.60000E-11}
k(77)	= 2.5400E - 11 * exp(407.6/T)		{9.97368E-11}
k(78)	= 7.8600E-15 * exp(-1912.0/T)		{1.28512E-17}
k(79)	= 3.0300E - 12 * exp(-448.0/T)		{6.73819E-13}
k(80)	= 8.1000E-12		{8.10000E-12}
k(81)	= 1.7000E-14 * exp(1300.0/T)		{1.33359E-12}
k(82)	= 8.1000E-12		{8.10000E-12}
k(83)	= 4.3900E-13 * exp(160.0/T)		{7.51005E-13}
k(84)	= 1.3600E-06		{1.36000E-06}
k(85)	= 7.6700E-14 * exp(1300.0/T)		{6.01684E-12}
k(86)	= 7.6700E-14 * exp(1300.0/T)		{6.01684E-12}
k(87)	= 1.7300E-14 * exp(1300.0/T)		{1.35712E-12}
k(88)	= 3.4500E-14 * exp(1300.0/T)		{2.70640E-12}
k(89)	= 3.3600E-11		{3.36000E-11}
k(90)	= 7.1100E-18		{7.11000E-18}
k(91)	= 1.0000E - 15		{1.00000E-15}
k(92)	uses photo table ACROLEIN	, scaled by 3.60000E-03	{0.00000E+00}
k(93)	= 1.4900E-19		{1.49000E-19}
==:	====			=======================================

Table 8A-4.	CB4_AE N	Mechanism
-------------	----------	-----------

Reaction L	ist							
>				NO				<
	+ [02]		>	03	+	0		
{ 3} 03	+ NO		>	NO2				
{ 4 } 0	+ NO2		>	NO				
{ 5} 0	+ NO2		>	NO3				
{ 6} 0	+ NO		>	NO2				
{ 7} 03	+ NO2		>	NO3				
{ 8} 03	+ hv		>	0				
{ 9}03	+ hv		>	01D				
{ 10} 01D	+ [N2]		>	0				
{ 11} 01D	+ [O2]		>	0				
{ 12} 01D	+ [H2O]		>	2.000*OH				
{ 13} 03	+ OH		>	HO2				
{ 14} 03	+ HO2		>	OH				
{ 15} NO3	+ hv		>	0.890*NO2	+	0.890*0	+ 0.	110*NO
{ 16} NO3	+ NO		>	2.000*NO2		0		
{ 17} NO3	+ NO2		>	NO	+	NO2		
{ 18} NO3	+ NO2		>	N205				
{ 19} N205	+ [H20]		>	2.000^HNO3		NO 2		
{ 20} N205	+ NO	+ [02]	>	2 000*NO2	+	INO Z		
{ 22 } NO	+ NO2	+ [H20]	>	2.000 NOZ 2.000*HONO				
{ 22 } NO { 23 } OH	+ NO2	+ [1120]	>	2.000 HONO				
{ 24 } HONO	+ hv		>	OH	+	NO		
{ 25} HONO	+ OH		>	NO2		1.0		
{ 26} HONO	+ HONO		>	NO	+	NO2		
{ 27} OH	+ NO2		>	HNO3				
{ 28} OH	+ HNO3		>	NO3				
	+ NO		>	OH	+	NO2		
{ 30} HO2	+ NO2		>	PNA				
{ 31} PNA			>	HO2	+	NO2		
{ 32} PNA	+ OH		>	NO2				
{ 33} HO2	+ HO2		>	H2O2				
{ 34} HO2	+ HO2	+ [H2O]	>	H2O2				
{ 35} H2O2	+ hv		>	2.000*OH				
{ 36} H2O2	+ OH		>	HO2				
{ 37} CO	+ OH		>	HO2				
{ 38} FORM	+ OH		>	HUZ	+	CO		
{ 39} FORM	+ 11V		>	2.000"HO2	+	CO		
1 40 FORM	+ 110		>	04	1	u03	-	CO
{ 42} FORM	+ NO3		>	HNO 3	+	HO2	+	CO
{ 43} ALD2	+ 0		>	C203	+	OH	·	60
{ 44} ALD2	+ OH		>	C203		011		
{ 45} ALD2	+ NO3		>	C2O3	+	HNO 3		
{ 46} ALD2	+ hv		>	XO2	+	2.000*HO2	+	CO
			+	- FORM				
{ 47} C2O3	+ NO		>	NO2	+	XO2	+	FORM
(+	HO2				
{ 48} C203	+ NO2		>	PAN				
{ 49} PAN			>	C2O3	+	NO2		000+1100
$\{50\}$ C203	+ C203		>	2.000^XOZ	+	2.000 * FORM	+ 2.	000^HOZ
{ 51} C203	+ HOZ		>	0.790 * FORM	+	0.790*X02	+ 0.	/90*HOZ
{ 52} OH			>	x02	+	FORM	+	HO2
{ 53 } DAP	+ 0번		>	0 870*x02	+	0 130*XO2N	+ 0	110*#02
(JJ) IAK	1 011		- +	+ 0.110*ALD2	+	0.760*ROR	- 0.	110*PAR
{ 54} ROR			>	1.100*ALD2	+	0.960*X02	+ 0.	940*HO2
()			-	- 2.100*PAR	+	0.040*XO2N	+ 0.	020*ROR
{ 55} ROR			>	HO2				
{ 56} ROR	+ NO2		>	NTR				
{ 57} OLE	+ O		>	0.630*ALD2	+	0.380*HO2	+ 0.	280*XO2
			+	+ 0.300*CO	+	0.200*FORM	+ 0.	020*XO2N
			+	+ 0.220*PAR	+	0.200*OH		
{ 58} OLE	+ OH		>	FORM	+	ALD2	+	XO2
()			+	HO2	-	PAR		
{ 59} OLE	+ 03		>	0.500*ALD2	+	0.740*FORM	+ 0.	330*CO
			+	- 0.440*HO2	+	0.220*XO2	+ 0.	100*OH
			-	- PAR		0.000+**003*		
{ 60} OLE	+ NO3		>	0.910*XOZ	+	0.090*XO2N	+	FORM
			. +	+ ALDZ	-	PAR	+	NU2
/ OT } ELH	+ 0		>	FORM	+	0./00"XUZ	+	CU
Table 8A-4. CB4_AE Mechanism

							1 700*100		0 200+01		
ſ	6 วไ	דידים	-	OH		+	1.700"HO2 XO2	+	1 560*TOPM	+	u02
l	025	FIL	Ŧ	OH	/		20A	т	1.500 FORM	т	HOZ
r	< 2 J			22		+	U.ZZU^ALDZ		0 100+00		0 100+000
ţ	63}	ETH	+	03	>		FORM	+	0.420*00	+	0.120*HO2
{	64}	TOL	+	ОН	>		0.080*X02	+	0.360*CRES	+	0.440*HO2
						+	0.560*TO2	+	TOLAER		
{	65}	то2	+	NO	>		0.900*NO2	+	0.900*HO2	+	0.900*OPEN
						+	0.100*NTR				
{	66}	TO2			>		CRES	+	HO2		
ł	67}	CRES	+	OH	>		0.400*CRO	+	0.600*XO2	+	0.600*HO2
	,					+	0.300*OPEN	+	CSLAER		
{	68}	CRES	+	NO3	>		CRO	+	HNO 3	+	CSLAER
ł	691	CRO	+	NO2	>		NTR		11100		00211210
ł	701	XVI.	+	OH	>		0 700*#02	+	0 500**02	+	0 200*7775
ι	/0]	MT11		011			0.700 HOZ	1	1 100*DZ	- 1	0.200 CRED
							U.OUU"MGLI	т	1.100"PAR	т	0.300~102
r		ODEN		011		+	AILAER VOO		2 000+00		0.00+1000
ł	/ 1 }	OPEN	+	ОН	>		XO2	+	2.000*00	+	2.000*HO2
,	>			_		+	C203	+	FORM		
{	72}	OPEN	+	hv	>		C2O3	+	HO2	+	CO
{	73}	OPEN	+	03	>		0.030*ALD2	+	0.620*C2O3	+	0.700*FORM
						+	0.030*XO2	+	0.690*CO	+	0.080*OH
						+	0.760*HO2	+	0.200*MGLY		
{	74}	MGLY	+	OH	>		XO2	+	C2O3		
ì	751	MGLY	+	hv	>		C203	+	HO2	+	CO
ł	76	TSOP	+	0	>		0 750*TSPD	+	0 500*FORM	+	0 250*x02
ι	/0]	1901		0		+	0.250*02	+	0.250*0203	+	0.250 X02
ſ	771	TROD	-	OH			0.230 1102		0.230 C203		0.230 FAR
ι	///	LOOP	т	011	/		0.912 15FD	T.	0.029 FORM	т	0.991 A02
r	7 0)	-		2 2		+	0.912"HOZ	+	0.000"AUZN		0.000+7000
ł	/8}	ISOP	+	03	>		0.650*ISPD	+	0.600*FORM	+	0.200*X02
						+	0.066*HO2	+	0.266*OH	+	0.200*C2O3
	_					+	0.150*ALD2	+	0.350*PAR	+	0.066*CO
{	79}	ISOP	+	NO3	>		0.200*ISPD	+	0.800*NTR	+	XO2
						+	0.800*HO2	+	0.200*NO2	+	0.800*ALD2
						+	2.400*PAR				
{	80}	XO2	+	NO	>		NO2				
Ì	81 į́	X02	+	X02	>						
ł	821	XO2N	+	NO	>		NTR				
ł	831	502	+	OH	>		SIII.F	+	HO2	+	SIII.AFP
ſ	031	502		011	(CULE	1			DODABIC
ł	0 - 1	302		1102			3011	-T-	SULAER		
ł	001	AUZ	T	TUZ							
í	86}	370 037		1102							
ţ	0 - 1	XO2N	+	HO2	>						
	87}	XO2N XO2N	+ +	HO2 XO2N	> >						
ì	87} 88}	XO2N XO2N XO2N	+ + +	HO2 XO2N XO2	> >						
{	87} 88} 89}	XO2N XO2N XO2N ISPD	+ + + +	HO2 XO2N XO2 OH	> > >		1.565*PAR	+	0.167*FORM	+	0.713*XO2
\ {	87} 88} 89}	XO2N XO2N XO2N ISPD	+ + +	HO2 XO2N XO2 OH	> > >	+	1.565*PAR 0.503*HO2	++++	0.167*FORM 0.334*CO	+++	0.713*XO2 0.168*MGLY
۱ {	87} 88} 89}	XO2N XO2N XO2N ISPD	+ + + +	HO2 XO2N XO2 OH	> > >	++++	1.565*PAR 0.503*HO2 0.273*ALD2	+++++	0.167*FORM 0.334*CO 0.498*C2O3	+++	0.713*XO2 0.168*MGLY
{	87} 88} 89} 90}	XO2N XO2N XO2N ISPD ISPD	+ + + +	H02 X02N X02 OH	> > >	++++	1.565*PAR 0.503*HO2 0.273*ALD2 0.114*C2O3	++++++	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM	++++	0.713*XO2 0.168*MGLY 0.850*MGLY
\ { {	87} 88} 89} 90}	XO2N XO2N XO2N ISPD ISPD	+ + + +	H02 X02N X02 OH	> > >	++++++	1.565*PAR 0.503*HO2 0.273*ALD2 0.114*C2O3 0.154*HO2	+++++++	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH	++++++	0.713*XO2 0.168*MGLY 0.850*MGLY 0.064*XO2
\ { {	87} 88} 89} 90}	XO2N XO2N XO2N ISPD ISPD	+ + + +	H02 X02N X02 OH	> > >	+++++++	1.565*PAR 0.503*HO2 0.273*ALD2 0.114*C203 0.154*HO2 0.020*ALD2	+ + + + + + + +	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR	+++++++	0.713*XO2 0.168*MGLY 0.850*MGLY 0.064*XO2 0.225*CO
{	87} 88} 89} 90} 91}	XO2N XO2N XO2N ISPD ISPD ISPD	+ + + +	HO2 XO2N XO2 OH O3	> > >	+++++++++++++++++++++++++++++++++++++++	1.565*PAR 0.503*H02 0.273*ALD2 0.114*C203 0.154*H02 0.020*ALD2 0.357*ALD2	+++++++++++++++++++++++++++++++++++++++	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM	+ + + + + + +	0.713*XO2 0.168*MGLY 0.850*MGLY 0.064*XO2 0.225*C0 1.282*PAR
{ {	87} 88} 89} 90} 91}	XO2N XO2N XO2N ISPD ISPD ISPD	+ + + +	H02 X02N X02 OH 03 N03	> > >	+++++++++++++++++++++++++++++++++++++++	1.565*PAR 0.503*HO2 0.273*ALD2 0.114*C2O3 0.154*HO2 0.020*ALD2 0.357*ALD2 0.925*HO2	+ + + + + + + + + + + + + + + + + + + +	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*CO	+ + + + + + + +	0.713*XO2 0.168*MGLY 0.850*MGLY 0.064*XO2 0.225*CO 1.282*PAR 0.850*NTR
\ { {	87} 88} 89} 90} 91}	XO2N XO2N XO2N ISPD ISPD ISPD	+ + + +	HO2 XO2N XO2 OH O3 NO3	> > >	+++++++++++++++++++++++++++++++++++++++	1.565*PAR 0.503*H02 0.273*ALD2 0.114*C203 0.154*H02 0.020*ALD2 0.357*ALD2 0.925*H02 0.075*C203	+ + + + + + + + + + + + + + + + + + + +	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.360*PAR 0.643*CO 0.075*XO2	+ + + + + + + + +	0.713*X02 0.168*MGLY 0.850*MGLY 0.064*X02 0.225*C0 1.282*PAR 0.850*NTR 0.075*HN03
{ { { { { { } }	<pre>87} 88 89 90 90 91 91 </pre>	XO2N XO2N XO2N ISPD ISPD ISPD	+ + + + + + +	HO2 XO2N XO2 OH O3 NO3	> > >	+ + + + + +	1.565*PAR 0.503*H02 0.273*ALD2 0.114*C203 0.154*H02 0.020*ALD2 0.357*ALD2 0.925*H02 0.925*H02 0.075*C203 0.333*C0	+ + + + + + + + + + + + + + + + + + +	0.167*FORM 0.334*C0 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*C0 0.075*XO2 0.075*ALD2	+ + + + + + + + + + + + + + + + + + + +	0.713*X02 0.168*MGLY 0.850*MGLY 0.064*X02 0.225*C0 1.282*PAR 0.850*NTR 0.90*FOPM 0.90*FOPM
{ { {	<pre>87} 88 89 90 90 91 92 </pre>	XO2N XO2N ISPD ISPD ISPD ISPD	+ + + + +	HO2 XO2N XO2 OH O3 NO3 hv	> > >	+ + + + + + + +	1.565*PAR 0.503*H02 0.273*ALD2 0.114*C203 0.154*H02 0.020*ALD2 0.357*ALD2 0.925*H02 0.075*C203 0.333*C0 832*DAP	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*CO 0.075*XO2 0.067*ALD2 0.037*ALD2	+ + + + + + + + + + + + + + + + + + + +	0.713*X02 0.168*MGLY 0.850*MGLY 0.064*X02 0.225*C0 1.282*PAR 0.850*NTR 0.900*FORM 0.705*HN03 0.900*FORM
{ { {	87} 88} 90} 91} 92}	XO2N XO2N ISPD ISPD ISPD ISPD	+ + + +	HO2 XO2N XO2 OH O3 NO3 hv	> > >	+++++++++++++++++++++++++++++++++++++++	1.565*PAR 0.503*HO2 0.273*ALD2 0.114*C2O3 0.154*HO2 0.020*ALD2 0.925*HO2 0.975*HO2 0.075*C2O3 0.333*CO 0.832*PAR 0.067*C2O2	+ + + + + + + + + + + + + + + + + + +	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*CO 0.075*XO2 0.067*ALD2 1.033*HO2	+ + + + + + + + + + + + + + + + + + + +	0.713*XO2 0.168*MGLY 0.850*MGLY 0.064*XO2 0.225*CO 1.282*PAR 0.850*NTR 0.075*HNO3 0.900*FORM 0.700*XO2
{ { { { { { { { { { { { { { { { { { { {	<pre>87} 887 89 90 90 91 92 </pre>	XO2N XO2N ISPD ISPD ISPD ISPD	+ + + + + + + + + + + + + + + + + + + +	HO2 XO2N XO2 OH O3 NO3 hv	> > >	+++++++++++++++++++++++++++++++++++++++	1.565*PAR 0.503*H02 0.273*ALD2 0.114*C203 0.154*H02 0.020*ALD2 0.357*ALD2 0.925*H02 0.333*C0 0.333*C0 0.832*PAR 0.967*C203	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*CO 0.075*XO2 0.067*ALD2 1.033*HO2	+ + + + + + + + + + + + + + + + + + + +	0.713*X02 0.168*MGLY 0.850*MGLY 0.064*X02 0.225*C0 1.282*PAR 0.850*NTR 0.075*HNO3 0.900*FORM 0.700*X02
{ { { {	<pre>87} 887 89 90 90 91 92 93 </pre>	XO2N XO2N ISPD ISPD ISPD ISPD ISPD ISPD	+ + + + + + + +	HO2 XO2N XO2 OH O3 NO3 hv NO2	> > >	+++++++++++++++++++++++++++++++++++++++	1.565*PAR 0.503*H02 0.273*ALD2 0.114*C203 0.154*H02 0.020*ALD2 0.925*H02 0.925*H02 0.075*C203 0.333*C0 0.832*PAR 0.967*C203 0.200*ISPD	+ + + + + + + + + + + + + + + + + + +	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*CO 0.075*XO2 0.067*ALD2 1.033*HO2 0.800*NTR	+ + + + + + + + + + + + +	0.713*X02 0.168*MGLY 0.850*MGLY 0.064*X02 0.225*C0 1.282*PAR 0.850*NTR 0.705*HN03 0.900*FORM 0.700*X02
\ { { {	<pre>87} 887 89 90 90 91 92 93 </pre>	XO2N XO2N ISPD ISPD ISPD ISPD ISPD ISOP	+ + + + + + + + +	HO2 XO2N XO2 OH O3 NO3 hv NO2	> > >	+ + + + + + + + + +	1.565*PAR 0.503*HO2 0.273*ALD2 0.114*C2O3 0.154*HO2 0.020*ALD2 0.925*HO2 0.925*HO2 0.075*C2O3 0.333*CO 0.832*PAR 0.967*C2O3 0.200*LSPD 0.800*HO2	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*CO 0.075*XO2 0.067*ALD2 1.033*HO2 0.800*NTR 0.200*NO	+ + + + + + + + + + + + + + + + + + +	0.713*XO2 0.168*MGLY 0.850*MGLY 0.064*XO2 0.225*CO 1.282*PAR 0.850*NTR 0.075*HNO3 0.900*FORM 0.700*XO2 XO2 0.800*ALD2
{ { { {	<pre>87} 88] 89} 90} 91} 92} 93}</pre>	XO2N XO2N ISPD ISPD ISPD ISPD ISPD	+ + + + + + + +	HO2 XO2N XO2 OH O3 NO3 hv NO2	> > >	+ + + + + + + + + + + + + + + + + + + +	1.565*PAR 0.503*HO2 0.273*ALD2 0.114*C2O3 0.154*HO2 0.020*ALD2 0.925*HO2 0.075*C2O3 0.333*CO 0.832*PAR 0.967*C2O3 0.200*LSPD 0.800*HO2 2.400*PAR	+ + + + + + + + + + + + + + + + + + +	0.167*FORM 0.334*CO 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*CO 0.075*XO2 0.067*ALD2 1.033*HO2 0.800*NTR 0.200*NO	+ + + + + + + + + + + + + + + + + + +	0.713*X02 0.168*MGLY 0.850*MGLY 0.064*X02 0.225*C0 1.282*PAR 0.850*NTR 0.075*HN03 0.900*FORM 0.700*X02 X02 0.800*ALD2
{ { { { {	<pre>87} 887 889 90 90 91 92 93 93 94 </pre>	XO2N XO2N ISPD ISPD ISPD ISPD ISPD ISOP TERP	+ + + + + + + + +	HO2 XO2N XO2 OH O3 NO3 hv NO2 OH	> > >	+ + + + + + + + + + + + + + + + + + +	1.565*PAR 0.503*H02 0.273*ALD2 0.114*C203 0.154*H02 0.020*ALD2 0.357*ALD2 0.925*H02 0.333*C0 0.333*C0 0.332*PAR 0.967*C203 0.200*ISPD 0.800*H02 2.400*PAR TERPAER	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	0.167*FORM 0.334*C0 0.498*C203 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*C0 0.075*X02 0.067*ALD2 1.033*H02 0.800*NTR 0.200*NO OH	+ + + + + + + + + + + + + + + + + + +	0.713*X02 0.168*MGLY 0.850*MGLY 0.064*X02 0.225*C0 1.282*PAR 0.850*NTR 0.075*HNO3 0.900*FORM 0.700*X02 XO2 0.800*ALD2
{ { { { { { { { { { { { { { { { { { { {	<pre>87} 88 89 90 90 91 92 93 93 94 95 </pre>	XO2N XO2N ISPD ISPD ISPD ISPD ISPD ISPD ISOP TERP TERP	+ + + + + + + + + + + + + + + + + + + +	HO2 XO2N XO2 OH O3 NO3 hv NO2 OH NO3	> > > >	+ + + + + + + + + + + + + + + + + + +	1.565*PAR 0.503*H02 0.273*ALD2 0.114*C203 0.154*H02 0.920*ALD2 0.925*H02 0.925*H02 0.975*C203 0.333*C0 0.832*PAR 0.967*C203 0.967*C203 0.900*ISPD 0.800*H02 2.400*PAR TERPAER TERPAER	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	0.167*FORM 0.334*C0 0.498*C203 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*C0 0.075*X02 0.067*ALD2 1.033*H02 0.800*NTR 0.200*N0 OH NO3	+ + + + + + + + + + + + + + + + + + +	0.713*X02 0.168*MGLY 0.850*MGLY 0.064*X02 0.225*C0 1.282*PAR 0.850*NTR 0.075*HN03 0.900*FORM 0.700*X02 X02 0.800*ALD2
{ { { { { { { { { { { { { { { { { { { {	87} 88} 90} 91} 92} 93} 94} 95} 96}	XO2N XO2N ISPD ISPD ISPD ISPD ISPD ISOP TERP TERP TERP	+ + + + + + + + + + + + + + + + + + + +	HO2 XO2N XO2 OH O3 NO3 hv NO2 OH NO3 O3	> > > >	+ + + + + + + + + + + + + + + + + + +	1.565*PAR 0.503*HO2 0.273*ALD2 0.114*C2O3 0.154*HO2 0.020*ALD2 0.925*HO2 0.075*C2O3 0.333*CO 0.832*PAR 0.967*C2O3 0.200*ISPD 0.800*HO2 2.400*PAR TERPAER TERPAER TERPAER	+ + + + + + + + + + + + + + + + + + +	0.167*FORM 0.334*C0 0.498*C2O3 0.150*FORM 0.268*OH 0.360*PAR 0.282*FORM 0.643*CO 0.075*XO2 0.067*ALD2 1.033*HO2 0.800*NTR 0.200*NO OH NO3 O3	+ + + + + + + + + + + + + + + + + + +	0.713*X02 0.168*MGLY 0.850*MGLY 0.064*X02 0.225*C0 1.282*PAR 0.850*NTR 0.075*HN03 0.900*FORM 0.700*X02 X02 0.800*ALD2

Rate Expression	Rate Constant
k(1) uses photo table NO2_CBIV88 , scaled by 1.00000E+0) {0.00000E+00}
k(2) is a falloff expression using:	{1.37387E-14}
k0 = 6.0000E - 34 * (T/300) * * (-2.30)	
kinf = $2.8000E - 12 * (T/300) * * (0.00)$	
F = 0.60, n = 1.00	
k(3) = 1.8000E - 12 * exp(-1370.0/T)	{1.81419E-14}
k(4) = 9.3000E - 12	{9.30000E-12}
k(5) is a falloff expression using:	{1.57527E-12}

8-36

Table 8A-4. CB4_AE Mechanism

	k0 = 9.0000E - 32 * (T/300) * (-2.00)	
	kinf = 2.2000E - 11 * (T/300) **(0.00)	
k (6) is a falloff expression using:	$\{1, 66375E-12\}$
	k0 = 9.0000E-32 * (T/300)**(-1.50)	(1.005/51 12)
	kinf = $3.0000E - 11 * (T/300) * * (0.00)$	
	F = 0.60, n = 1.00	
k(7) = $1.2000E - 13 * \exp(-2450.0/T)$	{3.22581E-17}
k(8) uses photo table NO2_CBIV88 , scaled by 5.30000E-02	{0.00000E+00}
K (9) uses photo table $0.301D_{CBIV88}$, scaled by $1.00000E+00$	{0.00000E+00}
k (10 = 1.8000E = 11 + exp(107.071) 11 = 3.2000E = 11 + exp(67.071)	$\{2.57757E=11\}$
k(12) = 2.2000E - 10	$\{2, 20000E - 10\}$
k(13) = 1.6000E - 12 * exp(-940.0/T)	{6.82650E-14}
k($14) = 1.4000E - 14 * \exp(-580.0/T)$	(1.99920E-15)
k(<pre>15) uses photo table NO2_CBIV88 , scaled by 3.39000E+01</pre>	{0.00000E+00}
k($16) = 1.3000E - 11 * \exp(250.0/T)$	{3.00805E-11}
k (17) = 2.5000E - 14 * exp(-1230.0/T)	$\{4.03072E-16\}$
к (18) is a falloff expression using: $k_0 = 2.2000 \text{ m} - 30 \text{ k} (\pi/300) \text{ k} (-4.30)$	{1.26440E-12}
	kinf = 1.5000E + 12.2000E + (T/300) * (-0.50)	
	F = 0.60, n = 1.00	
k(19) = 1.3000E-21	{1.30000E-21}
k(20) = k(18) / Keq, where Keq = $2.700E-21 * \exp(11000.0/T)$	{4.36029E-08}
k($21) = 3.3000E - 39 * \exp(530.0/T)$	{1.95397E-38}
K (22) = 4.4000E-40 23) is a falloff expression using:	{4.39999E-40} {6 69701F-12}
17 ($k_0 = 6.7000E-31 * (T/300)**(-3.30)$	[0.09/018 12]
	kinf = $3.0000E - 11 * (T/300) * (-1.00)$	
	F = 0.60, n = 1.00	
k(24) uses photo table NO2_CBIV88 , scaled by 1.97500E-01	{0.00000E+00}
k(25) = 6.6000E - 12	{6.60000E-12}
K (20) = 1.0000E-20 27) is a falloff expression using:	{1.00000E-20} {1 14885F-11}
17 (k0 = 2.6000E-30 * (T/300)**(-3.20)	[1.140035 11]
	kinf = $2.4000E - 11 * (T/300) * (-1.30)$	
	F = 0.60, n = 1.00	
k(<pre>F = 0.60, n = 1.00 28) is a special rate expression of the form:</pre>	{1.47236E-13}
k(F = 0.60, $n = 1.0028) is a special rate expression of the form:k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$	{1.47236E-13}
k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}$, where k0 = 7.2000E-15 * exp(785.0/T) k2 = 4.1000E-16 * exp(1440.0/T)	{1.47236E-13}
k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, \text{ where}$ $k0 = 7.2000E-15 * \exp(785.0/T)$ $k2 = 4.1000E-16 * \exp(1440.0/T)$ $k3 = 1.9000E-33 * \exp(725.0/T)$	{1.47236E-13}
k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ $29) = 3.7000E-12 * exp(240.0/T)$	{1.47236E-13} {8.27883E-12}
k(k(k(<pre>F = 0.60, n = 1.00 28) is a special rate expression of the form: k = k0 + {k3[M] / (1 + k3[M]/k2)}, where k0 = 7.2000E-15 * exp(785.0/T) k2 = 4.1000E-16 * exp(1440.0/T) k3 = 1.9000E-33 * exp(725.0/T) 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using:</pre>	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12}</pre>
k(k(k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}$, where k0 = 7.2000E-15 * exp(785.0/T) k2 = 4.1000E-16 * exp(1440.0/T) k3 = 1.9000E-33 * exp(725.0/T) 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60)	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12}</pre>
k(k(k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}$, where k0 = 7.2000E-15 * exp(785.0/T) k2 = 4.1000E-16 * exp(1440.0/T) k3 = 1.9000E-33 * exp(725.0/T) 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) kinf = 4.200E-12 * (T/300)**(0.20)	{1.47236E-13} {8.27883E-12} {1.48014E-12}
k(k(k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, \text{ where}$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ $29) = 3.7000E-12 * exp(240.0/T)$ $30) \text{ is a falloff expression using:}$ $k0 = 2.3000E-31 * (T/300)**(-4.60)$ $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ $31) = k(30) / Keq. \text{ where Keq} = 2.100E-27 * exp(10900.0/T)$	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02}</pre>
k(k(k(k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T)	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12}</pre>
k(k(k(k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ $29) = 3.7000E-12 * exp(240.0/T)$ $30) is a falloff expression using:$ $k0 = 2.3000E-31 * (T/300)**(-4.60)$ $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ $31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T)$ $32) = 1.3000E-12 * exp(380.0/T)$ $33) = 5.9000E-14 * exp(1150.0/T)$	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12}</pre>
k(k(k(k(k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ $29) = 3.7000E-12 * exp(240.0/T)$ $30) is a falloff expression using:$ $k0 = 2.3000E-31 * (T/300)**(-4.60)$ $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ $31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T)$ $32) = 1.3000E-12 * exp(380.0/T)$ $33) = 5.9000E-14 * exp(1150.0/T)$ $34) = 2.2000E-38 * exp(5800.0/T)$	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} </pre>
k(k(k(k(k(k(k(F = 0.60, n = 1.00 28) is a special rate expression of the form: k = k0 + {k3[M] / (1 + k3[M]/k2)}, where k0 = 7.200E-15 * exp(785.0/T) k2 = 4.1000E-16 * exp(1440.0/T) k3 = 1.9000E-33 * exp(725.0/T) 29) = $3.7000E-12 * exp(240.0/T)$ 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) kinf = 4.2000E-12 * (T/300)**(0.20) F = 0.60, n = 1.00 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T)	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} 1.65514E-12}</pre>
k(k(k(k(k(k(k(k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.200E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CEIV88 , scaled by 2.55000E-01 36) = 3.1000E-13 * (1.0 + 0.6*Pressure)	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13}</pre>
k(k(k(k(k(k(k(k(k(F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.900E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.4000E-13} {1.0000E-11}</pre>
k(k(k(k() k() k() k() k() k()	F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOrad_CBIV88 , scaled by 1.00000E+00	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.4000E-13} {1.0000E-11} {0.0000E+00}</pre>
k(k(k((((()))))))))))))))))))))))))))	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.40000E-13} {1.0000E+10} {0.0000E+00} {0.000E+00} {0.0000E+00} {0.000E+00} {0.000E</pre>
k(k(k((((()))))))))))))))))))))))))))	F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOrad_CBIV88 , scaled by 1.00000E+00 40) uses photo table HCHOmol_CBIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-1550.0/T)	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.40000E-13} {1.0000E+10} {0.0000E+00} {0.0000E+00} {1.65275E-13} {6.2000E+16} }</pre>
k(k(k(()()()) k()()) k()()) k()()) k()())	F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)*(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOrad_CBIV88 , scaled by 1.00000E+00 40) uses photo table HCHOmol_CBIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 43) = 1 2000E-11 * exp(-986.0/T)	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.40000E-13} {1.0000E+10} {0.0000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13}</pre>
k(kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCH0mol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCH0mal_CBIV88 , scaled by 1.00000E+00 40) uses photo table HCH0mal_CBIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T)	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.40000E-13} {1.0000E+10} {0.0000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} </pre>
k(kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {0.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.50000E-15} </pre>
k(k() k()()()()()()()()()()()()()()()()	F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-11 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOrad_CBIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+10} {0.0000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.5000E-15} {0.0000E+00} </pre>
k () k k k k k k k k k k k k k k k k k k	F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-11 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOrad_CBIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6200E-15 * exp(280.0/T)	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.4000E-13} {1.0000E+10} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.5000E-15} {0.0000E+00} {1.9076EE-11} </pre>
k kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.200E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOrad_CBIV88 , scaled by 1.00000E+00 40) uses photo table HCHOmol_CDIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-986.0/T) 42) = 6.3000E-16 43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-12 * exp(380.0/T) 49) = 2.0000E+16 * exp(-180.0/T) 40) = 2.0000E+12 * exp(-180.0/T) 41) = 3.4900E-11 * exp(-180.0/T) 42) = 0.3000E+12 * exp(380.0/T) 43) = 2.0000E+12 * exp(380.0/T) 44) = 2.0000E+12 * exp(380.0/T) 45) = 2.0000E+12 * exp(380.0/T) 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E+11 * exp(-180.0/T) 48) = 2.0000E+16 * exp(-180.0/T) 49) = 2.0000E+16 * exp(-180.0/T) 40) = 2.0000E+16 * exp(-180.0/T) 40) = 2.0000E+16 * exp(-180.0/T) 41) = 2.000E+16 * exp(-180.0/T) 42) = 0.000E+16 * exp(-180.0/T) 43) = 2.000E+16 * exp(-180.0/T) 44) = 2.0000E+16 * exp(-180.0/T) 45) = 2.000E+16 * exp(-180.0/T) 46) = 2.000E+16 * exp(-180.0/T) 47) = 3.4900E+11 * exp(-180.0/T) 48) = 2.000E+16 * exp(-180.0/T) 49) = 2.000E+16 * exp(-180.0/T)	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.50000E-15} {0.00000E+00} {1.90766E-11} {9.41356E-22} {4.2368E-04}</pre>
k kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	F = 0.60, n = 1.00 28) is a special rate expression of the form: k = k0 + {k3[M] / (1 + k3[M]/k2)}, where k0 = 7.200E-15 * exp(785.0/T) k2 = 4.1000E-16 * exp(1440.0/T) k3 = 1.9000E-33 * exp(725.0/T) 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) kinf = 4.2000E-12 * (T/300)**(0.20) F = 0.60, n = 1.00 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOmad_CBIV88 , scaled by 1.00000E+00 40) uses photo table HCHOmad_CBIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-12 * exp(380.0/T) 49) = 2.0000E+16 * exp(-13500.0/T) 50) = 2.5000E-12	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E+00} {1.65514E-12} {2.4000E-13} {1.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.5000E-15} {0.0000E+00} {1.90766E-11} {9.41356E-04} {2.5000E-12}</pre>
k kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.2000E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOmol_CBIV88 , scaled by 1.00000E+00 40) uses photo table HCHOmol_CDIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.0000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-16 43) = 2.0000E+16 * exp(-180.0/T) 44) = 2.0000E+16 * exp(-180.0/T) 45) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-12 * exp(380.0/T) 49) = 2.0000E+16 * exp(-13500.0/T) 50) = 2.5000E-12	$ \left\{ \begin{array}{c} 1.47236E-13 \right\} \\ \left\{ \begin{array}{c} 8.27883E-12 \\ 1.48014E-12 \right\} \\ \left\{ \begin{array}{c} 4.65309E-12 \\ 4.65309E-12 \\ 4.65309E-12 \\ 4.6514E-12 \\ 6.23927E-30 \\ 0.0000E+00 \\ 1.65514E-12 \\ 2.4000E-13 \\ 1.00000E+00 \\ 1.65275E-13 \\ 4.38753E-13 \\ 1.61972E-11 \\ 2.50000E-16 \\ 4.38753E-13 \\ 1.61972E-11 \\ 2.50000E-15 \\ 0.0000E+00 \\ 1.90766E-11 \\ 1.90766E-11 \\ 9.41356E-12 \\ 4.23268E-04 \\ 2.50000E-12 \\ 1.9000E-12 \\ 1.9$
k kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	F = 0.60, n = 1.00 28) is a special rate expression of the form: $k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$ $k0 = 7.200E-15 * exp(785.0/T)$ $k2 = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) $kinf = 4.2000E-12 * (T/300)**(-4.60)$ $kinf = 4.2000E-12 * (T/300)**(0.20)$ $F = 0.60, n = 1.00$ 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOrad_CBIV88 , scaled by 1.00000E+00 40) uses photo table HCHOmol_CBIV88 , scaled by 1.00000E+00 41) = 3.000E-11 * exp(-1550.0/T) 42) = 6.3000E-12 * exp(250.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-16 43) = 1.2000E-15 40) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-16 49) = 2.0000E+16 * exp(-13500.0/T) 49) = 2.0000E+16 * exp(-13500.0/T) 49) = 2.0000E+16 * exp(-13500.0/T) 50) = 2.5000E-12 51) = 6.5000E-12 52) = 1.1000E+02 * exp(-1710.0/T)	$ \left\{ \begin{array}{c} 1.47236E-13 \right\} \\ \left\{ \begin{array}{c} 8.27883E-12 \\ 1.48014E-12 \right\} \\ \left\{ \begin{array}{c} 9.17943E-02 \\ 4.65309E-12 \\ 4.65309E-12 \\ 4.65309E-12 \\ 6.23927E-30 \\ 6.23927E-30 \\ 1.65514E-12 \\ 2.4000E-13 \\ 1.0000E+00 \\ 1.65275E-13 \\ 1.0000E+00 \\ 1.65275E-13 \\ 1.61972E-11 \\ 2.5000E-16 \\ 4.38753E-13 \\ 1.61972E-11 \\ 2.5000E-15 \\ 1.90766E-11 \\ 1.90766E-11 \\ 1.90766E-12 \\ 4.23268E-04 \\ 2.5000E-12 \\ 4.54242E-01 \\ 1.554242E-01 \\ 1.554242E-01 \\ 1.554242E-01 \\ 1.55425E-12 \\ 1.55525E-12 \\ $
k kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	F = 0.60, n = 1.00 28) is a special rate expression of the form: k = k0 + {k3[M] / (1 + k3[M]/k2)}, where k0 = 7.2000E-15 * exp(785.0/T) k2 = 4.1000E-16 * exp(1440.0/T) k3 = 1.9000E-33 * exp(725.0/T) 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) kinf = 4.2000E-12 * (T/300)**(0.20) F = 0.60, n = 1.00 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-16 49) = 2.0000E+16 * exp(-180.0/T) 40) = 2.0000E+16 * exp(-180.0/T) 41) = 3.0000E+16 * exp(-180.0/T) 42) = 6.3000E-12 * exp(380.0/T) 43) = 2.5000E+12 * exp(380.0/T) 44) = 7.0000E+12 * exp(-180.0/T) 45) = 2.5000E+15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E+11 * exp(-180.0/T) 48) = 2.6300E+12 * exp(380.0/T) 49) = 2.0000E+16 * exp(-1710.0/T) 50) = 2.5000E+12 51) = 6.5000E+12 52) = 1.1000E+02 * exp(-1710.0/T) 53) = 8.1000E+3 54) = 0.000E+33	<pre>{1.47236E-13} {8.27883E-12 {1.48014E-12} {9.17943E-02 {4.65309E-12 {2.79783E-12 {6.23927E-30 {0.00000E+00 {1.65514E-12 {2.4000E-13 {1.0000E+00 {0.0000E+00 {1.65275E-13 {1.61972E-11 {2.50000E-15 {0.0000E+00 {1.90766E-11 {9.41356E-12 {4.23268E-04 {2.50000E-12 {3.54242E-01 {8.1000E-13 }</pre>
k kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	$F = 0.60, n = 1.00$ $28) is a special rate expression of the form: k = k0 + {k3[M] / (1 + k3[M]/k2)}, where k0 = 7.2000E-15 * exp(785.0/T) k2 = 4.1000E-16 * exp(1440.0/T) k3 = 1.9000E-33 * exp(725.0/T) 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) kinf = 4.2000E-12 * (T/300)**(0.20) F = 0.60, n = 1.00 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-14 * exp(380.0/T) 33) = 5.9000E-14 * exp(380.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 39) uses photo table HCHOmol_CBIV88 , scaled by 1.00000E+00 40) uses photo table HCHOmol_CBIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.0000E+14 * exp(-1350.0/T) 49) = 2.0000E+16 * exp(-13500.0/T) 50) = 2.5000E-12 51) = 6.5000E-12 52) = 1.1000E+02 * exp(-1710.0/T) 53) = 8.1000E+13 54) = 1.0000E+13 * exp(-8000.0/T) 55) = 1.0000E+14 * exp(-8000.0/T) 56) = 1.0000E+13 * exp(-8000.0/T) 57) = 1.0000E+14 * exp(-8000.0/T) 58) = 1.0000E+15 * exp(-8000.0/T) 59) = 1.0000E+15 * exp(-8000.0/T) 50) = 1.0000E+15 * exp(-8000.0/T) 50) = 1.0000E+15 * exp(-8000.0/T) 50) = 1.0000E+16 * exp(-8000.0/T) 50) = 1.0000E+10 * exp(-8000.0/T) 51) = 0.000E+10 * exp(-8000.0/T) 52) = 1.0000E+10 * exp(-8000.0/T) 53) = 8.1000E+13 * exp(-8000.0/T) 54) = 1.0000E+15 * exp(-8000.0/T) 55) = 1.0000E+16 * exp(-8000.0/T) 56) = 1.0000E+15 * exp(-8000.0/T) 57) = 1.0000E+16 * exp(-8000.0/T) 58) = 1.0000E+10 * exp(-8000.0/T) 59) = 1.0000E+10 * exp(-8000.0/T) 50) = 1.$	<pre>{1.47236E-13} {8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.50000E-15} {0.0000E+00} {1.90766E-11} {9.41356E-12} {4.23268E-04} {2.50000E-12} {3.54242E-01} {8.10000E-13} {2.19325E+03} {1.6000E+02} {1.9275E-13} {1.6000E+02} {1.9275E-13} {1.6000E+12} {3.54242E-01} {1.9275E-13} {1.6000E+12} {3.54242E-01} {1.9225E+03} {1.6000E+02} {1.9225E+03} {1.9225E+04} {1.9225E+04} {1.9225E+04} {1.9225E+05} {</pre>
k kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \left\{ \begin{array}{c} 1.47236E-13 \right\} \\ \left\{ \begin{array}{c} 8.27883E-12 \\ 1.48014E-12 \right\} \\ \left\{ \begin{array}{c} 4.65309E-12 \\ 4.65309E-12 \\ 4.65309E-12 \\ 4.65309E-12 \\ 2.79783B-12 \\ 4.23927E-30 \\ 1.65514E-12 \\ 4.23927E-30 \\ 1.65514E-12 \\ 4.0000E-13 \\ 1.0000E+00 \\ 1.65275E-13 \\ 1.0000E+00 \\ 1.65275E-13 \\ 1.61972E-11 \\ 2.50000E-15 \\ 1.61972E-11 \\ 2.50000E-15 \\ 1.9076EE-11 \\ 1.941356E-12 \\ 1.23268E-04 \\ 2.50000E-12 \\ 1.54242E-01 \\ 1.9325E+03 \\ 1.6000E+03 \\ 1.50000E-13 \\ 1.5000E-13 \\ 1.500E-13 $

Table 8A-4. CB4_AE Mechanism

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k (58)	= 5.2000E - 12 * exp(504.0/T)		{2 82173E-11}
	k(59)	= 1.4000E - 14 * exp(-2105.0/T)		{1.19778E-17}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k (60)	= 7.7000E - 15		$\{7, 70000E-15\}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k (61)	= 1.0000E - 11 * exp(-792.0/T)		$\{7,01080E-13\}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k.	62)	= 2.0000E - 12 * exp(411.0/T)		{7.94340E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(63)	= 1.3000E - 14 * exp(-2633.0/T)		{1.89105E-18}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k.	64)	= 2.1000E - 12 * exp(322.0/T)		{6.18715E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(65)	= 8.1000E-12		{8.10000E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(66)	= 4.2000E+00		{4.20000E+00}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(67)	= 4.1000E-11		{4.10000E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(68)	= 2.2000E-11		{2.20000E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(69)	= 1.4000E-11		{1.40000E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(70)	= 1.7000E-11 * exp(116.0/T)		{2.50901E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(71)	= 3.0000E-11		{3.00000E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(72)	uses photo table HCHOrad_CBIV88	, scaled by 9.04000E+00	{0.0000E+00}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(73)	= 5.4000E - 17 * exp(-500.0/T)		{1.00858E-17}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(74)	= 1.7000E-11		{1.70000E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(75)	uses photo table HCHOrad_CBIV88	, scaled by 9.64000E+00	{0.00000E+00}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(76)	= 3.6000E-11		{3.60000E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(77)	= 2.5400E-11 * exp(407.6/T)		{9.97368E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(78)	= 7.8600E-15 * exp(-1912.0/T)		{1.28512E-17}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(79)	= 3.0300E - 12 * exp(-448.0/T)		{6.73819E-13}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(80)	= 8.1000E-12		{8.10000E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(81)	= 1.7000E-14 * exp(1300.0/T)		{1.33359E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(82)	= 8.1000E-12		{8.10000E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(83)	= 4.3900E - 13 * exp(160.0/T)		{7.51005E-13}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(84)	= 1.3600E-06		{1.36000E-06}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	k(85)	$= 7.6700E - 14 * \exp(1300.0/T)$		{6.01684E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(86)	= 7.6700E - 14 * exp(1300.0/T)		{6.01684E-12}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	k(87)	= 1.7300E - 14 * exp(1300.0/T)		{1.35712E-12}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	K(88)	= 3.4500E - 14 * exp(1300.0/1)		{2.70640E-12}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	К(89)	= 3.3600E-11		{3.36000E-II}
R(91) = 1.0000E-15 {1.0000E-15} k(92) uses photo table ACROLEIN , scaled by 3.60000E-03 {0.0000E+05} k(93) = 1.4900E-19 {1.4900E-19} {1.49000E-19} k(94) = 1.0700E-11 * exp(549.0/T) {6.75269E-11} k(95) = 3.2300E-11 * exp(-975.0/T) {1.22539E-12} k(96) = 7.2900E-15 * exp(-1136.0/T) {1.61125E-16}	K(90)	= 7.1100E-18		{7.11000E-18}
R(92) uses photo table ACROLEIN , scaled by 3.60000E-03 (0.00000E+00) k(93) = 1.4900E-19 {1.49000E-19} {1.49000E-19} k(94) = 1.0700E-11 * exp(549.0/T) {6.75269E-11} k(95) = 3.2300E-11 * exp(-975.0/T) {1.22539E-12} k(96) = 7.2900E-15 * exp(-1136.0/T) {1.61125E-16}	K(91)	= 1.0000E-15	1 1 1 2 600007 02	{1.00000E-15}
$k(93) = 1.4900E-19$ {1.49000E-19} $k(94) = 1.0700E-11 * exp(549.0/T)$ {6.75269E-11} $k(95) = 3.2300E-11 * exp(-975.0/T)$ {1.22539E-12} $k(96) = 7.2900E-15 * exp(-1136.0/T)$ {1.61125E-16}	К(1-/	9Z)	uses photo table ACROLEIN	, scaled by 3.60000E-03	{U.UUUUUE+00}
$k(94) = 1.0/00E-11 * exp(-549.0/T)$ $\{6.75269E-11\}$ $k(95) = 3.2300E-11 * exp(-975.0/T)$ $\{1.22539E-12\}$ $k(96) = 7.2900E-15 * exp(-1136.0/T)$ $\{1.61125E-16\}$	к(93)	= 1.4900E-19		{1.49000E-19}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	K (94)	= 1.0700E - 11 * exp(549.071)		{0./5269E-11}
K(90) = /.29UUE-I5 ^ eXp(-1130.U/1) {1.61125E-I6}	K (95) 0()	$= 3.2300\text{E} - 11 \circ \exp(-9/5.0/1)$		{1.22539E-12}
	К(90)	= /.2900E-15 ^ exp(-1136.0/T)		{1.01125E-10}

Table 8A-5.	CB4_	AQ	Mec	chan	ism
-------------	------	----	-----	------	-----

	Reac	tion L	is	t									
2	> 1 l	 N∩2		hv			>		 NO	+	·····		<
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	0	+	[02]			>		03		0		
ł	3	03	+	NO			>		NO2				
ł	[4 }	0	+	NO2			>		NO				
ł	[5]	0	+	NO2			>		NO3				
ł	[6}	0	+	NO			>		NO2				
ł	[7]	03	+	NO2			>		NO3				
1	8}	03	+	hv			>		0				
1	9}	03	+	hv			>		OID				
1	[10}	OID OID	+	[N2]			>		0				
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01D 01D	+	[UZ]			>		0 2 000*0ਸ				
	13	03	+	OH			>		2.000 011 HO2				
	14	03	+	но2			>		OH				
ł	15	NO3	+	hv			>		0.890*NO2	+	0.890*0	+	0.110*NO
ł	[16]	NO3	+	NO			>		2.000*NO2				
1	[17}	NO3	+	NO2			>		NO	+	NO2		
ł	[18}	NO3	+	NO2			>		N205				
ł	19}	N205	+	[H2O]			>		2.000*HNO3				
1	20}	N205				[]	>		NO3	+	NO2		
1	21}	NO	+	NO	+	[02]	>		2.000*NO2				
1		NO	+	NO2	+	[HZO]	>		2.000*HONO				
1	23	HONO	+	hv			>		OH	+	NO		
	25	HONO	+	OH			>		NO2		110		
ł	26}	HONO	+	HONO			>		NO	+	NO2		
ł	27	OH	+	NO2			>		HNO3				
ł	28	OH	+	HNO3			>		NO3				
ł	[29]	HO2	+	NO			>		OH	+	NO2		
ł	[30}	HO2	+	NO2			>		PNA				
ł	31}	PNA					>		HO2	+	NO2		
1	32}	PNA	+	OH			>		NO2				
1	33}	HO2	+	HO2		[1120]	>		H2O2				
1	[34} [25]	HOZ	+	HOZ hu	+	[H20]	>		H2O2				
1	361	н202 н202	+ +	0H UL			>		2.000 °OH HO2				
	37	CO	+	OH			>		HO2				
	38}	FORM	+	OH			>		HO2	+	CO		
ł	39}	FORM	+	hv			>		2.000*HO2	+	CO		
ł	[40}	FORM	+	hv			>		CO				
ł	[41}	FORM	+	0			>		OH	+	HO2	+	CO
ł	42}	FORM	+	NO3			>		HNO3	+	HO2	+	CO
1	43}	ALD2	+	0			>		C2O3	+	OH		
1	44}	ALD2	+	OH			>		C203		10100		
1	45}	ALDZ	+	NO3 her			>		C203	+	HNU3		00
1	40}	ALDZ	+	11V			>	-	XUZ FORM	+	2.000"HO2	+	CO
ł	47}	C203	+	NO			>	т	NO2	+	XO2	+	FORM
	<u> </u>	0205		110				+	HO2		102		1 0101
{	48}	C2O3	+	NO2			>		PAN				
ł	[49}	PAN					>		C2O3	+	NO2		
ł	[50}	C2O3	+	C2O3			>		2.000*XO2	+	2.000*FORM	+	2.000*HO2
ł	[51}	C2O3	+	HO2			>		0.790*FORM	+	0.790*XO2	+	0.790*HO2
								+	0.790*OH	+	0.210*PACD		
1	52}	OH					>		X02	+	FORM	+	HO2
1	53}	PAR	+	OH			>		0.8/0*XO2	+	0.130*XO2N	+	0.110*HO2
J	541	ROR					>	+	1 100*ALD2	+	0.760"ROR 0.960*X02	+	0.110"PAR 0.940*HO2
1	5-1	NON					- /	_	2.100*PAR	+	0.040*x02™	+	0.020*ROR
ł	55}	ROR					>		HO2		2.010 2020		5.020 ROR
ł	56}	ROR	+	NO2			>		NTR				
ł	57	OLE	+	0			>		0.630*ALD2	+	0.380*HO2	+	0.280*XO2
	. ,							+	0.300*CO	+	0.200*FORM	+	0.020*XO2N
								+	0.220*PAR	+	0.200*OH		
ł	[58}	OLE	+	OH			>		FORM	+	ALD2	+	XO2
,		or =		<u></u>				+	HO2	-	PAR		0 000:00
ł	59}	OLE	+	03			>		U.500*ALD2	+	U.740*FORM	+	0.330*CO
								+	U.44U*HO2	+	U.22U*XO2	+	U.LUU*OH
J	601	OLF	+	NOR			>	+	0.200°FACD	+	0.200^AACD	+	PAR FORM
1	005	110	T.	1000			- /	+	AT.D2	-	PAR	+	NO2
ł	61}	ETH	+	0			>		FORM	+	0.700*XO2	+	CO

Table 8A-5. CB4_AQ Mechanism

{	62}	ETH	+	ОН	>	+	1.700*HO2 XO2	+++	0.300*OH 1.560*FORM	+	HO2
{	, 63}	ETH	+	03	>	+	0.220*ALD2 FORM	+	0.420*CO	+	0.120*HO2
,)					+	0.400*FACD				
{	64}	TOL	+	OH	>	+	0.080*XO2 0.560*TO2	+	0.360*CRES	+	0.440*HO2
{	65}	т02	+	NO	>	+	0.900*NO2 0.100*NTR	+	0.900*HO2	+	0.900*OPEN
{	66}	т02			>		CRES	+	HO2		
{	67}	CRES	+	OH	>		0.400*CRO	+	0.600*XO2	+	0.600*HO2
ſ	601	CDEC		NO 2		+	0.300*OPEN		LINO 2		
ł	69	CRES	+	NO2	>		NTR	т	HNOS		
ł	70}	XYL	+	OH	>		0.700*HO2	+	0.500*XO2	+	0.200*CRES
l	,					+	0.800*MGLY	+	1.100*PAR	+	0.300*TO2
{	71}	OPEN	+	OH	>		XO2	+	2.000*CO	+	2.000*HO2
	,					+	C2O3	+	FORM		
{	72}	OPEN	+	hv	>		C2O3	+	HO2	+	CO
ł	73}	OPEN	+	03	>		0.030*ALD2	+	0.620*C2O3	+	0.700*FORM
						+	0.030*XO2	+	0.690*CO	+	0.080*OH
						+	0.760*HO2	+	0.200*MGLY		
{	74}	MGLY	+	OH	>		XO2	+	C2O3		
{	75}	MGLY	+	hv	>		C2O3	+	HO2	+	CO
{	76}	ISOP	+	0	>		0.750*ISPD	+	0.500*FORM	+	0.250*XO2
,	>					+	0.250*HO2	+	0.250*C2O3	+	0.250*PAR
{	.7.7 }	ISOP	+	OH	>		0.912*1SPD	+	0.629*FORM	+	0.991*X02
r	70	TOOD		<u></u>		+	0.912*HO2	+	0.088*XO2N		0.000+2200
٤	/8}	ISOP	+	03	>		0.650^ISPD	+	0.600^FORM	+	0.200*802
						+	0.066*HO2	+	0.266*OH	+	0.200*C203
r	70)	TCOD		NO 2		+	0.150^ALDZ	+	0.350^PAR	+	0.066*00
ι	195	1205	т	NO3	/		0.200*13PD	- T	0.200*NIR	- T	202 0 900*71D2
						- -	2 /00*DAD	т	0.200 102	т	0.800"ALD2
ſ	801	xo2	+	NO	>	т	2.400 PAR				
Į	81	X02	+	x02	>		1102				
ł	82	XO2N	+	NO	>		NTR				
ł	83	S02	+	OH	>		SULF	+	HO2		
ł	84}	S02			>		SULF				
Ì	85 Ĵ	XO2	+	HO2	>		UMHP				
ł	86}	XO2N	+	HO2	>						
{	87}	XO2N	+	XO2N	>						
{	88}	XO2N	+	XO2	>						
{	89}	ISPD	+	OH	>		1.565*PAR	+	0.167*FORM	+	0.713*XO2
						+	0.503*HO2	+	0.334*CO	+	0.168*MGLY
						+	0.273*ALD2	+	0.498*C2O3		
{	90}	ISPD	+	03	>		0.114*C2O3	+	0.150*FORM	+	0.850*MGLY
						+	0.154*HO2	+	0.268*OH	+	0.064*XO2
r	01)	TOPP		2202		+	0.020*ALD2	+	0.360*PAR	+	0.225*C0
ł	91}	ISPD	+	NO3	>		0.35/*ALD2	+	0.282*FORM	+	1.282*PAR
						+	0.925"HU2	+	0.043*00	+	0.075*UNO2
ſ	οςι	терр	-	hu		т	0.075*C203	- -	0.075*A02	т 	0.075"HN03
ι	925	ISFD	т	110	/	+	0.333 CO	+	1 033*HO2	+	0.700*x02
						+	0.052 FAR	т	1.035 1102	т	0.700 X02
{	93}	TSOP	+	NO2	>		0.200*TSPD	+	0.800*NTR	+	x02
ι	55)	1001		1102		+	0.800*HO2	+	0.200*NO	+	0.800*ALD2
						+	2.400*PAR				
>-											<
Ra	ate 1	Expres	si	on							Rate Constant
==			==:		====	==:		==:		==	
k(1) uses	pl	hoto table NO2	_CBI	V8	8 , sca	le	d by 1.00000	E+	00 {0.00000E+00}
k(2) is a	f	alloff express	ion	us	ing:				{1.37387E-14}
	k0	=	6.1	0000E-34 * (T/	300)	**	(-2.30)				

k0 = 6.0000E-34 * (T/300)**(-2.30)
kinf = 2.8000E-12 * (T/300)**(0.00)
F = 0.60, n = 1.00
k(3) = 1.8000E-12 * exp(-1370.0/T)
k(4) = 9.3000E-12
k(5) is a falloff expression using:
k0 = 9.0000E-32 * (T/300)**(-2.00)
kinf = 2.2000E-11 * (T/300)**(0.00)
F = 0.60, n = 1.00

8-40

{1.81419E-14}
{9.30000E-12}
{1.57527E-12}

Table 8A-5. CB4_AQ Mechanism

k(6) is a falloff expression using:	{1.66375E-12}
	k0 = 9.0000E - 32 * (T/300) * (-1.50) $kinf = 3.0000E - 11 * (T/300) * * (-0.00)$	
	F = 0.60, n = 1.00	
k(7) = $1.2000E - 13 * exp(-2450.0/T)$	{3.22581E-17}
k(9) uses photo table $0301D$ CBIV88 , scaled by 5.30000E-02	$\{0.00000\pm00\}$
k(10) = 1.8000E - 11 * exp(107.0/T)	$\{2.57757E-11\}$
k(11) = $3.2000E - 11 * \exp(67.0/T)$	{4.00676E-11}́
k(12) = 2.2000E - 10	{2.20000E-10}
K($13) = 1.6000E - 12 * \exp(-940.0/T)$ $14) = 1.4000E - 14 * \exp(-580.0/T)$	{6.82650E-14}
k(14) = 1.4000E-14 exp(-580.071) 15) uses photo table NO2 CBIV88 scaled by 3.39000E+01	$\{0.00000E+00\}$
k (16) = 1.3000E-11 * exp(250.0/T)	{3.00805E-11}
k(17) = 2.5000E - 14 * exp(-1230.0/T)	{4.03072E-16}
k(18) is a falloff expression using:	{1.26440E-12}
	KU = 2.2000E-30 * (T/300)**(-4.30) kinf = 1 5000E-12 * (T/300)**(-0 50)	
	F = 0.60, n = 1.00	
k(19) = 1.3000E-21	{1.30000E-21}
k(20) = k(18) / Keq, where Keq = $2.700E-27 + \exp(11000.0/T)$	{4.36029E-02}
k($21) = 3.3000E-39 * \exp(530.0/T)$	{1.95397E-38}
K (22) = 4.4000E-40 23) is a falloff expression using:	$\{4.39999E-40\}$ $\{6.69701E-12\}$
17 (k0 = 6.7000E-31 * (T/300)**(-3.30)	[0.09/018 12]
	kinf = $3.0000E - 11 * (T/300) * (-1.00)$	
	F = 0.60, n = 1.00	
K(24) uses photo table NO2_CBIV88 , scaled by 1.97500E-01	$\{0.00000\pm00\}$
k(26) = 1.0000E-20	$\{1,00000E-12\}$
k (27) is a falloff expression using:	{1.14885E-11}
	k0 = 2.6000E - 30 * (T/300) * (-3.20)	
	kinf = 2.4000E - 11 * (T/300) * * (-1.30)	
k(28) is a special rate expression of the form:	{1.47236E-13}
($k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$	(
	k0 = 7.2000E - 15 * exp(785.0/T)	
	$KZ = 4.1000E - 16 * \exp(-1440.0/T)$	
k ($\begin{aligned} \kappa z &= 4.1000 \pm -16 & * \exp(1440.0/T) \\ k_3 &= 1.9000 \pm -33 & * \exp(725.0/T) \\ 29) &= 3.7000 \pm -12 & * \exp(240.0/T) \end{aligned}$	{8,27883E-12}
k(k(<pre>k2 = 4.1000E-16 * exp(1440.0/T) k3 = 1.9000E-33 * exp(725.0/T) 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using:</pre>	{8.27883E-12} {1.48014E-12}
k(k($k_{2} = 4.1000E-16 * exp(1440.0/T)$ $k_{3} = 1.9000E-33 * exp(725.0/T)$ $29) = 3.7000E-12 * exp(240.0/T)$ $30) is a falloff expression using:$ $k_{0} = 2.3000E-31 * (T/300)**(-4.60)$	{8.27883E-12} {1.48014E-12}
k(k($\begin{aligned} \kappa z &= 4.1000 \pm -16 * \exp(1440.0/T) \\ k_3 &= 1.9000 \pm -33 * \exp(725.0/T) \\ 29) &= 3.7000 \pm -12 * \exp(240.0/T) \\ 30) &= a falloff expression using: \\ k_0 &= 2.3000 \pm -31 * (T/300) * * (-4.60) \\ k_{1nf} &= 4.2000 \pm -12 * (T/300) * * (0.20) \\ \vdots &= 0.60 \pm -1.00 \end{aligned}$	{8.27883E-12} {1.48014E-12}
k(k($\begin{array}{llllllllllllllllllllllllllllllllllll$	{8.27883E-12} {1.48014E-12} {9.17943E-02}
k(k(k($\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12}</pre>
k(k(k(k($\begin{aligned} \kappa z &= 4.1000 \pm 16 * \exp(1440.0/T) \\ k_3 &= 1.9000 \pm -33 * \exp(725.0/T) \\ 29) &= 3.7000 \pm -12 * \exp(240.0/T) \\ 30) \text{ is a falloff expression using:} \\ k_0 &= 2.3000 \pm -31 * (T/300) * * (-4.60) \\ kinf &= 4.2000 \pm -12 * (T/300) * * (0.20) \\ F &= 0.60, n \pm 1.00 \\ 31) &= k(30) / Keq, \text{ where Keq} = 2.100 \pm -27 * \exp(10900.0/T) \\ 32) &= 1.3000 \pm -12 * \exp(380.0/T) \\ 33) &= 5.9000 \pm -14 * \exp(1150.0/T) \\ 33) &= 5.9000 \pm -14 * \exp(1150.0/T) \end{aligned}$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {2.79783E-12}</pre>
k(k(k(k($\begin{aligned} \kappa z &= 4.1000 \pm 16 * \exp(1440.0/T) \\ k_3 &= 1.9000 \pm -33 * \exp(725.0/T) \\ 29) &= 3.7000 \pm -12 * \exp(240.0/T) \\ 30) \text{ is a falloff expression using:} \\ k_0 &= 2.3000 \pm -31 * (T/300) * * (-4.60) \\ kinf &= 4.2000 \pm -12 * (T/300) * * (0.20) \\ F &= 0.60, n = 1.00 \\ 31) &= k(30) / Keq, \text{ where Keq} = 2.100 \pm -27 * \exp(10900.0/T) \\ 32) &= 1.3000 \pm -12 * \exp(380.0/T) \\ 33) &= 5.9000 \pm -14 * \exp(1150.0/T) \\ 34) &= 2.2000 \pm 38 * \exp(5800.0/T) \\ 35) &= \exp(5800.0/T) \end{aligned}$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.0000E-00}</pre>
k(k(k(k(k(k($\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12}</pre>
k(k(k(k(k(k($\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13}</pre>
k(k(kk(kk(k() k()	$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E-11}</pre>
k(k(k(k(k(k(k(k(k($\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00}</pre>
k(k(k(k(k(k(k(k(k(k($\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {0.00000E+00} {1.65275E-13}</pre>
k(k(k(k(k(k(k(k(k(k(k($\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {0.00000E+00} {1.65275E-13} {6.30000E-16}</pre>
k(k(k(k(k(k(k(k(k(k(k(k()	$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {0.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13}</pre>
k(k(k(()()()()) k()()()()()()()()()()($\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {0.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11}</pre>
k(k(k(() k() k() k() k() k() k() k() k	$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {0.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.50000E-15} {0.00000E+00}</pre>
k(k(k(()())) k()) k()) k()) k()) k())	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \left\{ \begin{array}{l} 8.27883E-12 \\ 1.48014E-12 \\ \end{array} \right\} \\ \left\{ \begin{array}{l} 9.17943E-02 \\ 4.65309E-12 \\ 2.79783E-12 \\ 1.623927E-30 \\ 1.65514E-12 \\ 1.65514E-12 \\ 1.00000E+00 \\ 1.65275E-13 \\ 1.00000E+00 \\ 1.65275E-13 \\ 1.61972E-11 \\ 1.61972E-11 \\ 1.50000E-15 \\ 1.90766E-11 \\ 1.90766E-11 \\ \end{array} \right\} \\ \left\{ \begin{array}{l} 0.9766E-11 \\ 1.90766E-11 \\ 1.9$
k(kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {0.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.50000E-15} {0.0000E+00} {1.90766E-11} {9.41356E-12}</pre>
kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {0.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.50000E-15} {0.00000E+00} {1.90766E-11} {9.41356E-12} {4.23268E-04}</pre>
k() kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{8.27883E-12} {1.48014E-12} {9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30} {0.00000E+00} {1.65514E-12} {2.40000E-13} {1.00000E+00} {0.00000E+00} {1.65275E-13} {6.30000E-16} {4.38753E-13} {1.61972E-11} {2.50000E-15} {0.00000E+00} {1.90766E-11} {9.41356E-12} {4.23268E-04} {2.50000E-12}</pre>
k() kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \left\{ \begin{array}{l} 8.27883E-12 \right\} \\ \left\{ 1.48014E-12 \right\} \\ \left\{ 4.65309E-12 \right\} \\ \left\{ 4.65309E-12 \right\} \\ \left\{ 2.79783E-12 \right\} \\ \left\{ 6.23927E-30 \right\} \\ \left\{ 0.00000E+00 \right\} \\ \left\{ 1.65514E-12 \right\} \\ \left\{ 2.40000E-13 \right\} \\ \left\{ 1.00000E+00 \right\} \\ \left\{ 0.00000E+00 \right\} \\ \left\{ 1.65275E-13 \right\} \\ \left\{ 6.30000E-16 \right\} \\ \left\{ 4.38753E-13 \right\} \\ \left\{ 1.61972E-11 \right\} \\ \left\{ 2.50000E-15 \right\} \\ \left\{ 0.0000E+00 \right\} \\ \left\{ 1.90766E-11 \right\} \\ \left\{ 9.41356E-12 \right\} \\ \left\{ 4.23268E-04 \right\} \\ \left\{ 2.50000E-12 \right\} \\ \left\{ 5.5000E-12 \right\} \\ \left\{ 3.54242E-01 \right\} \\ $
<pre>kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk</pre>	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \left\{ \begin{array}{l} 8.27883E-12 \right\} \\ \left\{ 1.48014E-12 \right\} \\ \left\{ 1.48014E-12 \right\} \\ \left\{ 4.65309E-12 \right\} \\ \left\{ 2.79783E-12 \right\} \\ \left\{ 6.23927E-30 \right\} \\ \left\{ 0.00000E+00 \right\} \\ \left\{ 1.65514E-12 \right\} \\ \left\{ 2.40000E-13 \right\} \\ \left\{ 1.00000E+00 \right\} \\ \left\{ 0.00000E+00 \right\} \\ \left\{ 0.00000E+00 \right\} \\ \left\{ 1.65275E-13 \right\} \\ \left\{ 6.30000E-16 \right\} \\ \left\{ 4.38753E-13 \right\} \\ \left\{ 1.61972E-11 \right\} \\ \left\{ 2.50000E-15 \right\} \\ \left\{ 0.00000E+00 \right\} \\ \left\{ 1.90766E-11 \right\} \\ \left\{ 9.41356E-12 \right\} \\ \left\{ 4.23268E-04 \right\} \\ \left\{ 2.50000E-12 \right\} \\ \left\{ 5.50000E-12 \right\} \\ \left\{ 3.54242E-01 \right\} \\ \left\{ 8.10000E-13 \right\} \\ \left\{ 5.0000E-13 \right\} \\ \left\{ 5.000E-13 \right\} \\ \left\{ 5.00E-13 \right\} \\ \left\{ 5.00E-13 \right\} \\ \left\{ 5.00E-13 \right\} \\ \left\{ 5.00E$
<pre></pre>	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \left\{ \begin{array}{l} 8.27883E-12 \\ 1.48014E-12 \\ \end{array} \right\} \\ \left\{ \begin{array}{l} 9.17943E-02 \\ 4.65309E-12 \\ 2.79783E-12 \\ 3.279783E-12 \\ 3.2927E-30 \\ 3.0000E+00 \\ 1.65514E-12 \\ 2.40000E-13 \\ 1.00000E+00 \\ 3.0000E+00 \\ 1.65275E-13 \\ 3.0000E-16 \\ 4.38753E-13 \\ 3.161972E-11 \\ 2.50000E-12 \\ 3.54242E-01 \\ 3.1000E-13 \\ 2.19325E+03 \\ 3.10000E-13 \\ 3.1000E-13 \\ 3.100E-13 \\ 3.100E-13 \\ 3.100E-13 \\ 3.100E-13 \\ 3.100E-13 \\ 3.100E-100E-10 \\ 3.100E-100E-100E-100E-100E-100E-100E-100E$
kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	$kz = 4.1000E-16 * exp(1440.0/T)$ $k3 = 1.9000E-33 * exp(725.0/T)$ $29) = 3.7000E-12 * exp(240.0/T)$ $30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) kinf = 4.2000E-12 * (T/300)**(0.20) F = 0.60, n = 1.00 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCH0mol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 * exp(-986.0/T) 42) = 6.3000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(380.0/T) 45) = 2.5000E-15 * (250.0/T) 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 49) = 2.0000E+16 * exp(-13500.0/T) 49) = 2.0000E+16 * exp(-13500.0/T) 50) = 2.5000E-12 51) = 6.5000E-12 52) = 1.1000E+02 * exp(-7110.0/T) 53) = 8.1000E-13 54) = 1.0000E+15 * exp(-8000.0/T) 56) = 1.5000E-13$	$ \left\{ \begin{array}{l} 8.27883E-12 \\ 1.48014E-12 \\ \end{array} \right\} \\ \left\{ \begin{array}{l} 9.17943E-02 \\ 4.65309E-12 \\ 1.222222222222222222222222222222222$
kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	<pre>k2 = 4.1000E-16 * exp(1440.0/T) k3 = 1.9000E-33 * exp(725.0/T) 29) = 3.7000E-12 * exp(240.0/T) 30) is a falloff expression using: k0 = 2.3000E-31 * (T/300)**(-4.60) kinf = 4.2000E-12 * (T/300)**(0.20) F = 0.60, n = 1.00 31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16 4 43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) = 2.5000E-15 4 60 uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-12 * exp(380.0/T) 49) = 2.0000E+16 * exp(-13500.0/T) 50) = 2.5000E-12 51) = 6.5000E-12 52) = 1.1000E+02 * exp(-1710.0/T) 53) = 8.1000E+13 54) = 1.0000E+15 * exp(-8000.0/T) 55) = 1.6000E+03 56) = 1.5000E-11 57) = 1.2000E-11 * exp(-324.0/T)</pre>	$ \left\{ \begin{array}{l} 8.27883E-12 \\ 1.48014E-12 \\ \end{array} \right\} \\ \left\{ \begin{array}{l} 9.17943E-02 \\ 4.65309E-12 \\ 2.79783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279782E-12 \\ $
kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \left\{ \begin{array}{l} 8.27883E-12 \\ 1.48014E-12 \\ \end{array} \right\} \\ \left\{ \begin{array}{l} 9.17943E-02 \\ 4.65309E-12 \\ 2.79783E-12 \\ 3.279783E-12 \\ 3.2927836 \\ 3.292786 \\$
kk () () () () () () () () () () () () ()	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \left\{ \begin{array}{l} 8.27883E-12 \\ 1.48014E-12 \\ \end{array} \right. \\ \left\{ \begin{array}{l} 9.17943E-02 \\ 4.65309E-12 \\ 2.79783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279783E-12 \\ 3.279782E-13 \\ 3.279782E-13 \\ 3.279782E-13 \\ 3.279782E-13 \\ 3.279782E-13 \\ 3.279782E-13 \\ 3.279782E-12 \\ 3.279782E-12 \\ 3.279782E-12 \\ 3.2925E+03 \\ 3.29325E+03 \\ 3.29$

Table 8A-5. CB4_AQ Mechanism

1 /	C 1 \			
K (61)	$= 1.0000E-11 \circ \exp(-792.0/T)$		{7.01080E-13}
K. (62)	= 2.0000 E - 12 mexp(411.0/1)		{/.94340E-IZ}
K (63)	$= 1.3000E - 14 \circ \exp(-2633.0/T)$		{1.89105E-18}
K (64)	$= 2.1000E - 12^{\circ} \exp(-322.0/T)$		{0.18/15E-12}
K (65)	= 8.1000E-12		{8.10000E-12}
K (66)	= 4.2000E+00		$\{4.20000E+00\}$
K (67)	= 4.1000E-11		{4.10000E-11}
K (68)	= 2.2000E-11		{2.20000E-II}
К(69)	= 1.4000E-11		{1.40000E-II}
К(70)	= 1.7000E-11 * exp(116.0/T)		{2.50901E-11}
К(/1)	= 3.0000E-11		{3.00000E-II}
K (72)	uses photo table HCHOrad_CBIV88	, scaled by 9.04000E+00	{0.00000E+00}
K (73)	= 5.4000E-17 * exp(-500.0/1)		{1.00858E-17}
К(/4)	= 1./000E-11		{1./0000E-II}
K(75)	uses photo table HCHOrad_CBIV88	, scaled by 9.64000E+00	{0.00000E+00}
K(76)	= 3.6000E-11		{3.60000E-II}
K(.7.7)	= 2.5400E-11 * exp(407.6/1)		{9.97368E-II}
k(.78)	= 7.8600E - 15 * exp(-1912.0/T)		{1.28512E-17}
k(.79)	= 3.0300E - 12 * exp(-448.0/T)		{6.73819E-13}
k(80)	= 8.1000E - 12		{8.10000E-12}
k(81)	= 1.7000E - 14 * exp(1300.0/T)		{1.33359E-12}
k(82)	= 8.1000E-12		{8.10000E-12}
k(83)	= 4.3900E - 13 * exp(160.0/T)		{7.51005E-13}
k(84)	= 1.3600E-06		{1.36000E-06}
k(85)	= 7.6700E - 14 * exp(1300.0/T)		{6.01684E-12}
k(86)	= 7.6700E - 14 * exp(1300.0/T)		{6.01684E-12}
k(87)	= 1.7300E - 14 * exp(1300.0/T)		{1.35712E-12}
k(88)	= 3.4500E-14 * exp(1300.0/T)		{2.70640E-12}
k(89)	= 3.3600E-11		{3.36000E-11}
k(90)	= 7.1100E-18		{7.11000E-18}
k(91)	= 1.0000E - 15		{1.00000E-15}
k(92)	uses photo table ACROLEIN	, scaled by 3.60000E-03	{0.00000E+00}
k(93)	= 1.4900E-19		{1.49000E-19}
==	====:			

Table 8A-6. CB4_AE_AQ Mechanism

F	Reac	tion List	t								
- < ۲	 1 l	NO2					NTO				<
}	{2{	NO2	+	[02]		>	03	т	0		
ł	3	03	+	NO		>	NO2				
ł	4}	0	+	NO2		>	NO				
ł	5 }	0	+	NO2		>	NO3				
ł	6}	0	+	NO		>	NO2				
{	7}	03	+	NO2		>	NO3				
{	8}	03	+	hv		>	0				
ł	9}	03	+	hv		>	01D				
ł	10}	01D	+	[N2]		>	0				
Ì	12\ 12\		+	[U2]		>	2 000*04				
ļ	12)	03	+	(H20)		>	2.000 OII HO2				
ł	14	03	+	HO2		>	OH				
ł	15}	NO3	+	hv		>	0.890*NO2	+	0.890*0	+	0.110*NO
Ì	16Ĵ	NO3	+	NO		>	2.000*NO2				
{	17}	NO3	+	NO2		>	NO	+	NO2		
{	18}	NO3	+	NO2		>	N205				
ł	19}	N205	+	[H20]		>	2.000*HNO3		220.0		
ł	20}	N205		NO	. [02]	>	NO3	+	NO2		
í	∠⊥} ววโ	NO	+	NO2	+ [U2]	>	2.000*NOZ				
ł	23	OH	+	NOZ	+ [1120]	>	2.000 HONO				
ł	24	HONO	+	hv		>	OH	+	NO		
Ì	25 Ĵ	HONO	+	OH		>	NO2				
ł	26}	HONO	+	HONO		>	NO	+	NO2		
{	27}	OH	+	NO2		>	HNO3				
{	28}	OH	+	HNO3		>	NO3				
ł	29}	HO2	+	NO		>	OH	+	NO2		
ł	30}	HO2	+	NO2		>	PNA		200		
Ì	3⊥} 32\	DNA	+	ОH		>	HOZ NO2	+	NO2		
ł	33}	HO2	+	HO2		>	H2O2				
ł	34}	HO2	+	HO2	+ [H2O]	>	H2O2				
ł	35}	H2O2	+	hv		>	2.000*OH				
Ì	36Ĵ	Н2О2	+	OH		>	HO2				
{	37}	CO	+	OH		>	HO2				
{	38}	FORM	+	OH		>	HO2	+	CO		
ł	39}	FORM	+	hv		>	2.000*HO2	+	CO		
ł	40}	FORM	+	hv		>	CO				CO
Ì	4⊥} ∧ 2 \	FORM	+	NO3		>	UH UNO 3	+	HOZ	+	CO
ł	43		+	0		>	C2O3	+	OH	т	co
ł	44}	ALD2	+	OH		>	C203		011		
ł	45 j	ALD2	+	NO3		>	C2O3	+	HNO3		
ł	46 j	ALD2	+	hv		>	XO2	+	2.000*HO2	+	CO
						+	FORM				
{	47}	C2O3	+	NO		>	NO2	+	XO2	+	FORM
r	401	a202		NOO		. +	HO2				
Ì	40} 40]	DAN	+	NOZ		>	C2O3	+	NO 2		
ł	50	C203	+	C2O3		>	2.000*X02	+	2.000*FORM	+	2.000*HO2
ł	51}	C203	+	HO2		>	0.790*FORM	+	0.790*XO2	+	0.790*HO2
,	,					+	0.790*OH	+	0.210*PACD		
{	52}	OH				>	XO2	+	FORM	+	HO2
{	53}	PAR	+	OH		>	0.870*XO2	+	0.130*XO2N	+	0.110*HO2
r						+	0.110*ALD2	+	0.760*ROR	-	0.110*PAR
ł	54}	ROR				>	1.100*ALD2	+	0.960*X02	+	0.940*HO2
ſ	בבו	DOD					Z.LUU*PAR	+	0.040*XO2N	+	U.UZU*ROR
Ì	55}	ROR	+	NO2		>	HUZ NTR				
l {	57	OLE	+	0		>	0.630*AT.D2	+	0.380*HO2	+	0.280*X02
ι	5,1			-		+	0.300*CO	+	0.200*FORM	+	0.020*X02N
						+	0.220*PAR	+	0.200*OH		
{	58}	OLE	+	OH		>	FORM	+	ALD2	+	XO2
Ĺ						+	HO2	-	PAR		
{	59}	OLE	+	03		>	0.500*ALD2	+	0.740*FORM	+	0.330*CO
						+	U.440*HO2	+	U.220*XO2	+	U.100*OH
ſ	601	OLF.	т	NO3		+	0.200*FACD	+	0.200*AACD	-	PAR FORM
ι	005		т'	1000		+	AT.D2	- -	PAR	+	NO2
{	61}	ETH	+	0		>	FORM	+	0.700*X02	+	CO
	,										

Table 8A-6.	CB4_AE	_AQ Mechanism
-------------	--------	---------------

		1 700*102	L 0 200*01	
{ 62} ETH	+ OH	> XO2	+ 1.560*FORM	+ HO2
(02) 2111		+ 0.220*ALD2	- 1.000 10141	
(63 \ ਜਾ⊤ਸ	+ 03	> FORM	+ 0 420*00	+ 0 120*HO2
037 1111	+ 05		+ 0.420 CO	+ 0.120 1102
		+ 0.400 FACD	. 0.260*0550	
64} TOL	+ OH	> 0.080^XO2	+ 0.360*CRES	+ 0.440^HOZ
		+ 0.560*102	+ TOLAER	0.000/0777
65} 102	+ NO	> 0.900*NO2	+ 0.900*HO2	+ 0.900*OPEN
		+ 0.100*NTR		
66} TO2		> CRES	+ HO2	
67} CRES	+ OH	> 0.400*CRO	+ 0.600*XO2	+ 0.600*HO2
		+ 0.300*OPEN	+ CSLAER	
68} CRES	+ NO3	> CRO	+ HNO3	+ CSLAER
69 CRO	+ NO2	> NTR		
70} XYT.	+ OH	> 0 700*HO2	+ 0 500*XO2	+ 0 200*CRES
, ,0) 111		+ 0.800*MGLV	+ 1 100*DAP	+ 0.300*TO2
		VILLED	1 1.100 TAK	1 0.500 102
		T AILAER	. 2 000+00	
/I} OPEN	+ OH	> XUZ	+ 2.000*00	+ 2.000^HO2
		+ C203	+ FORM	
72} OPEN	+ hv	> C203	+ HO2	+ CO
73} OPEN	+ 03	> 0.030*ALD2	+ 0.620*C2O3	+ 0.700*FORM
		+ 0.030*XO2	+ 0.690*CO	+ 0.080*OH
		+ 0.760*HO2	+ 0.200*MGLY	
74} MGLY	+ OH	> XO2	+ C2O3	
75) MGLY	+ hv	> C203	+ HO2	+ CO
76 ISOP	+ 0	> 0.750*ISPD	+ 0.500*FORM	+ 0.250*XO2
,		+ 0.250*HO2	+ 0.250*C203	+ 0.250*PAR
771 TSOD	+ 0번		+ 0 629*FORM	+ 0.991 * XO2
[//] 1501	1 011	+ 0 912*002	+ 0.088*X02N	1 0.991 XOZ
			+ 0.000 KOZN	. 0. 000+3000
[/8] ISOP	+ 03	> 0.650*ISPD	+ 0.600*FORM	+ 0.200^X02
		+ 0.066*HO2	+ 0.266*OH	+ 0.200*C203
		+ 0.150*ALD2	+ 0.350*PAR	+ 0.066*CO
{ 79} ISOP	+ NO3	> 0.200*ISPD	+ 0.800*NTR	+ XO2
		+ 0.800*HO2	+ 0.200*NO2	+ 0.800*ALD2
		+ 2.400*PAR		
{ 80} XO2	+ NO	> NO2		
81} x02	+ XO2	>		
82 XO2N	+ NO	> NTR		
831 502	+ OH	> SIILF	+ HO2	+ SIILAER
841 502			+ SIII.AFP	· Dollinit
04) 502 0851 V02	+ 402		1 DOLAER	
OG VONT	. 1102	> OmitP		
OUJ AUZN	T HUZ	>		
d/} XUZN	+ XUZN	>		
88} XO2N	+ XO2	>		
89} ISPD	+ OH	> 1.565*PAR	+ 0.167*FORM	+ 0.713*XO2
		+ 0.503*HO2	+ 0.334*CO	+ 0.168*MGLY
		+ 0.273*ALD2	+ 0.498*C2O3	
90} ISPD	+ 03	> 0.114*C2O3	+ 0.150*FORM	+ 0.850*MGLY
		+ 0.154*HO2	+ 0.268*OH	+ 0.064*XO2
		+ 0.020*ALD2	+ 0.360*PAR	+ 0.225*CO
91} ISPD	+ NO3	> 0.357*ALD2	+ 0.282*FORM	+ 1.282*PAR
,		+ 0.925*HO2	+ 0.643*00	+ 0.850*NTR
		+ 0 075*0203	+ 0 075**02	+ 0 075*HNO3
02) TCDD	+ hv	> 0.333*00	+ 0 067*ATD0	+ 0 900*EODM
225 ISED			1 022*TO2	- 0.300 PORM
		+ U.832^PAR	⊤ 1.033^HOZ	- U./UU^XUZ
		+ 0.967*C203	0.000	
93} ISOP	+ NO2	> 0.200*ISPD	+ 0.800*NTR	+ XO2
		+ 0.800*HO2	+ 0.200*NO	+ 0.800*ALD2
		+ 2.400*PAR		
94} TERP	+ OH	> TERPAER	. + OH	
		>	+ NO3	
95} TERP	+ NO3	> IERFAER	1 1000	
{ 95} TERP { 96} TERP	+ NO3 + O3	> TERPAER	+ 03	

Rate Expression	Rate Constant
<pre>k(1) uses photo table NO2_CBIV88 , scaled by 1.00000E+00 k(2) is a falloff expression using:</pre>	{0.00000E+00} {1.37387E-14}
k0 = 6.0000E-34 * (T/300)**(-2.30) kinf = 2.8000E-12 * (T/300)**(0.00) F = 0.60, n = 1.00	
k(3) = 1.8000E-12 * exp(-1370.0/T) k(4) = 9.3000E-12	{1.81419E-14} {9.30000E-12}

Table 8A-6. CB4_AE_AQ Mechanism

k(5) is a falloff expression using: k0 = 9.0000E-32 * (T/300)**(-2.00) kinf = 2.2000E-11 * (T/300)**(0.00) F = 0.60, n = 1.00	{1.57527E-12}
k(6) is a falloff expression using: k0 = 9.0000E-32 * (T/300)**(-1.50) kinf = 3.0000E-11 * (T/300)**(0.00) F = 0.60, n = 1.00	{1.66375E-12}
k(k(k(k(k(<pre>7) = 1.2000E-13 * exp(-2450.0/T) 8) uses photo table NO2_CBIV88 , scaled by 5.30000E-02 9) uses photo table O301D_CBIV88 , scaled by 1.00000E+00 10) = 1.8000E-11 * exp(107.0/T) 11) = 3.2000E-11 * exp(67.0/T) 12) = 2.2000E-10</pre>	<pre>{3.22581E-17} {0.00000E+00} {0.00000E+00} {2.57757E-11} {4.00676E-11} {2.20000E-10}</pre>
k(k(k(k(k($\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>{6.82650E-14} {1.99920E-15} {0.0000E+00} {3.00805E-11} {4.03072E-16} {1.26440E-12}</pre>
k(k(k(k(<pre>19) = 1.3000E-21 20) = k(18) / Keq, where Keq = 2.700E-27 * exp(11000.0/T) 21) = 3.3000E-39 * exp(530.0/T) 22) = 4.4000E-40 23) is a falloff expression using: k0 = 6.7000E-31 * (T/300)**(-3.30) kinf = 3.0000E-11 * (T/300)**(-1.00) F = 0.60, n = 1.00</pre>	{1.30000E-21} {4.36029E-02} {1.95397E-38} {4.39999E-40} {6.69701E-12}
k(k(k(<pre>24) uses photo table NO2_CBIV88 , scaled by 1.97500E-01 25) = 6.6000E-12 26) = 1.0000E-20 27) is a falloff expression using: k0 = 2.6000E-30 * (T/300)**(-3.20) kinf = 2.4000E-11 * (T/300)**(-1.30) E = 0.60 m = 1.00</pre>	{0.00000E+00} {6.60000E-12} {1.00000E-20} {1.14885E-11}
k($ \begin{array}{l} & r = 0.00, \ n = 1.00 \\ 28) \text{ is a special rate expression of the form:} \\ & k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, \text{ where} \\ & k0 = 7.2000E-15 * \exp(785.0/T) \\ & k2 = 4.1000E-16 * \exp(1440.0/T) \\ & k3 = 1.9000E-33 * \exp(725.0/T) \\ \end{array} $	{1.47236E-13}
k(k(29) = $3.7000E-12 * exp(240.0/T)$ 30) is a falloff expression using: k0 = $2.3000E-31 * (T/300)**(-4.60)$ kinf = $4.2000E-12 * (T/300)**(0.20)$ F = 0.60, n = 1.00	{8.27883E-12} {1.48014E-12}
k(k(k(31) = k(30) / Keq, where Keq = 2.100E-27 * exp(10900.0/T) 32) = 1.3000E-12 * exp(380.0/T) 33) = 5.9000E-14 * exp(1150.0/T) 34) = 2.2000E-38 * exp(5800.0/T)	{9.17943E-02} {4.65309E-12} {2.79783E-12} {6.23927E-30}
k(k(k(k(<pre>35) - 2.2000E-36 EAP(3500.077) 35) uses photo table HCHOmol_CBIV88 , scaled by 2.55000E-01 36) = 3.1000E-12 * exp(-187.0/T) 37) = 1.5000E-13 * (1.0 + 0.6*Pressure) 38) = 1.0000E-11</pre>	{0.0000E+00} {1.65514E-12} {2.40000E-13} {1.00000E-11}
k(k(k(<pre>39) uses photo table HCHOrad_CBIV88 , scaled by 1.00000E+00 40) uses photo table HCHOmol_CBIV88 , scaled by 1.00000E+00 41) = 3.0000E-11 * exp(-1550.0/T) 42) = 6.3000E-16</pre>	{0.00000E+00} {0.00000E+00} {1.65275E-13} {6.30000E-16}
k(k(k(k(k(k(k(k(k(k(k(k(k()	<pre>43) = 1.2000E-11 * exp(-986.0/T) 44) = 7.0000E-12 * exp(250.0/T) 45) = 2.5000E-15 46) uses photo table ALD_CBIV88 , scaled by 1.00000E+00 47) = 3.4900E-11 * exp(-180.0/T) 48) = 2.6300E-12 * exp(380.0/T) 49) = 2.0000E+16 * exp(-13500.0/T) 50) = 2.5000E-12 51) = 6.5000E-12 52) = 1.1000E+02 * exp(-1710.0/T) 53) = 8.1000E+13 54) = 1.0000E+15 * exp(-8000.0/T) 55) = 1.6000E+03 56) = 1.5000E-11</pre>	$ \left\{ \begin{array}{c} 4.38753E-13 \\ 1.61972E-11 \\ 2.50000E-15 \\ 0.0000E+00 \\ 1.90766E-11 \\ 9.41356E-12 \\ 4.23268E-04 \\ 4.23268E-04 \\ 2.50000E-12 \\ 6.50000E-12 \\ 3.54242E-01 \\ 8.10000E-13 \\ 2.19325E+03 \\ 1.60000E+03 \\ 1.50000E+12 \\ 1.5000E+12 \\ 1.5$

Table 8A-6.	CB4_	AE_AQ	Mechanism

					(
K (57)	=	1.2000E-11 * exp(-324.0/T)		{4.045/2E-12}
K(58)	=	5.2000E-12 * exp(504.0/1)		{2.82173E-11}
k (59)	=	1.4000E-14 * exp(-2105.0/T)		{1.19778E-17}
k(60)	=	7.7000E-15		{7.70000E-15}
k(61)	=	1.0000E-11 * exp(-792.0/T)		{7.01080E-13}
k(62)	=	2.0000E-12 * exp(411.0/T)		{7.94340E-12}
k(63)	=	1.3000E-14 * exp(-2633.0/T)		{1.89105E-18}
k(64)	=	2.1000E-12 * exp(322.0/T)		{6.18715E-12}
k(65)	=	8.1000E-12		{8.10000E-12}
k(66)	=	4.2000E+00		(4.20000E+00)
k(67)	=	4.1000E-11		(4.10000E-11)
k(68)	=	2.2000E-11		2.20000E-11
k(69)	=	1.4000E-11		}1.40000E−11
k(70)	=	1.7000E-11 * exp(116.0/T)		
k(71)	=	3.0000E-11		€3.00000E-11
k.	72)	us	es photo table HCHOrad CBIV88	, scaled by 9.04000E+00	(0.00000E+00)
k(73)	=	5.4000E-17 * exp(-500.0/T)	,	(1.00858E-17)
k(74)	=	1.7000E-11		1.70000E-11
k(75)	us	es photo table HCHOrad CBIV88	, scaled by 9.64000E+00	<pre>\ 0.00000E+00 \ </pre>
k(76)	=	3.6000E-11	·	
k(77)	=	2.5400E-11 * exp(407.6/T)		9.97368E-11
k.	78)	=	7.8600E-15 * exp(-1912.0/T)		(1.28512E-17)
k(79)	=	3.0300E-12 * exp(-448.0/T)		€.73819E-13
k(80)	=	8.1000E-12		8.10000E-12
k.	81)	=	1.7000E-14 * exp(1300.0/T)		(1.33359E-12)
k(82)	=	8.1000E-12		₹8.10000E-12
k(83)	=	4.3900E-13 * exp(160.0/T)		<pre> {7.51005E−13 }</pre>
k(84)	=	1.3600E-06		1.36000E-06
k(85)	=	7.6700E-14 * exp(1300.0/T)		.01684E-12
k(86)	=	7.6700E-14 * exp(1300.0/T)		6.01684E-12
k(87)	=	1.7300E-14 * exp(1300.0/T)		1.35712E-12
k(88)	=	3.4500E-14 * exp(1300.0/T)		<pre>{2.70640E−12}</pre>
k(89)	=	3.3600E-11		3.36000E-11
k.	90)	=	7.1100E-18		(7.11000E-18)
k.	91)	=	1.0000E-15		(1.00000E-15)
k(92)	us	es photo table ACROLEIN	, scaled by 3.60000E-03	(0.00000E+00)
k.	93)	=	1.4900E-19	,	(1.49000E-19)
k(94)	=	1.0700E-11 * exp(549.0/T)		6.75269E-11
k(95)	=	3.2300E-11 * exp(-975.0/T)		1.22539E-12
k(96)	=	7.2900E-15 * exp(-1136.0/T)		(1.61125E-16)
==:	=====				============

|--|

Reaction List

>									<
{ 1}	NO2	+ hv		>	O3P	+	NO		
	02	i hrr		(010		140		
	03	+ 11V			010				
{ 3}	03	+ 11V		>	03P				
{ 4}	HONO	+ hv		>	HO	+	NO		
{ 5}	· HNO3	+ hv		>	HO	+	NO2		
{ 6}	HNO4	+ hv		>	HO2	+	NO2		
{ 7}	NO3	+ hv		>	NO				
Ì 8 Ì	NO3	+ hv		>	NO2	+	03P		
1 91	H202	+ hv		>	2 000*#0		001		
1 101	HCHO	, hrr		ĺ.	2.000 110				
{ 10]	нсно	+ 11V		>	00				00
{ 11}	нсно	+ 11V		>	HOZ	+	HOZ	+	CO
{ 12}	· ALD	+ hv		>	MO2	+	HO2	+	CO
{ 13}	· OP1	+ hv		>	HCHO	+	HO2	+	HO
{ 14 }	· OP2	+ hv		>	ALD	+	HO2	+	HO
{ 15}	PAA	+ hv		>	MO2	+	HO		
16	KET	+ hv		>	ACO3	+	ETHP		
{ 17	GLY	+ hv		>	0 130*HCHO	+	1 870*00		
1 1 Q 1	CIV	$\pm hv$			0.450*µCµO		1 550*00	+	0 800*002
1 10]	MOLY	+ 11V			0.450 110110	- T	1.000 000	- T	0.000 1102
{ 19}	MGLY	+ 11V		>	ACO3	+	HUZ	+	CO
{ 20}	· DCB	+ hv		>	0.980*HO2	+	0.020*ACO3	+	TCO3
{ 21 }	ONIT	+ hv		>	0.200*ALD	+	0.800*KET	+	HO2
					+ NO2				
{ 22}	O3P	+ [M]	+ [02]	>	03				
{ 23	O3P	+ NO2		>	NO				
{ 24	01D	+ [N2]		>	03P				
1 251	01D	+ [02]		>	O3P				
1 261	01D	+ [U2]			2 000*00				
1 201	. OID	+ [H20]		/	2.000 HO				
{ 2/}	03	+ NO		>	NO2				
{ 28}	03	+ HO		>	HO2				
{ 29 }	· 03	+ HO2		>	HO				
{ 30}	HO2	+ NO		>	NO2	+	HO		
{ 31	HO2	+ NO2		>	HNO4				
1 321	HNO4			>	HO2	+	NO2		
1 221	HO2	+ ₩02		>	H2O2				
1 311	u02	+ 1102	+ [#20]		u202				
1 251	1102	+ 1102	+ [1120]		11202				
{ 35]	HZUZ	+ HO		>	HUZ				
{ 36}	NO	+ HO		>	HONO				
{ 37]	NO	+ NO	+ [02]	>	2.000*NO2				
{ 38}	· 03	+ NO2		>	NO3				
{ 39}	· NO3	+ NO		>	2.000*NO2				
{ 40}	NO3	+ NO2		>	NO	+	NO2		
{ 41	NO3	+ HO2		>	HNO3				
1 421	NO3	+ NO2		>	N205				
1 121	N205	1102			NO2	-	NO3		
1 11	NICOL	1 [1120]		(2 000*11102		1105		
1 441	· N205	+ [H20]		/	2.000 HN03				
{ 45 }	но	+ NO2		>	HNO3				
{ 46 }	• но	+ HNO3		>	NO3				
{ 47 }	· HO	+ HNO4		>	NO2				
{ 48}	· HO	+ HO2		>					
{ 49 }	HO	+ SO2		>	SULF	+	HO2		
{ 50 }	· CO	+ HO		>	HO2				
{ 51	HO			>	MO2				
{ 52	ETH	+ HO		>	ETHP				
{ 53	HC3	+ HO		>	0 830*HC3P	+	0 170*∺02	+	0 009*HCHO
(55)	1105	. 110		-	+ 0 075*ATD		0.025****	•	0.009 110110
(= 4)	TICE				T 0.075 ALD	- T	0.025 KEI		
{ 54 }	HC5	+ HO		>	HC5P	+	0.250^X02		
{ 55}	HC8	+ HO		>	HC8b	+	0.750*X02		
{ 56 }	· OL2	+ HO		>	OL2P				
{ 57 }	· OLT	+ HO		>	OLTP				
{ 58 }	OLI	+ HO		>	OLIP				
{ 59	TOL	+ HO		>	0.750*TOLP	+	0.250*CSL	+	0.250*HO2
1 601	XYT.	+ HO		>	0.830*XYIP	+	0.170*CSL	+	0.170*HO2
{ K1 }	CST.	+ HO		>	0 100*¤O2	+	0 900**02	+	0 900****
1 G 2 1	COL	- 110			0.100 1102	Ŧ	5.JUU AUZ	r	5.500 ICOS
1 02]				>	CSL		~~		
{ 63	HCHO	+ HO		>	HO2	+	CO		
{ 64 }	ALD	+ HO		>	ACO3				
{ 65 }	· KET	+ HO		>	KETP				
{ 66 }	GLY	+ HO		>	HO2	+	2.000*CO		
{ 67 Ì	MGLY	+ HO		>	ACO3	+	CO		
68	DCB	+ HO		>	TCO3				
{ 69]	0P1	+ HO		>	0.500*MO2	+	0.500*#@#0	+	0.500*но
1 701	0022	+ HO			0 500*102	_	0 500*710	, +	0 500*10
ι /0j	OFZ	1 110		/	J.JUU"HC3P	т	0.000 ALD	-r	0.J00 NO

Table 8A-7. RADM2 and RADM2_AQ Mechanisms

{ 71} PAA	+ HO	>	ACO3			
{ 72} PAN	+ HO	>	HCHO	+ N	103 +	XO2
{ 73} ONIT	+ HO	>	HC3P	+ N	02	
{ 74} ISO	+ HO	>	OLTP			
{ 75} ACO3	+ NO2	>	PAN			
{ 76} PAN		>	ACO3	+ N	02	
{ 77} TCO3	+ NO2	>	TPAN			
{ 78} TPAN		>	TCO3	+ N	02	
{ 79} MO2	+ NO	>	нсно	+ H	02 +	NO2
{ 80} HC3P	+ NO	>	0 750*ALD	+ 0 250*K	тет +	0 090*HCHO
[00] 11031	. 110	+	0 036*ONTT	+ 0.250 K	iO2 +	0.964*H02
∫ 91\ ⊔C5D	+ NO		0 380*710	+ 0.501 1	тет <u>т</u>	0.080*0NTT
(OI) HCDF	+ 100	/	0.300 ALD	+ 0.090 K	.0.5	0.000 0011
∫ gol ucgp	+ NO	>	0.920 NO2	+ 1 060*8	.02 	0 040*0000
(02) ICOP	+ 110		0.330 ALD	+ 1.000 K		0.040 110110
		т 、	1 600*UQUO	+ 0.700 1	02 +	0.700~HOZ
[03] OLZP	+ NO		0 200*ACHO	т п	.02 т	NOZ
		т ,	0.200"ALD			1100
{ 84} OLTP	+ NO	>	ALD	+ н	СНО +	HOZ
		+	NO2	. 1 450+3	T.D	0.000+110110
{ 82} OPI5	+ NO	>	HUZ	+ 1.450^A	цр +	0.280°HCHO
(+	0.100*KET	+ N	02	
{ 86} ACO3	+ NO	>	MO2	+ N	02	
{ 8/} TCO3	+ NO	>	NO2	+ 0.920*H	.02 +	0.890*GLY
		+	0.110*MGLY	+ 0.050*A	.CO3 +	0.950*CO
(+	2.000*XO2			0.150
{ 88} TOLP	+ NO	>	NO2	+ H	.02 +	0.170*MGLY
		+	0.160*GLY	+ 0.700*D	CB	
{ 89} XYLP	+ NO	>	NO2	+ H	:02 +	0.450*MGLY
		+	0.806*DCB			
{ 90 } ETHP	+ NO	>	ALD	+ H	:02 +	NO2
{ 91} KETP	+ NO	>	MGLY	+ N	102 +	HO2
{ 92} OLN	+ NO	>	HCHO	+ A	LD +	2.000*NO2
{ 93 } HCHO	+ NO3	>	HO2	+ H	NO3 +	CO
{ 94} ALD	+ NO3	>	ACO3	+ H	NO3	
{ 95} GLY	+ NO3	>	HNO 3	+ H	02 +	2.000*CO
{ 96} MGLY	+ NO3	>	HNO3	+ A	.CO3 +	CO
{ 96} MGLY { 97} DCB	+ NO3 + NO3	> >	HNO 3 HNO 3	+ A + T	.CO3 +	CO
{ 96} MGLY { 97} DCB { 98} CSL	+ NO3 + NO3 + NO3	> > >	HNO3 HNO3 HNO3	+ A + T + X	.CO3 + CO3 NO2 +	CO 0.500*CSL
{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2	+ NO3 + NO3 + NO3 + NO3	> > >	HNO3 HNO3 HNO3 OLN	+ A + T + X	.CO3 + CO3 NO2 +	CO 0.500*CSL
<pre>{ 96 } MGLY { 97 } DCB { 98 } CSL { 99 } OL2 { 100 } OLT</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3	> > >	HNO3 HNO3 HNO3 OLN OLN	+ A + T + X	.CO3 + 2CO3 2NO2 +	CO 0.500*CSL
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 {100} OLT {101} OLI</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3	> > > >	HNO3 HNO3 HNO3 OLN OLN OLN	+ A + T + X	.CO3 + 'CO3 'NO2 +	CO 0.500*CSL
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 {100} OLT {101} OLI {102} ISO</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3	> > > > >	HNO3 HNO3 OLN OLN OLN OLN	+ A + T + X	.CO3 + CO3 INO2 +	CO 0.500*CSL
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 {100} OLT {101} OLI {102} ISO {103} OL2</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3	> > > > >	HNO3 HNO3 OLN OLN OLN OLN HCHO	+ A + T + X + 0.400*C	.CO3 + .CO3 + .NO2 +	CO 0.500*CSL 0.420*CO
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 {100} OLT {101} OLI {102} ISO {103} OL2</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3	> > > > > >	HNO3 HNO3 OLN OLN OLN HCHO 0.120*HO2	+ A + T + X + 0.400*C	.CO3 + .CO3 NO2 + .RA1 +	CO 0.500*CSL 0.420*CO
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3	> > > > > > +	HNO3 HNO3 OLN OLN OLN OLN HCHO 0.120*HO2 0.530*HCHO	+ A + T + X + 0.400*C + 0.500*A	.CO3 + .CO3 + .NO2 + .RA1 +	CO 0.500*CSL 0.420*CO 0.330*CO
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 {100} OLT {101} OLI {102} ISO {103} OL2 {104} OLT</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3	> > > > > > + > +	HNO3 HNO3 OLN OLN OLN OLN HCHO 0.120*HO2 0.530*HCHO 0.200*0RA1	+ A + T + X + 0.400*C + 0.500*A + 0.200*C	.CO3 + CO3 NO2 + RA1 + LD + RA2 +	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 {100} OLT {101} OLT {102} ISO {103} OL2 {104} OLT</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3	> > > > > > + +	HN03 HN03 OLN OLN OLN HCH0 0.120*H02 0.530*HCH0 0.200*ORA1 0.200*M02	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 NO2 + RA1 + LD + RA2 +	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3	> > > > > > + + +	HNO3 HNO3 OLN OLN OLN OLN 0.120*HO2 0.530*HCHO 0.200*ORA1 0.220*MO2 0.180*HCHO	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A	.CO3 + .CO3 + .NO2 + .RA1 + .LD + .RA2 + .O .LD +	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT { 105} OLI</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3	> > > > > > + > + + +	HNO3 HNO3 OLN OLN OLN OLN 0.120*HO2 0.530*HCHO 0.200*ORA1 0.220*MO2 0.180*HCHO 0.200*CO	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.60*C	CO3 + CO3 NO2 + RA1 + LD + RA2 + O LD + RD + RA1 +	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*OF22
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 {100} OLT {101} OLI {102} ISO {103} OL2 {104} OLT {105} OLI</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3	> > > > > > + + + +	HNO3 HNO3 OLN OLN OLN OLN OLN HCHO 0.530*HCHO 0.200*ORA1 0.220*MO2 0.180*HCHO 0.230*CO 0.260*HO2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C	CO3 + CO3 NO2 + RA1 + RA2 + O LD + RA2 + O LD + RA1 + O	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 {100} OLT {101} OLT {102} ISO {103} OL2 {104} OLT {105} OLI {106} ISO</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3	> > > > > > + + + > + +	HN03 HN03 OLN OLN OLN 0LN HCH0 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.180*HCH0 0.230*C0 0.260*H02 0.530+HCH0	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A	CO3 + + CO3 + NO2 + LD + RA1 + RA2 + O LD + RA1 + CO + LD + RA1 + D +	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.310*CO
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 {100} OLT {101} OLT {101} OL1 {102} ISO {103} OL2 {104} OLT {105} OLI {106} ISO</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3	> > > > > > + + > + + > +	HN03 HN03 OLN OLN OLN OLN OLN 0.120*H02 0.530*HCH0 0.220*M02 0.180*HCH0 0.230*C0 0.260*H02 0.260*H02 0.260*HCH0 0.200*RA1	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C	CO3 + CO3 NO2 + RA1 + LD + RA2 + O LD + RA1 + O LD + LD + LD + RA1 + LD + RA1 + CO + LD + RA1 +	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO</pre>	+ N03 + N03 + N03 + N03 + N03 + N03 + N03 + 03 + 03 + 03 + 03	> > > > > > + + + + + > + + +	HNO3 HNO3 HNO3 OLN OLN OLN OLN 0.120*HO2 0.530*HCHO 0.200*ORA1 0.220*MO2 0.180*HCHO 0.230*CO 0.260*HO2 0.200*ORA1 0.200*ORA1 0.202*MO2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + LD + RA1 + RA2 + O + LD + RA1 + O + LD + RA1 + O + RA1 + O + LD + RA2 + O +	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2</pre>	+ N03 + N03 + N03 + N03 + N03 + N03 + N03 + 03 + 03 + 03 + 03 + 03 + 03	> > > > > > + + > + + + > + + + >	HNO3 HNO3 HNO3 OLN OLN OLN OLN 0.120*HO2 0.530*HCHO 0.200*ORA1 0.220*MO2 0.260*HO2 0.260*HC2 0.260*HC2 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.60*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 NO2 + LD + RA1 + RA2 + O + RA1 + LD + RA1 + LD + RA1 + LD + RA1 + O + CO + CO + CO + CO + CO + CO + CO	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OL1 { 106} ISO { 107} HO2 { 108} HO2</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3	> > > > > > + + > + + > + + > + + >	HNO3 HNO3 OLN OLN OLN OLN OLN 0.120*HO2 0.530*HCH0 0.200*ORA1 0.220*MO2 0.180*HCH0 0.230*CO 0.530*HCH0 0.530*HCH0 0.530*HCH0 0.530*HCH0 0.530*HCH0 0.530*HCH0 0.530*HCH0 0.520*MO2 0P1 0P2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 NO2 + LD + RA1 + CO LD + RA2 + O LD + RA1 + O LD + RA2 + O CO RA1 + O CO RA1 + CO RA1 + CO RA1 + CO C	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + + > + + > + + >	HNO3 HNO3 HNO3 OLN OLN OLN HCHO 0.120*HO2 0.530*HCHO 0.220*MO2 0.180*HCHO 0.230*CO 0.260*HO2 0.530*HCHO 0.200*ORA1 0.220*MO2 0.200*ORA1 0.220*MO2 OP1 OP2 OP2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + RA1 + CO + LD + RA1 + CO + LD + RA1 + CO + RA1 + CO + CO + CO + CO + CO + CO + CO + CO	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 100} HO2</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC5P	> > > > > > + + + + > + + + > + + + >	HN03 HN03 HN03 OLN OLN OLN OLN 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.180*HCH0 0.230*CO 0.260*H02 0.230*CO 0.260*H02 0.200*ORA1 0.220*M02 OP1 OP2 OP2 OP2 OP2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + RA2 + O + RA2 + O + RA1 + CO + LD + RA1 + O + LD + RA2 + O 0	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 < 110} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + > + + + > + + + > + + >	HNO3 HNO3 HNO3 OLN OLN OLN OLN 0.120*HO2 0.530*HCHO 0.200*ORA1 0.220*MO2 0.260*HO2 0.260*HO2 0.260*HCHO 0.200*ORA1 0.220*MCA 0.200*ORA1 0.220*MO2 OP2 OP2 OP2 OP2 OP2 OP2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.60*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 NO2 + RA1 + RA2 + O LD + RA1 + LD + RA1 + LD + RA1 + LD + RA1 + O S CO S	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 111} HO2 { 112} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + + > + + + > + + > + + >	HN03 HN03 OLN OLN OLN OLN HCH0 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.180*HCH0 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 NO2 + LD + RA1 + O LD + RA1 + O LD + RA1 + O + LD + RA1 + O + CO + CO + CO + CO + CO + CO + CO	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 112} HO2 { 112} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > + + + > + + + > + + > + + > + + >	HN03 HN03 HN03 OLN OLN OLN 0LN HCH0 0.200*0RA1 0.220*M02 0.180*HCH0 0.200*C0 0.260*H02 0.260*H02 0.200*M02 0.200*M02 0.200*M02 0.200*M02 0.200*M02 0P1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + RA1 + CO + LD + RA1 + O + LD + RA2 + O + O + O + CO + CO + CO + CO + CO +	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 113} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > + > + + + > + + + > + + > + + > >	HN03 HN03 HN03 OLN OLN OLN OLN 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.180*HCH0 0.230*CO 0.260*H02 0.530*HCH0 0.200*ORA1 0.200*O	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + LD + RA1 + CO + LD + RA1 + O + RA2 + O + O + CO + CO + CO + CO + CO + CO +	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 114} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + + + > + + + +	HN03 HN03 HN03 OLN OLN OLN 0LN 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.260*H02 0.260*H02 0.260*H02 0.200*ORA1 0.220*M02 0.260*H02 0.200*ORA1 0.220*M02 0P2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 O	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.60*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 NO2 + RA1 + LD + RA2 + O LD + RA1 + CO + LD + RA1 + CO + LD + RA1 + O + CO + CO + CO + CO + CO + CO + CO	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > + + > + + + > + + + > + + > >	HN03 HN03 HN03 OLN OLN OLN OLN 0.120 * HO2 0.530 * HCH0 0.200 * ORA1 0.220 * MO2 0.260 * HO2 0.260 * HO2 0.260 * HO2 0.260 * HCH0 0.200 * ORA1 0.220 * MO2 0P2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 O	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.60*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 NO2 + RA1 + RA2 + O LD + RA1 + O LD + RA1 + O + RA1 + O + RA1 + O 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 115} HO2 { 116} HO2 { 116} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + > + + + > + + + > + + > >	HN03 HN03 HN03 OLN OLN OLN OLN HCH0 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.530*HCH0 0.200*ORA1 0.200*ORA1 0.220*M02 0P2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 O	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + RA1 + O + RA1 + LD + RA1 + CO + LD + RA2 + O + CO + CO + CO + CO + CO + CO + CO	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 115} HO2 { 116} HO2 { 116} HO2 { 117} HO2 { 117} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + > + + + > + + + > + + > >	HN03 HN03 HN03 OLN OLN OLN OLN 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.530*HCH0 0.230*CO 0.260*H02 0.530*HCH0 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*M02 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + LD + RA1 + CO + LD + RA1 + O + RA2 + O -	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 117} HO2 { 118} HO2 < 118 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + + + + > + + + +	HN03 HN03 HN03 OLN OLN OLN OLN 0.120 *0R1 0.220 *0R1 0.220 *0R2 0.180 *HCH0 0.230 *CO 0.260 *HC2 0.260 *HC2 0.200 *0RA1 0.220 *MC2 0.200 *0RA1 0.220 *MC2 0P2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 O	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + RA2 + O + RA1 + CO + RA1 + CO + RA1 + CO + RA1 + O + CO + CO + CO + CO + CO + CO + CO	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 116} HO2 { 118} HO2 { 119} HO2 { 129} HO2 { 129} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > + + > + + + > + + + > + + + > >	HN03 HN03 OLN OLN OLN OLN HCH0 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.530*HCH0 0.230*C0 0.260*H02 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.60*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 NO2 + RA1 + RA2 + O + RA1 + RA1 + RA1 + LD + RA1 + CO + RA1 + CO + CO + CO + CO + CO + CO + CO + CO	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 115} HO2 { 116} HO2 { 116} HO2 { 117} HO2 { 119} HO2 { 120} HO2 { 120} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + > + + + > + + + > + + > >	HN03 HN03 HN03 OLN OLN OLN OLN 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.530*HCH0 0.230*CO 0.260*H02 0.260*H02 0.200*ORA1 0.220*M02 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + LD + RA1 + O + LD + RA1 + CO + LD + RA2 + O + CO + CO + CO + CO + CO + CO + CO	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 115} HO2 { 116} HO2 { 117} HO2 { 117} HO2 { 118} HO2 { 120} HO2 { 120} HO2 { 121} MO2 { 120} HO2 { 120} HO</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + > + + + > + + + > + + > >	HN03 HN03 HN03 OLN OLN OLN OLN 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.530*HCH0 0.230*CO 0.260*H02 0.260*H02 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.200*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + LD + RA1 + O + RA1 + O + RA2 + O - CO2	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 116} HO2 { 117} HO2 { 118} HO2 { 119} HO2 { 121} MO2 { 121} MO2 { 122} MO2 { 122} MO2 } </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > > + + + + > + + + +	HN03 HN03 HN03 OLN OLN OLN OLN 0.120 * HO2 0.530 * HCH0 0.200 * ORA1 0.220 * MO2 0.180 * HCH0 0.230 * CO 0.260 * HO2 0.200 * ORA1 0.220 * MO2 0.200 * ORA1 0.220 * MO2 0.220 * ORA 0.220 * OP2 0.220 * OP2 0.200 * OP2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H	CO3 + CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + LD + RA1 + CO + LD + RA2 + O + CO + CO + CO + CO + CO + CO + CO	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 114} HO2 { 115} HO2 { 116} HO2 { 117} HO2 { 118} HO2 { 119} HO2 { 120} HO2 { 122} MO2 { 123} MO2</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > + + > + + + > + + + > + + + > >	HN03 HN03 HN03 OLN OLN OLN 0LN HCH0 0.20*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.530*HCH0 0.200*ORA1	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.060*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H + + 0.100*H	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + RA1 + O + RA1 + O + RA1 + O + RA1 + O + RA2 + O + RA1 + LD + RA2 + O + CO3 + C CO3 + C C CO3 + C C CO3 + C C CO3 + C C CO3 + C C C CO3 + C C C C CO3 + C C C C C C C C C C C C C C C C C C C	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 116} HO2 { 117} HO2 { 118} HO2 { 119} HO2 { 120} HO2 { 121} MO2 { 121} MO2 { 121} MO2 { 122} MO2 { 123} MO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > + + > + + + > + + + > + + + > + + + > + + + > + + + > + + + > + + + > + + + > + + + > + -> + -> + -> + -> + -> + -> + -> + -> + -> + -> + -> + -> + + + -> + + + -> + + + +	HN03 HN03 HN03 OLN OLN OLN OLN 0.120*HO2 0.530*HCH0 0.200*ORA1 0.220*MO2 0.260*HO2 0.260*HO2 0.260*HO2 0.200*ORA1 0.220*MO2 0.200*ORA1 0.220*MO2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 O	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.200*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H + 0.200*C + 0.100*H	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + LD + RA1 + O + RA1 + O + RA1 + O + RA1 + O + RA2 + O + LD + RA2 + D + RA1 + LD + RA1 + LD + RA1 + LD + RA1 + LD + RA1 + D + RA1 + LD + RA1 + RA2 + RA1 + RA1 + RA1 + RA1 + RA	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 115} HO2 { 116} HO2 { 117} HO2 { 116} HO2 { 117} HO2 { 118} HO2 { 120} HO2 { 121} MO2 { 121} MO2 { 123} MO2 { 124} MO2</pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > + + > + + + > + + + > >	HN03 HN03 HN03 OLN OLN OLN OLN 0.120*H02 0.530*HCH0 0.200*ORA1 0.220*M02 0.530*HCH0 0.230*CO 0.260*H02 0.260*H02 0.230*CO 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*ORA1 0.200*OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.720*A + 0.200*C + 0.140*H + 0.500*A + 0.200*C + 0.100*H + 0.100*H + 0.100*H + + H + H + + H + 0.770*A + 0.410*A	CO3 + CO3 + NO2 + RA1 + LD + RA2 + O + LD + RA1 + O + RA2 + O + LD + RA2 + O + LD + LD + LD + LD + LD +	CO 0.500*CSL 0.420*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2 0.230*HO2
<pre>{ 96} MGLY { 97} DCB { 98} CSL { 99} OL2 { 100} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 116} HO2 { 117} HO2 { 118} HO2 { 120} HO2 { 121} MO2 { 122} MO2 { 123} MO2 { 124} MO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	> > > > > + + + > + + + + > + + + +	HN03 HN03 HN03 OLN OLN OLN OLN 0.120*HO2 0.530*HCH0 0.200*ORA1 0.220*MO2 0.180*HCH0 0.230*CO 0.260*HO2 0.230*CO 0.260*HO2 0.230*CO 0.200*ORA1 0.220*MO2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 O	+ A + T + X + 0.400*C + 0.500*A + 0.200*C + 0.100*H + 0.70*A + 0.200*C + 0.140*H + 0.200*C + 0.100*H + 0.200*C + 0.100*H + 0.200*C + 0.100*H + 0.200*C + 0.100*H + 0.200*C + 0.100*H + 0.200*C + 0.100*H + 0.200*C + 0.20	CO3 + CO3 + CO3 + RA1 + LD + RA2 + O + LD + RA1 + CO + LD + RA2 + O + LD + LD + LD + LD + LD + LD + LD + LD	CO 0.500*CSL 0.420*CO 0.330*CO 0.230*HO2 0.100*KET 0.290*ORA2 0.310*MO2 0.330*CO 0.230*HO2 0.230*HO2

Table 8A-7. RADM2 and RADM2_AQ Mechanisms

		+	HO2				
{126} MO2	+ 0L2P	>	1.550*HCHO	+	0.350*ALD	+	HO2
{127} MO2	+ OLTP	>	1.250*HCHO	+	0.750*ALD	+	HO2
{128} MO2	+ OLIP	>	0.890*HCHO	+	0.725*ALD	+	HO2
()		+	0.550*KET				
{129} MO2	+ KETP	>	0.750*HCHO	+	0.750*MGLY	+	HO2
₹130}́ MO2	+ ACO3	>	HCHO	+	0.500*HO2	+	0.500*MO2
		+	0.500*ORA2				
{131} MO2	+ TOLP	>	HCHO	+	0.170*MGLY	+	0.160*GLY
		+	0.700*DCB	+	2.000*HO2		
{132} MO2	+ XYLP	>	HCHO	+	0.450*MGLY	+	0.806*DCB
		+	2.000*HO2				
{133} MO2	+ TCO3	>	0.500*HCHO	+	0.445*GLY	+	0.055*MGLY
		+	0.500*ORA2	+	0.025*ACO3	+	0.460*HO2
		+	0.475*CO	+	XO2		
{134} MO2	+ OLN	>	1.750*HCHO	+	0.500*HO2	+	ALD
		+	NO2				
{135} ETHP	+ ACO3	>	ALD	+	0.500*HO2	+	0.500*MO2
(+	0.500*ORA2				
{136} HC3P	+ ACO3	>	0.770*ALD	+	0.260*KET	+	0.500*HO2
		+	0.500*MO2	+	0.500*ORA2		
{137} HC5P	+ ACO3	>	0.410*ALD	+	0.750*KET	+	0.500*HO2
(+	0.500*MO2	+	0.500*ORA2		
{138} HC8P	+ ACO3	>	0.460*ALD	+	1.390*KET	+	0.500*HO2
(120) 07.00	1 2 2 2 2	+	0.500*MO2	+	0.500*ORA2		0 500+1100
{I39} OL2P	+ AC03	>	0.800*HCHO	+	0.600*ALD	+	0.500*HO2
(140) OT TTD		+	0.500^MOZ	+	0.500*0RAZ		0 500*000
{140} OLTP	+ AC03	>	ALD 0 E00*MOD	+	0.500 ACHO	+	0.500^HOZ
(141) OF TD		+	0.500"MOZ	+	0.500*0RAZ		0 140*110110
{141} OLIP	+ ACU3	>	0.725"ALD	+	0.550"KEI	+	0.140"HCHO
(140) VETO	1 7002	+	U.SUU"HUZ	+	0.500°MOZ	+	0.500"ORAZ
(142) KEIP	+ ACUS	/		т	0.300~HOZ	т	0.500~MOZ
1121 ACOS	+ 1003	>	2 000*MO2				
144 ACO3	+ TOLD	>	2.000 MO2	+	0 170*MCLV	+	0 160*CLV
(III) ACOD	1 1001	+	0 700*DCB	+	U.170 MOD1 HO2		0.100 001
{145} ACO3	+ XYLP	>	MO2	+	0 450*MGLY	+	0 806*DCB
(115) 11005		+	HO2		0.150 11011	•	0.000 DCD
{146} ACO3	+ TCO3	>	MO2	+	0 920*#02	+	0 890*GLV
(110) 11000	1000	+	0.110*MGLY	+	0.050*ACO3	+	0.950*00
		+	2.000*X02		0.000 11000		0.000 00
{147} ACO3	+ OLN	>	НСНО	+	ALD	+	0.500*ORA2
()		+	NO2	+	0.500*MO2		
{148} OLN	+ OLN	>	2.000*HCHO	+	2.000*ALD	+	2.000*NO2
{149} xo2	+ HO2	>	OP2				
₹150}́ x02	+ MO2	>	HCHO	+	HO2		
{151} xo2	+ ACO3	>	MO2				
{152} XO2	+ XO2	>					
{153} XO2	+ NO	>	NO2				
{154} XNO2	+ NO2	>	ONIT				
{155} XNO2	+ HO2	>	OP2				
{156} XNO2	+ MO2	>	HCHO	+	HO2		
{157} XNO2	+ ACO3	>	MO2				
{158} XNO2	+ XNO2	>					
>							<

Rate Expression

Rate Constant

k(1)	uses	photo	table	NO2_RADM88	,	scaled	by	1.00000E+00	{0.	00000E+00
k(2)	uses	photo	table	0301D_RADM88	,	scaled	by	1.00000E+00	ÌΟ.	00000E+00
k(3)	uses	photo	table	O3O3P_RADM88	,	scaled	by	1.00000E+00	ίΟ.	00000E+00
k(4)	uses	photo	table	HONO_RADM88	,	scaled	by	1.00000E+00	ίΟ.	00000E+00
k(5)	uses	photo	table	HNO3_RADM88	,	scaled	by	1.00000E+00	{0.	00000E+00]
k(6)	uses	photo	table	HNO4_RADM88	,	scaled	by	1.00000E+00	ίΟ.	00000E+00
k(7)	uses	photo	table	NO3NO_RADM88	,	scaled	by	1.00000E+00	{0.	00000E+00]
k(8)	uses	photo	table	NO3NO2_RADM88	,	scaled	by	1.00000E+00	{0.	00000E+00]
k(9)	uses	photo	table	H2O2_RADM88	,	scaled	by	1.00000E+00	{0.	00000E+00]
k(10)	uses	photo	table	HCHOmol_RADM88	,	scaled	by	1.00000E+00	{0.	00000E+00]
k(11)	uses	photo	table	HCHOrad_RADM88	,	scaled	by	1.00000E+00	{0.	00000E+00]
k(12)	uses	photo	table	ALD_RADM88	,	scaled	by	1.00000E+00	ίΟ.	00000E+00
k(13)	uses	photo	table	MHP_RADM88	,	scaled	by	1.00000E+00	ίΟ.	00000E+00
k(14)	uses	photo	table	HOP_RADM88	,	scaled	by	1.00000E+00	{0.	00000E+00]
k(15)	uses	photo	table	PAA_RADM88	,	scaled	by	1.00000E+00	ίΟ.	00000E+00]

Table 8A-7. RADM2 and RADM2_AQ Mechanisms

k(k(k(k(k(k(k(k(k(k(k(k(<pre>16) uses photo table KETONE_RADM88 , scaled by 1.00000E+00 17) uses photo table GLYform_RADM88 , scaled by 1.00000E+00 18) uses photo table GLYmol_RADM88 , scaled by 1.00000E+00 19) uses photo table MGLY_RADM88 , scaled by 1.00000E+00 20) uses photo table UDC_RADM88 , scaled by 1.00000E+00 21) uses photo table ORGNIT_RADM88 , scaled by 1.00000E+00 22) = 6.0000E-34 * (T/300)**(-2.30) 23) = 6.5000E-12 * exp(120.0/T) 24) = 1.8000E-11 * exp(110.0/T) 25) = 3.2000E-12 * exp(-1400.0/T) 26) = 2.2000E-10 27) = 2.0000E-12 * exp(-940.0/T) 28) = 1.6000E-12 * exp(-940.0/T) 29) = 1.1000E-14 * exp(-500.0/T) 30) = 3.7000E-12 * exp(240.0/T) 31) is a falloff expression using: R0 = 1.8000E-31 * (T/300)**(-3.20) kinf = 4.7000E-12 * (T/300)**(-1.40)</pre>	$ \left\{ \begin{array}{l} 0.00000\pm +00 \\ 16.09302\pm -34 \\ 9.72293\pm -12 \\ 1.404730\pm -11 \\ 1.82272\pm -14 \\ 1.82272\pm -14 \\ 1.82250\pm -14 \\ 1.8250\pm -14 \\ 1.39058\pm -12 \\ 1.39058\pm $
k(F = 0.80, $n = 1.0032) = k(31) / Keq, where Keq = 2.100E-27 * exp(10900.0/T)$	{8.62399E-02}
k(<pre>33) is a special rate expression of the form: k = k1 + k2[M], where k1 = 2.2000E-13 * exp(620.0/T) k2 = 1.9000E-33 * exp(980.0/T)</pre>	{3.01634E-12}
k(34) is a special rate expression of the form:	{6.78905E-30}
	$k_1 = 3.0800E-34 * exp(2820.0/T)$	
1- ($k_2 = 2.6600E - 54 * exp(3180.0/T)$	(1 (0(717 10)
k($35) = 3.3000E-12 \land exp(-200.0/T)$ 36) is a falloff expression using:	{1.686/1E-12} {4.87144E-12}
	k0 = 7.0000E-31 * (T/300) ** (-2.60)	(···)
	kinf = $1.5000E - 11 * (T/300) * (-0.50)$	
k(37) = 3.3000E-39 * exp(530.0/T)	{1.95397E-38}
k($38) = 1.4000E - 13 * \exp(-2500.0/T)$	{3.18213E-17}
k(と($39) = 1.7000E - 11 * \exp(-150.0/T)$ $40) = 2.5000E - 14 * \exp(-1230.0/T)$	$\{2.81225E-11\}$
k(40) = 2.5000E - 14 = exp(-1230.0/1) 41) = 2.5000E - 12	$\{2.50000E-12\}$
k(42) is a falloff expression using:	{1.26440E-12}
	k0 = 2.2000E - 30 * (T/300) * (-4.30)	
	F = 0.60, n = 1.00	
k(43) = $k(42)$ / Keq, where Keq = 1.100E-27 * exp(11200.0/T)	{5.47034E-02}
k(44) = 2.0000E-21	{2.00000E-21}
k(45) is a falloff expression using: $k_0 = 2.6000 \text{ m} 20 \text{ k} (\pi/200) \text{ k} (-2.20)$	{1.14885E-11}
	kinf = 2.4000E-11 * (T/300)**(-1.30)	
	F = 0.60, n = 1.00	
k(46) is a special rate expression of the form: k = k0 + (k2[M] / (1 + k2[M]/k2)) where	{1.47236E-13}
	$k = k_0 + \{k_5[m] / (1 + k_5[m]/k_2)\}, \text{ where}$ $k_0 = 7.2000E-15 * exp(785.0/T)$	
	k2 = 4.1000E-16 * exp(1440.0/T)	
৮ <i>(</i>	$k_3 = 1.9000E - 33 * \exp(725.0/T)$ $47) = 1.3000E - 12 * \exp(-380.0/T)$	∫/ 65300E 10]
k ($48) = 4.6000E^{-12} \times exp(230.0/T)$	$\{9.95294E-11\}$
k (49) is a falloff expression using:	{8.88848E-13}
	k0 = 3.0000E - 31 * (T/300) * (-3.30)	
	kinf = 1.5000E - 12 * (T/300) **(0.00) $F = 0.60, n = 1.00$	
k(50) = 1.5000E - 13 * (1.0 + 0.6*Pressure)	{2.40000E-13}
k(51) = 2.8300E+01 * (T/300)**(2.00) * exp(-1280.0/T)	{3.80672E-01}
К(k/	52) = 1.2330E-12 * (T/300)**(2.00) * exp(-444.0/T) 53) = 1.5900E-11 * exp(-540.0/T)	{2.74210E-13} {2.59669E-12}
k(54) = 1.7300E - 11 * exp(-380.0/T)	{4.83334E-12}
k(55) = 3.6400E - 11 * exp(-380.0/T)	{1.01696E-11}
K (50) = 2.1500E-12 * exp(411.0/T) 57) = 5.3200E-12 * exp(504.0/T)	{8.53916E-12} {2.88684F-11
k(58) = 1.0700E - 11 * exp(549.0/T)	{6.75269E-11}
k($59) = 2.1000E - 12 * \exp(322.0/T)$	{6.18715E-12}
k(60) = 1.8900E - 11 * exp(116.0/T)	{2.78943E-11}
k(62) = 9.0000E - 01 * k(61)	{3.60000E-11}
k(63) = 9.0000E - 12	(9.00000E-12)
k(64) = 6.8700E - 12 * exp(256.0/T)	{1.62197E-11}

k(65)	=	1.2000E-11	*	exp(-745.0/T)		{9.85020E-13}
k(66)	=	1.1500E-11					{1.15000E-11}
k(67)	=	1.7000E-11					$\{1, 70000E-11\}$
k (68)	_	2 8000 - 11					12 80000 = 11
K(00)	-	2.0000E-11					[2.00000E-11]
K(69)	=	T.0000E-II					{1.00000E-II}
k(70)	=	1.0000E-11					{1.00000E-11}
k(71)	=	1.0000E-11					<pre>{1.00000E−11}</pre>
レ(フク)	_	6 16508-13	*	(/ 3	00)**(200)*exp(-111 0 (T)	J1 27105E-12
K(72)	-	0.1000E-10		(1/3	00) (2.00) exp(-111.0/1)	[1.3/1036-13]
K(73)	=	1.5500E-11	×	exp(-540.0/1)		{2.53137E-12}
k(74)	=	2.5500E-11	*	exp(409.0/T)		{1.00601E-10}
k(75)	=	2.8000E-12	*	exp(181.0/T)		{5.13974E-12}
k(76)	_	1 95000+16	*	ovn	-13543 0/m)		J3 57235E_041
K(70)	-	1.93005+10		evb(-13343.0/1/		
K(//)	=	4./000E-12					{4./0000E-12}
k(78)	=	1.9500E+16	*	exp(-13543.0/T)		{3.57235E-04}
k(79)	=	4.2000E-12	*	exp(180.0/T)		$\{7, 68378E - 12\}$
1-(80)	_	4 2000 - 12	*	evn(180 0/m)		$\sqrt{7} 68378F = 12$
1-(01)	-	4 20000 12	+	CAP(100.0/1)		
K(81)	=	4.20008-12	Ŷ	exp(180.0/1)		{/.083/8E-IZ}
k(82)	=	4.2000E-12	*	exp(180.0/T)		{7.68378E-12}
k(83)	=	4.2000E-12	*	exp(180.0/T)		{7.68378E-12}
k(84)	=	4 2000E - 12	*	eyn(180 0/T)		$\{7, 68378E - 12\}$
1-(05)		4 20000 12	+	Chip (100.0/m)		
K(85)	=	4.20008-12	Ĵ	exp(180.0/1)		{/.083/8E-12}
k(86)	=	4.2000E-12	*	exp(180.0/T)		{7.68378E-12}
k(87)	=	4.2000E-12	*	exp(180.0/T)		{7.68378E-12}
1-(88)	-	4 20008-12	*	evn	180 0/m)		J7 68378F-121
1-(00)	-	1 20000 12	*	C11P(100.0/m		[7.00070m 10]
K(89)	=	4.20008-12	Ĵ	exp(180.0/1)		{/.683/8E-12}
ĸ(90)	=	4.2000E-12	*	exp(180.0/T)		{7.68378E-12}
k(91)	=	4.2000E-12	*	exp(180.0/T)		{7.68378E-12}
k(92)	=	4.2000E-12	*	exp(180.0/T)		(7,68378E-12)
1-(02)	_	6 0000E 12	*	own (2050 0 (17)		(F 01020E 16)
K(95)	-	0.0000E-13		exp(-2038.0/1)		(0.01030E-10)
k(94)	=	1.4000E-12	*	exp(-1900.0/T)		{2.38307E-15}
k(95)	=	6.0000E-13	*	exp(-2058.0/T)		{6.01030E-16}
k(96)	=	1.4000E-12	*	exp(-1900.0/T		{2.38307E−15}
le(07)	_	1 4000 = 12	*	own (1000 0/m)		(2 20207E 1E)
K(97)	-	1.40006-12		exb(-1900.0/1)		[2.3030/E=13]
K(98)	=	2.2000E-11					{2.20000E-II}
k(99)	=	2.0000E-12	*	exp(-2923.0/T)		{1.09940E-16}
k(100)	=	1.0000E - 11	*	exp(-1895.0/T		$\{1, 73099E-14\}$
k(101)	_	3 2300 - 11	*	ovn	_975 0/m)		J1 22520E-121
L(101)	-	5.2300E-II		evb(-975.071)		[1.225596-12]
K(102)	=	5.8100E-13					{2.8T000E-T3}
k(103)	=	1.2000E-14	*	exp(-2633.0/T)		{1.74559E-18}
k(104)	=	1.3200E-14	*	exp(-2105.0/T)		<pre>{1.12933E-17}</pre>
k(105)	=	7 2900E - 15	*	evn	-1136 0/T		
1=(105)	_	1 22000 14	*	chp (2012 0/m)		(1.4200EE 17)
K(100)	=	1.23008-14		exp(-2013.0/1)		{1.43295E-1/}
k(107)	=	7.7000E-14	*	exp(1300.0/T)		{6.04038E-12}
k(108)	=	7.7000E-14	*	exp(1300.0/T)		{6.04038E-12}
k(109)	=	7.7000E-14	*	exp(1300.0/T		$\{6,04038E-12\}$
k(110)	_	7 70005-14	*	ovn(1300 0/m)		J6 04038E-12)
L(111)	-	7.70000-14	4	evb(1200.0/1)		
K(III)	=	7.70008-14	Ŷ	exp(1300.0/1)		{6.04038E-12}
k(112)	=	7.7000E-14	*	exp(1300.0/T)		{6.04038E-12}
k(113)	=	7.7000E-14	*	exp(1300.0/T)		{6.04038E-12}
k(114)	=	7 7000E - 14	*	evn	1300 0/m)		ໄດ້ 04038E-121
k (115)	_	7 70000-14	*	ovn/	1300 0/m)		[6.01030E 12]
1-(110)	-	7 70005-14		CVD(1200.0/1/		[C.04030E-12]
к(116)	=	/./UUUE-14	×	exp(1300.0/1)		{0.04038E-12}
k(117)	=	7.7000E-14	*	exp(1300.0/T)		{6.04038E-12}
k(118)	=	7.7000E-14	*	exp(1300.0/T)		{6.04038E-12}
k(119)	=	7.7000E-14	*	exp(1300.0/T		(6,04038E-12)
L(100)	_	7 70000 14	*	ovr (1300 0/m		JE UNUSOF 10]
K(120)		1.00005-14		exh(1300.0/1)		(0.04030E-12)
к(121)	=	1.9000E-13	*	exp(220.0/T)		{3.97533E-13}
k(122)	=	1.4000E-13	*	exp(220.0/T)		{2.92919E-13}
k(123)	=	4.2000E-14	*	exp(220.0/T)		(8.78758E-14)
1.101	_	3 40000-14	*	ovn (220 0/11)		{7 11276₽.1/l
L(105)	-	0.1000E-14		evh(220.0/1/		
к(125)	=	2.9000E-14	*	exp(220.0/1)		{0.06/62E-14}
k(126)	=	1.4000E-13	*	exp(220.0/T)		{2.92919E-13}
k(127)	=	1.4000E-13	*	exp(220.0/T)		{2.92919E-13}
k(128)	=	1.7000E-14	*	exp(220.0/T		3.55688E-14
L(100)	_	1 70000 14	*	ovr (220.0/m		∫2 EECOOD 14]
L(120)	-	1./UUUE-14		evh(220.0/1/		(3.33000E-14)
к(130)	=	a.pnnnr-T3	*	exp(220.0/1)		{2.00859E-12}
k(131)	=	1.7000E-14	*	exp(220.0/T)		{3.55688E-14}
k(132)	=	1.7000E-14	*	exp(220.0/T)		{3.55688E-14}
k(122)	=	9 6000 - 12	*	evn/	220.0/T		2 00850F-121
12(T))	_	J. JOOOD 14	4	CAP(220.0/1/		
1- (1 2 4)		1./UUUE-14	*	exp(220.0/1)		{3.55688E-14}
k(134)	=						<i>i</i>
k(134) k(135)	=	3.4000E-13	*	exp(220.0/T)		{7.11376E-13}
k(134) k(135) k(136)	= = =	3.4000E-13 1.0000E-13	*	exp(exp(220.0/T) 220.0/T)		{7.11376E-13} {2.09228E-13}
k(134) k(135) k(136) k(137)	= = =	3.4000E-13 1.0000E-13 8.4000E-14	* * *	exp(exp(220.0/T) 220.0/T) 220.0/T)		{7.11376E-13} {2.09228E-13} {1.75752E-13}
k(134) k(135) k(136) k(137)	= = =	3.4000E-13 1.0000E-13 8.4000E-14	* * * *	exp(exp(exp(220.0/T) 220.0/T) 220.0/T) 220.0/T)		{7.11376E-13} {2.09228E-13} {1.75752E-13}

Table 8A-7.	RADM2 and RADM2_AQ Mechanisms	
-------------	-------------------------------	--

k(139) =	3.4000E-13 * exp(220.0/T)	{7.11376E-13}
k(140) =	3.4000E-13 * exp(220.0/T)	{7.11376E-13}
k(141) =	4.2000E-14 * exp(220.0/T)	{8.78758E-14}
k(142) =	4.2000E-14 * exp(220.0/T)	{8.78758E-14}
k(143) =	1.1900E-12 * exp(220.0/T)	{2.48981E-12}
k(144) =	4.2000E-14 * exp(220.0/T)	{8.78758E-14}
k(145) =	4.2000E-14 * exp(220.0/T)	{8.78758E-14}
k(146) =	1.1900E-12 * exp(220.0/T)	{2.48981E-12}
k(147) =	4.2000E-14 * exp(220.0/T)	{8.78758E-14}
k(148) =	3.6000E-16 * exp(220.0/T)	{7.53221E-16}
k(149) =	7.7000E-14 * exp(1300.0/T)	{6.04038E-12}
k(150) =	1.7000E-14 * exp(220.0/T)	{3.55688E-14}
k(151) =	4.2000E-14 * exp(220.0/T)	{8.78758E-14}
k(152) =	3.6000E-16 * exp	220.0/T)	{7.53221E-16}
k(153) =	4.2000E-12 * exp(180.0/T)	{7.68378E-12}
k(154) =	4.2000E-12 * exp(180.0/T)	{7.68378E-12}
k(155) =	7.7000E-14 * exp	1300.0/T)	{6.04038E-12}
k(156) =	1.7000E-14 * exp(220.0/T)	{3.55688E-14}
k(157) =	4.2000E-14 * exp	220.0/T)	{8.78758E-14}
k(158) =	3.6000E-16 * exp	220.0/T)	(7.53221E-16)

Table 8A-8.	RADM2	AE and I	RADM2 A	AE AO	Mechanisms
	_			_ `	

Reaction	T.i
Reaction	ᅭᅭ

Reac	tion List	:							
{ 1}	NO2	+ hv		>	03P	+	 NO		<
{ 2}	03	+ hv		>	01D				
{ 3}	03	+ hv		>	O3P				
{ 4}	HONO	+ hv		>	HO	+	NO		
$\{ 5\}$	HNO3	+ hv		>	HO	+	NO2		
$\{ 6\}$	HNO4	+ hv		>	HO2	+	NO2		
{ 7}	NO3	+ hv		>	NO		1102		
{ 8}	NO3	+ hv		>	NO2	+	03P		
{ 9}	H2O2	+ hv		>	2 000*HO		051		
1 101	HCHO	+ hv		>	2.000 110				
	нсно	+ hv		>	но2	+	HO3	+	CO
	ALD	+ hv		>	MO2	+	HO2	+	CO
1 1 2 l		+ hv			UCUO		u02		чO
1 1 1	OP2	+ 11V					1102 1102	- -	10
1 1 5	DAA	+ 11V			MO2		1102	т	110
1 161	VPT	+ hv			702		TIO ETTID		
	CLA	+ 11V			ACUS	- T	LINP 1 070*CO		
1 ±/ j 1 g l	GLI	+ 11V			0.150 11010		1.550*00	+	0 800*402
1 10	MOLY	+ 11V			0.450 IICIIO		1.550 CO		0.000 1102
1 201	DCD	+ 11V			ACU3	- T			CU TCO2
	ONIT	+ 11V			0.900*102	- T	0.020"ACOS		1003
1 211	UNII	+ 11V		/	NO2	-	0.000 KEI	т	1102
[22]	020	. [M]	. [02]	, T	02				
} 22	035	+ [M]	+ [UZ]		NO				
1 231	010	+ NO2			030				
[24]	OID	+ [NZ]			03P				
{ 25}	OID	+ [U2]		>	0.00 *UO				
{ 20}	010	+ [H20]		>	2.000"HO				
[2/]	03	+ NO		>	NO2				
{ 28}	03	+ HO		>	HO2				
{ 29}	03	+ HOZ		>	HU				
{ 30 }	HOZ	+ NO		>	NO2	+	HO		
{ 31}	HO2	+ NO2		>	HNO4		270.0		
{ 32}	HNO4			>	HO2	+	NO2		
{ 33}	HOZ	+ HO2	[>	HZOZ				
{ 34}	HOZ	+ HO2	+ [H2O]	>	HZOZ				
{ 35}	H202	+ HO		>	HO2				
{ 36}	NO	+ HO	[]	>	HONO				
{ 37}	NO	+ NO	+ [02]	>	2.000*NO2				
{ 38}	03	+ NO2		>	NO3				
{ 39}	NO3	+ NO		>	2.000*NO2				
{ 40}	NO3	+ NO2		>	NO	+	NO2		
{ 41 }	NO3	+ HO2		>	HNO3				
{ 42}	NO3	+ NO2		>	N205				
{ 43}	N205	567		>	NO2	+	NO3		
{ 44 }	N205	+ [H2O]		>	2.000*HNO3				
{ 45}	HO	+ NO2		>	HNO3				
{ 46}	HO	+ HNO3		>	NO3				
{ 4'/}	HO	+ HNO4		>	NO2				
{ 48}	НО	+ HO2		>					
{ 49}	HO	+ SO2		>	SULF	+	HO2	+	SULAER
{ 50}	00	+ HO		>	HO2				
{ 51}	HO			>	MO2				
{ 52}	ETH	+ HO		>	ETHP		0.150/000		
{ 53}	HC3	+ HO		>	0.830*HC3P	+	0.170*HO2	+	0.009*HCHO
< - · ·				+	0.075*ALD	+	0.025*KET		
{ 54}	HC5	+ HO		>	HC5P	+	0.250*XO2		
{ 55}	HC8	+ HO		>	HC8P	+	0.750*XO2	+	HC8AER
{ 56}	OL2	+ HO		>	OL2P				
{ 57}	OLT	+ HO		>	OLTP				
{ 58}	OLI	+ HO		>	OLIP	+	OLIAER		
{ 59}	TOL	+ HO		>	0.750*TOLP	+	0.250*CSL	+	0.250*HO2
(+	TOLAER				
{ 60}	XYL	+ HO		>	0.830*XYLP	+	0.170*CSL	+	0.170*HO2
, .				+	XYLAER				
{ 61}	CSL	+ HO		>	0.100*HO2	+	0.900*XO2	+	0.900*TCO3
				+	CSLAER				
{ 62}	CSL	+ HO		>	CSL				
{ 63}	HCHO	+ HO		>	HO2	+	CO		
{ 64}	ALD	+ HO		>	AC03				
{ 65 }	KET	+ HO		>	KETP				
{ 66 }	GLY	+ HO		>	HO2	+	2.000*CO		
{ 67}	MGLY	+ HO		>	ACO3	+	CO		

Table 8A-8. RADM2_AE and RADM2_AE_AQ Mechanisms

1 DOY DUB			mao 2				
	+ HO	>	1005				F 0 0 + 110
{ 09} OPT	+ HO	> 0.	500*MO2	+ (J.500*HCHO	+ 0.	500*HO
{ 70} OP2	+ HO	> 0.	500*HC3P	+ ().500*ALD	+ 0.	500*HO
{ 71} PAA	+ HO	>	ACO3				
72 PAN	+ HO	>	HCHO	+	NO 3	+	xo2
	. 110		11020		NOC		
{ 73} UNII	+ HO	>	HC3P	+	INUZ		
{ 74} ISO	+ HO	>	OPILb				
{ 75} ACO3	+ NO2	>	PAN				
{ 76} PAN		>	ACO3	+	NO2		
{ 77} TCO3	+ NO2	>	TPAN				
[70] TON	1 1102		TCO2		NO 2		
(70) IPAN		>	1003	Ŧ	INUZ		
{ 79} MO2	+ NO	>	HCHO	+	HO2	+	NO2
{ 80} HC3P	+ NO	> 0.	750*ALD	+ ().250*KET	+ 0.	090*HCHO
		+ 0.	036*ONIT	+ ().964*NO2	+ 0.	964*HO2
{ 81} HC5P	+ NO	> 0	380*AT.D	+ () 690*KET	+ 0	080*0NTT
[01] 11001	. 110	- 0.	020*NO2				000 0111
(+ 0.	920 NOZ	C	0.920°H02	•	
{ 82} HC8P	+ NO	> 0.	350*ALD	+ 1	L.060*KET	+ 0.	040*HCHO
		+ 0.	240*ONIT	+ ().760*NO2	+ 0.	760*HO2
{ 83} OL2P	+ NO	> 1.	600*HCHO	+	HO2	+	NO2
() -		+ 0	200*AT.D				
					TICITO		110.2
{ 84} OLTP	+ NO	>	ALD	+	HCHO	+	HOZ
		+	NO2				
{ 85} OLIP	+ NO	>	HO2	+ 1	L.450*ALD	+ 0.	280*HCHO
		+ 0.	100*KET	+	NO2		
1 861 ACO3	+ NO	>	MO2	1	NO 2		
	, NO		NO2		0.00*1000		000*0T V
{ 8/} 1003	+ NO	>	NO2	+ (0.920"HOZ	+ 0.	690"GLI
		+ 0.	110*MGLY	+ (0.050*ACO3	+ 0.	950*CO
		+ 2.	000*XO2				
{ 88} TOLP	+ NO	>	NO2	+	HO2	+ 0.	170*MGLY
(,		. 0	160*CT V				
		+ 0.	TOD.GTI	- C	J. /00 DCB		150+1077
{ 89} XYLP	+ NO	>	NO2	+	HO2	+ 0.	450*MGLY
		+ 0.	806*DCB				
<pre>{ 90 } ETHP</pre>	+ NO	>	ALD	+	HO2	+	NO2
	+ NO	>	MGLY	+	NO2	+	н∩2
	I NO		HCHO				000*NO2
	+ NO	>	HCHO	+	ALD	+ 2.	000~NOZ
{ 93} HCHO	+ NO3	>	HO2	+	HNO3	+	CO
{ 94} ALD	+ NO3	>	ACO3	+	HNO3		
{ 95} GLY	+ NO3	>	HNO3	+	HO2	+ 2.	000*CO
(96) MGLY	+ NO3	>	HNO3	+	ACO3	+	CO
	- NO2		LINIO 2		TCO2	·	00
(97) DCB	+ 103	>	HINO 3	Ŧ	1003	•	
{ 98} CST	+ NO3	>	HNO3	+	XNO2	+ 0.	500*CSL
			500*CSLAER				
		+ 0.					
{ 99} OL2	+ NO3	+ 0.	OLN				
{ 99} OL2 {100} OLT	+ NO3 + NO3	+ 0.	OLN OLN				
{ 99} OL2 {100} OLT {101} OLT	+ NO3 + NO3	+ 0. > >	OLN OLN OL N		OLIVED		
{ 99} OL2 {100} OLT {101} OLI	+ NO3 + NO3 + NO3	+ 0. > >	OLN OLN OLN	+	OLIAER		
{ 99} OL2 {100} OLT {101} OLI {102} ISO	+ NO3 + NO3 + NO3 + NO3	+ 0. > > >	OLN OLN OLN OLN	+	OLIAER		
{ 99} OL2 {100} OLT {101} OLI {102} ISO {103} OL2	+ NO3 + NO3 + NO3 + NO3 + O3	+ 0. > > > >	OLN OLN OLN OLN HCHO	+ + (OLIAER).400*ORA1	+ 0.	420*CO
{ 99} OL2 {100} OLT {101} OLI {102} ISO {103} OL2	+ NO3 + NO3 + NO3 + NO3 + O3	+ 0. > > > > + 0.	OLN OLN OLN OLN HCHO 120*HO2	+ + (OLIAER).400*ORA1	+ 0.	420*CO
{ 99} OL2 {100} OLT {101} OLI {102} ISO {103} OL2 {104} OLT	+ NO3 + NO3 + NO3 + NO3 + O3 + O3	+ 0. > > > + 0.	OLN OLN OLN HCHO 120*HO2 530*HCHO	+ + (OLIAER).400*ORA1	+ 0.	420*CO
{ 99} OL2 {100} OLT {101} OLI {102} ISO {103} OL2 {104} OLT	+ NO3 + NO3 + NO3 + NO3 + O3 + O3	+ 0. > > > + 0. >	OLN OLN OLN HCHO 120*HO2 530*HCHO 200*OPD1	+ + (+ (OLIAER).400*ORA1).500*ALD	+ 0. + 0.	420*CO 330*CO
<pre>{ 99} OL2 {100} OLT {101} OLT {101} OLT {102} IS0 {103} OL2 {104} OLT</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3	+ 0. > > > > + 0. + 0.	OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1	+ + () + () + () + ()	OLIAER).400*ORA1).500*ALD).200*ORA2	+ 0. + 0. + 0.	420*CO 330*CO 230*HO2
<pre>{ 99} OL2 {100} OLT {101} OLT {101} OLT {102} ISO {103} OL2 {104} OLT</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3	+ 0. > > > + 0. + 0. + 0.	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2	+ + (+ (+ (+ (OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0.	420*CO 330*CO 230*HO2
<pre>{ 99} OL2 {100} OLT {101} OLI {101} OLI {102} IS0 {103} OL2 {104} OLT {105} OLI</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3	$\begin{array}{c} + 0. \\> \\> \\> \\> \\ + 0. \\ + 0. \\ + 0. \\> 0. \end{array}$	OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO	+ + () + () + () + ()	OLIAER).400*ORA1).500*ALD).200*ORA2).100*H0).720*ALD	+ 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET
<pre>{ 99} OL2 {100} OLT {101} OLT {101} OL1 {102} ISO {103} OL2 {104} OLT {105} OL1</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3	+ 0. > > > + 0. + 0. + 0. + 0. + 0. + 0. + 0.	OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO	+ + () + () + () + () + () + ()	OLIAER).400*ORA1).500*ALD).200*ORA2).100*H0).720*ALD).720*ALD).060*ORA1	+ 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2
<pre>{ 99} OL2 {100} OLT {101} OL1 {102} IS0 {103} OL2 {104} OLT {105} OL1</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3	$\begin{array}{c} + 0. \\> \\> \\> \\> \\> \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \end{array}$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	OLIAER).400*ORA1).500*ALD).200*ORA2).100*H0).720*ALD).060*ORA1).140*H0	+ 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2
<pre>{ 99} OL2 {100} OLT {101} OLI {102} IS0 {103} OL2 {104} OLT {105} OLI</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3	$\begin{array}{c} + 0. \\> \\> \\> \\> \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ \end{array}$	OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAFP	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0	OLIAER).400*ORA1).500*ALD).200*ORA2).100*HO).720*ALD).060*ORA1).140*HO	+ 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2
<pre>{ 99} OL2 {100} OLT {101} OLT {101} OLI {102} ISO {103} OL2 {104} OLT {105} OLI </pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3	+ 0. > > > + 0. + 0. + 0. + 0. + 0. + 0. + 0. + 0.	OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 520*WCWO	+ + 0 + 0 + 0 + 0 + 0 + 0	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.60*ORA1 0.140*H0	+ 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2
<pre>{ 99 } OL2 {100 } OLT {101 } OL1 {102 } ISO {103 } OL2 {104 } OLT {105 } OL1 {106 } ISO</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3	$\begin{array}{c} + 0. \\> \\> \\> \\> \\> \\ + 0. \\ $	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	OLIAER).400*ORA1).500*ALD).200*ORA2).100*HO).720*ALD).140*HO).500*ALD	+ 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO
<pre>{ 99} OL2 {100} OLT {101} OL1 {102} IS0 {103} OL2 {104} OLT {105} OL1 {105} IS0</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3	$\begin{array}{c} + 0. \\> \\> \\> \\> \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \end{array}$	OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*HO 0.720*ALD 0.600*ORA1 0.140*HO 0.500*ALD 0.200*ORA2	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 {100} OLT {101} OLT {101} OLI {102} ISO {103} OL2 {104} OLT {105} OLI {106} ISO</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3	$\begin{array}{c} + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ + 0 \\ > \\ 0 \\ + 0$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HC2 OLIAER 530*HCHO 200*ORA1 220*MO2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.660*ORA1 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 {100} OLT {101} OL1 {102} ISO {103} OL2 {104} OLT {105} OL1 {106} ISO {107} HO2</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3	$\begin{array}{c} + 0. \\> \\> \\> \\> \\> \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \end{array}$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.140*H0 0.500*ALD 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 {100} OLT {101} OLT {101} OL1 {102} ISO {103} OL2 {104} OLT {105} OL1 {106} ISO {107} HO2 {108} HO2</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + MO2 + ETHP	$\begin{array}{c} + 0. \\> \\> \\> \\> \\ + 0. \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.200*ORA2 0.100*HO 0.720*ALD 0.600*ORA1 0.140*HO 0.500*ALD 0.200*ORA2 0.100*HO	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 108} HO2 }</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P	$\begin{array}{c} + 0. \\> \\> \\> \\> \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\> $	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*CO 260*HCHO 230*CO 260*HCHO 200*ORA1 220*MO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.660*ORA1 0.140*H0 0.500*ALD 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 {100} OLT {101} OL1 {102} IS0 {103} OL2 {104} OLT {105} OL1 {106} IS0 {107} HO2 {108} HO2 {109} HO2 {100} HO2 {</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P	$\begin{array}{c} + 0 \\> \\> \\> \\> \\> \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\> \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.140*H0 0.500*ALD 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 109} HO2 { 109} HO2 { 109} HO2 < 100</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC5P	$\begin{array}{c} + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ 0 \\ + 0 \\ + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \end{array}$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	OLIAER 0.400*ORA1 0.200*ORA2 0.100*H0 0.720*ALD 0.600*ORA1 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2</pre>	+ NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC5P + HC5P + HC8P	$\begin{array}{c} + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ > \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*CO 260*HCD 230*CO 260*HCD 200*ORA1 220*MO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.660*ORA1 0.140*H0 0.500*ALD 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 110} HO2 { 112} HO2</pre>	+ NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC5P + HC5P + HC8P + OL2P	$\begin{array}{c} + 0 \\> \\> \\> \\> \\> \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\> \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2	+ + (+ (+ (+ (+ (+ (+ (+ (+ (+	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.140*H0 0.500*ALD 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2</pre>	+ NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC3P + HC5P + HC8P + OL2P + OLTP	$\begin{array}{c} + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ > \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + () + () + () + () + () + () + () + (OLIAER 0.400*ORA1 0.200*ORA2 0.100*H0 0.720*ALD 0.600*ORA1 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99 } OL2 {100 } OLT {101 } OL1 {102 } ISO {103 } OL2 {104 } OLT {105 } OL1 {106 } ISO {107 } HO2 {108 } HO2 {109 } HO2 {111 } HO2 {112 } HO2 {113 } HO2 {113 } HO2 {114 } HO2</pre>	+ NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC3P + HC5P + HC8P + OL2P + OL1P	$\begin{array}{c} + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ 0 \\ + 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ > \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*CO 260*HC2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + () + () + () + () + () + () + () + (OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 114} HO2 { 114} HO2 </pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC5P + HC5P + HC5P + HC5P + OL2P + OL2P + OL2P + OL2P	$\begin{array}{c} + 0 \\> \\> \\> \\> \\> \\> \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\> \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + () + () + () + () + () + () + () + (OLIAER 0.400*ORA1 0.200*ORA2 0.100*HO 0.720*ALD 0.140*HO 0.140*HO 0.500*ALD 0.200*ORA2 0.100*HO	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 115} HO2 </pre>	 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC5P + HC5P + HC8P + OL2P + OL1P + KETP + KETP 	$\begin{array}{c} + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ >$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + C + C + C + C + C + C + C + C + C +	OLIAER 0.400*ORA1 0.200*ORA2 0.100*H0 0.720*ALD 0.600*ORA1 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99 } OL2 {100 } OLT {101 } OL1 {102 } ISO {103 } OL2 {104 } OLT {105 } OL1 {106 } ISO {107 } HO2 {108 } HO2 {109 } HO2 {110 } HO2 {111 } HO2 {112 } HO2 {113 } HO2 {115 } HO2 {116 } HO2</pre>	 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL2P + OL1P + OL1P + KETP + ACO3 	$\begin{array}{c} + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ 0 \\ + 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ + 0 \\ > \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*ORA1 220*MO2 180*HCHO 200*ORA1 220*MO2 00LIAER 530*HCHO 200*ORA1 220*MO2 00LIAER 530*HCHO 200*ORA1 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OLI { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 112} HO2 { 113} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 117} HO2 </pre>	<pre>+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +</pre>	$\begin{array}{c} + 0. \\> \\> \\> \\> \\> \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\> \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.200*ORA2 0.100*HO 0.720*ALD 0.140*HO 0.140*HO 0.500*ALD 0.200*ORA2 0.100*HO	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 116} HO2 { 117} HO2 { 118} HO2 </pre>	<pre>+ NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +</pre>	$\begin{array}{c} + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ > \\$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + C + C + C + C + C + C + C + C + C +	OLIAER 0.400*ORA1 0.200*ORA2 0.100*H0 0.720*ALD 0.600*ORA1 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99 } OL2 {100 } OLT {101 } OLT {101 } OL1 {102 } ISO {103 } OL2 {104 } OLT {105 } OL1 {106 } ISO {106 } ISO {107 } HO2 {108 } HO2 {109 } HO2 {110 } HO2 {111 } HO2 {112 } HO2 {113 } HO2 {115 } HO2 {116 } HO2 {117 } HO2 {117 } HO2 {117 } HO2 {118 } HO2 {118 } HO2 {118 } HO2 {119 } HO2 {1118 } HO2 {119 } HO2</pre>	+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	$\begin{array}{c} + 0. \\> \\> \\> \\> \\> \\> \\ 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\> \\ $	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*ORA1 220*MO2 180*HCHO 200*ORA1 220*MO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OL1 { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 117} HO2 { 118} HO2 { 119} HO2 { 120} HO2 </pre>	<pre>+ NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +</pre>	$\begin{array}{c} + 0. \\> \\> \\> \\> \\> \\> \\ 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\> \\ -$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 0P1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.200*ORA2 0.100*HO 0.720*ALD 0.600*ORA1 0.140*HO 0.500*ALD 0.200*ORA2 0.100*HO	+ 0. + 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OLI { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 111} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 116} HO2 { 117} HO2 { 118} HO2 { 119} HO2 { 120} HO2 { 120} HO2 { 120} HO2 </pre>	+ NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + O3 + O3 +	$\begin{array}{c} + 0 \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ > \\ 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ > \\ 0 \\ + 0 \\ > \\ -$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 200*ORA1 220*MO2 180*HCHO 230*CO 260*HO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	OLIAER 0.400*ORA1 0.200*ORA2 0.100*H0 0.720*ALD 0.660*ORA1 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2
<pre>{ 99} OL2 { 100} OLT { 101} OLT { 101} OL1 { 102} ISO { 103} OL2 { 104} OLT { 105} OL1 { 106} ISO { 107} HO2 { 108} HO2 { 109} HO2 { 110} HO2 { 112} HO2 { 112} HO2 { 113} HO2 { 114} HO2 { 115} HO2 { 116} HO2 { 117} HO2 { 118} HO2 { 120} HO2 { 120} HO2 { 121} MO2 </pre>	 + NO3 + NO3 + NO3 + NO3 + O3 + O3 + O3 + O3 + O3 + MO2 + ETHP + HC3P + HC5P + HC2P + OL2P + OL	$\begin{array}{c} + 0. \\> \\> \\> \\> \\> \\> \\ 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\ + 0. \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\ 1. \end{array}$	OLN OLN OLN OLN HCHO 120*HO2 530*HCHO 230*ORA1 220*MO2 180*HCHO 200*ORA1 220*MO2 OLIAER 530*HCHO 200*ORA1 220*MO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ + + + + + + + + + + + + + + + + + +	OLIAER 0.400*ORA1 0.500*ALD 0.200*ORA2 0.100*H0 0.720*ALD 0.140*H0 0.500*ALD 0.200*ORA2 0.100*H0	+ 0. + 0. + 0. + 0. + 0. + 0.	420*CO 330*CO 230*HO2 100*KET 290*ORA2 310*MO2 330*CO 230*HO2

Table 8A-8. RADM2_AE and RADM2_AE_AQ Mechanisms

{123} MO2	+ HC3P	>	0.840*HCHO	+	0.770*ALD	+	0.260*KET
{124} MO2	+ HC5P	>	+ HO2 0.770*нСНО	+	0.410*ALD	+	0.750*KET
{125} MO2	+ HC8D	>	+ HO2	+	0 460*41.0	+	1 390*४৮୩
[125] 102	1 11001		+ HO2		0.400 ALD		1.590 KEI
{126} MO2	+ OL2P	>	1.550*HCHO	+	0.350*ALD	+	HO2
(127) MO2	+ OLTP	>	1.250*HCHO	+	0.750*ALD	+	HO2
128 MO2		>	0 890*1010	-	0 725*710	-	цО3
1201 102	+ OHIF	/	0.050 110110	т	0.725 ALD	т	1102
(100)			+ 0.550"KEI				
{129} MO2	+ KETP	>	0.750*HCHO	+	0.750*MGLY	+	HO2
{130} MO2	+ ACO3	>	HCHO	+	0.500*HO2	+	0.500*MO2
			+ 0.500*ORA2				
{131} MO2	+ TOLP	>	HCHO	+	0.170*MGLY	+	0.160*GLY
()			+ 0 700*DCP	-	2 000*102		
[122] MO2	, VVI D		+ 0.700 DCB	- T	2.000 1102 0.4E0*MCTV		0 006+D0D
{ISZ} MOZ	+ XILP	>	HCHO	+	0.450"MGLI	+	0.000"DCB
			+ 2.000*HO2				
{133} MO2	+ TCO3	>	0.500*HCHO	+	0.445*GLY	+	0.055*MGLY
			+ 0.500*ORA2	+	0.025*ACO3	+	0.460*HO2
			+ 0.475*CO	+	x02		
{134} MO2	+ OLN	>	1 750*#CHO	+	0 500*002	+	
[134] 102			1.750 Hello		0.500 1102		ALD
			+ NO2		0 500+000		0 500+1400
{132} E.L.HF	+ ACO3	>	ALD	+	0.500*HO2	+	0.500*MO2
			+ 0.500*ORA2				
{136} HC3E	P + ACO3	>	0.770*ALD	+	0.260*KET	+	0.500*HO2
			+ 0.500*MO2	+	0.500*ORA2		
{137} HC5E	+ ACO3	>	0.410*ALD	+	0.750*KET	+	0.500*HO2
(-)			+ 0 500*MO2	+	0 500*ORA2		
[120] UCOT			0 460*31D	÷	1 200*VET		0 500*100
(130) HCOP	+ ACU3	/	0.400 ALD	Ŧ	1.390 KEI	т	0.500~HOZ
· · · · · · ·			+ 0.500*MO2	+	0.500*ORA2		
{139} OL2E	P + ACO3	>	0.800*HCHO	+	0.600*ALD	+	0.500*HO2
			+ 0.500*MO2	+	0.500*ORA2		
{140} OLTE	+ ACO3	>	ALD	+	0.500*HCHO	+	0.500*HO2
. ,			+ 0.500*MO2	+	0.500*ORA2		
{141} OLTE	+ ACO3	>	0 725*ALD	+	0 550*KET	+	0 140*HCHO
(111) 0111	i nees		0.500*1102	÷.	0.500 101		0.500*0010
[140] 777007			+ 0.500 HOZ	т	0.500*MOZ	- T	0.500*0RAZ
{142} KETE	+ AC03	>	MGLY	+	0.500^HOZ	+	0.500^MOZ
			+ 0.500*ORA2				
{143} ACO3	8 + ACO3	>	2.000*MO2				
{144} ACO3	B + TOLP	>	MO2	+	0.170*MGLY	+	0.160*GLY
			+ 0.700*DCB	+	HO2		
{145} ACO?	+ XYLP	>	MO2	+	0.450*MGLY	+	0.806*DCB
(110) 11000			+ ¹ 02		0.100 11021		0.000 202
[146] 3005			+ 1102 MO2		0 0 2 0 + 11 0 2		0.000+01 V
{146} ACUS	+ 1003	>	MOZ	+	0.920"HOZ	+	0.890"GL1
			+ 0.110*MGLY	+	0.050*ACO3	+	0.950*CO
			+ 2.000*XO2				
{147} ACO3	B + OLN	>	HCHO	+	ALD	+	0.500*ORA2
			+ NO2	+	0.500*MO2		
{148} OLN	+ OLN	>	2.000*HCHO	+	2.000*ALD	+	2.000*NO2
1149 XO2	+ HO2	>	022				
1150 X02	- MO2	í.	UCHO		110.2		
(151) MOZ	- 102	>	пспо	T	nuz		
{151} XO2	+ ACO3	>	MO2				
{152} XO2	+ XO2	>					
{153} XO2	+ NO	>	NO2				
{154} XNO2	2 + NO2	>	ONIT				
(155) XNO	2 + HO2	>	OP2				
(156) XNO	+ MO2	>	нсно	+	HO2		
157 VNO2	+ ACO2		MOD		1102		
		>	MOZ				
{158} XNO2	4 + XNOZ	>					
{159} TERE	Р + НО	>	TERPAER	+	HO		
{160} TERE	P + NO3	>	TERPAER	+	NO3		
{161} TERE	+ 03	>	TERPAER	+	03		

 Rate Expression
 Rate Constant

 k(1) uses photo table NO2_RADM88
 , scaled by 1.00000E+00
 {0.0000E+00}

 k(2) uses photo table O301D_RADM88
 , scaled by 1.00000E+00
 {0.0000E+00}

 k(3) uses photo table O303P_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(4) uses photo table HONO_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(5) uses photo table HNO3_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(6) uses photo table HNO4_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(7) uses photo table NO3NO_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

Table 8A-8. RADM2_AE and RADM2_AE_AQ Mechanisms

k(k(k(k(k(k(8) uses photo table NO3NO2_RADM88 9) uses photo table H2O2_RADM88 1.00000E+00 10) uses photo table HCHOmol_RADM88 1.00000E+00 11) uses photo table HCHOrad_RADM88 1.00000E+00 12) uses photo table ALD_RADM88 1.00000E+00 13) uses photo table MHP_RADM88 1.00000E+00 14) uses photo table HOP_RADM88 1.00000E+00 15) uses photo table PAA_RADM88 1.00000E+00 16) uses photo table PAA_RADM88 100000E+00 16) uses photo table PAA_RADM88 100000E+00 16) uses photo table PAA_RADM88 100000E+00 11) uses PAA_RADM88 100000E+00 12) uses photo table PAA_RADM88 100000E+00 14) uses PAA_RADM88 100000E+00 14) uses PAA_RADM88 14) uses PAA_RADM88 14) uses PAA_RADM88 15) uses PAA_RADM88 15) uses PAA_RADM88 16) uses PAA_RADM88 170000E+00 18) uses PAA_RA	<pre>{0.00000E+00} {0.00000E+00} {0.00000E+00} {0.00000E+00} {0.00000E+00} {0.00000E+00} {0.00000E+00} {0.00000E+00}</pre>
k(17) uses photo table GLYform_RADM88 , scaled by 1.00000E+00	{0.00000E+00}
k(k(18) uses photo table GLYmol_RADM88 , scaled by 1.00000E+00 19) uses photo table MGLY RADM88 , scaled by 1.00000E+00 	{0.00000E+00} {0.00000E+00}
k(20) uses photo table UDC_RADM88 , scaled by 1.00000E+00	{0.00000E+00}
k(k(21) uses photo table ORGNIT_RADM88 , scaled by $1.00000E+00$ 22) = 6 0000E-34 * (T/300)**(-2.30)	{0.00000E+00} {6.09302E-34}
k($23) = 6.5000E - 12 * \exp(120.0/T)$	{9.72293E-12}
k($24) = 1.8000E - 11 * \exp(110.0/T)$ $25) = 2.2000E + 11 * \exp(-70.0/T)$	$\{2.60365E-11\}$
k(26) = 2.2000E - 10	{2.20000E-10}
k($27) = 2.0000E - 12 * \exp(-1400.0/T)$	{1.82272E-14}
k ($28) = 1.6000E - 12 * \exp(-940.0/T)$ $29) = 1.1000E - 14 * \exp(-500.0/T)$	{6.82650E-14} {2.05452E-15}
k(30) = 3.7000E-12 * exp(240.0/T)	{8.27883E-12}
k(31) is a falloff expression using:	{1.39058E-12}
	$k_0 = 1.8000E-31 + (1/300) + (-3.20)$ kinf = 4.7000E-12 * (T/300) * (-1.40)	
	F = 0.60, n = 1.00	
к(k(32) = K(31) / Keq, where $Keq = 2.100E-27 * exp(10900.0/T)33) is a special rate expression of the form:$	{8.62399E-02} {3.01634E-12}
(k = k1 + k2[M], where	()
	k1 = 2.2000E - 13 * exp(620.0/T) k2 = 1.9000E - 33 * exp(980.0/T)	
k(34) is a special rate expression of the form:	{6.78905E-30}
	k = k1 + k2[M], where	. ,
	$k_{\perp} = 3.0800E - 34 * \exp(-2820.0/T)$ $k_{\perp} = 2.6600E - 54 * \exp(-3180.0/T)$	
k($35) = 3.3000E-12 * \exp(-200.0/T)$	{1.68671E-12}
k(36) is a falloff expression using: $k_0 = 7.0000 \text{ m} = 31.4 (\text{m}/300) \text{ k} \text{ k} (-2.60)$	{4.87144E-12}
	kinf = $1.5000E-11 * (T/300) * (-0.50)$	
1= (F = 0.60, n = 1.00	
k(38) = 1.4000E - 13 * exp(-2500.0/T)	{3.18213E-17}
k($39) = 1.7000E - 11 * \exp(150.0/T)$	(2.81225E-11)
k ($40) = 2.5000E - 14 * \exp(-1230.0/T)$ 41) = 2.5000E - 12	$\{4.03072E-16\}$ $\{2.50000E-12\}$
k(42) is a falloff expression using:	{1.26440E-12}
	k0 = 2.2000E - 30 * (T/300) * (-4.30)	
	F = 0.60, n = 1.00	
k(43) = k(42) / Keq, where Keq = $1.100E-27 * \exp(11200.0/T)$	{5.47034E-02}
к(k(44) = 2.0000E-21 45) is a falloff expression using:	{2.00000E-21} {1.14885E-11}
	k0 = 2.6000E-30 * (T/300) * (-3.20)	. ,
	kinf = $2.4000E - 11 * (T/300) * (-1.30)$ F = 0.60, n = 1.00	
k(46) is a special rate expression of the form:	{1.47236E-13}
	$k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$	
	$k^{2} = 4.1000E - 16 * exp(1440.0/T)$	
	$k_3 = 1.9000E - 33 * exp(725.0/T)$	
к(k(47 = 1.3000E-12 * exp(380.0/T) 48 = 4.6000E-11 * exp(230.0/T)	{4.65309E-12} {9.95294E-11}
k(49) is a falloff expression using:	{8.88848E-13}
	k0 = 3.0000E-31 * (T/300)**(-3.30) kinf = 1 5000E-12 * (T/300)**(0.00)	
	F = 0.60, n = 1.00	
k (50) = 1.5000E - 13 * (1.0 + 0.6*Pressure) $51) = 2.8200E + 0.1 * (7/200) * (2.00) * (-1000, 0.07)$	{2.40000E-13}
к(k(51 = 2.0500E+01 " (1/500)"" (2.00) ^ exp(-1280.0/T) 52 = 1.2330E-12 * (T/300)**(2.00) * exp(-444.0/T)	{2.74210E-13}
k($53) = 1.5900E - 11 * \exp(-540.0/T)$	{2.59669E-12}
к(54) = 1.(300E-11 * exp(-380.0/T))	{4.83334E-12}
k(55) = 3.6400E - 11 * exp(-380.0/T)	(1.01696E-11)

Table 8A-8. RADM2_AE and RADM2_AE_AQ Mechanisms

k (57)	=	5.3200E-12 *	exp(504.0/T)			$\{2, 88684E-11\}$
1_ / 1	- 0 \		1 07000 11 *	(E40.0/m)			(C 750C0B 11
к(:	58)	=	T.0/00E-II ^	exp(549.0/T)			{0./5209E-II
k(5	59)	=	2.1000E-12 *	exp(322.0/T)			{6.18715E-12
1-1 4	60)	_	1 00000 11 *	orn	116 0/11)			12 700/20 11
K ((60)	=	T.9900E-II "	exp(110.0/1)			{Z./0943E-II
k(6	61)	=	4.0000E-11					{4.00000E-11
210	62)	_	9 0000 <u><u></u>01 *</u>	216	1)			J3 60000E-11
V((02)	-	9.0000E-01	K(0	1)			J2.00000E-TT
k(6	63)	=	9.0000E-12					{9.00000E-12
rie	61)	_	6 87000-12 *	ovnl	256 0/71)			J1 62107E-11
V((01)	-	0.0700E-12	evb(230.0/1)			11.0219/10-11
k(6	65)	=	1.2000E-11 *	exp(-745.0/T)			{9.85020E-13
210	66)	-	1 1500F - 11					أ 1 15000F-11
7 ((007	-	1.13006-11					(1.100000-11
k(6	6'/)	=	1.7000E-11					{1.70000E-11
210	68)	_	2 8000 - 11					12 800000-11
V((00)	-	2.0000E-11					j2.0000E-11
k(6	69)	=	1.0000E-11					{1.00000E-11
k (5	70)	-	1 0000 F - 11					$\hat{I}_{1} = 0.000 \text{mm} = 1.1$
17 (101	-	1.0000E II					[1.000001 11
k([71)	=	1.0000E-11					{1.00000E-11
211	72)	-	6 16508-13 *	(T / 3	00)**/ 2 00) * evn(-444 0/T)	
V (121	-	0.1050E-15	(1/5	00) (2.00) evb(-111.0/1)	(1.3/1036-13
k('	73)	=	1.5500E-11 *	exp(-540.0/T)			{2.53137E-12
k (5	74)	-	2 55008-11 *	evnl	409 0/T)			$\frac{1}{1}$ 00601F-10
V (/ = /	-	2.55006-11	evb(109.0/1/			(1.00001E-10
k('	75)	=	2.8000E-12 *	exp(181.0/T)			{5.13974E-12
k ('	76)	=	1 9500E+16 *	eyn(-13543 0/T)			₹3 57235E-04
12(1.99001110	Cub (10010.0/1/			
k('	'/'/)	=	4.7000E-12					{4.70000E-12
k ('	78)	=	1 9500E+16 *	evn(-13543 0/T)			{3 57235E−04
1 (5			1.000000 10 +	Chp(100.0/1)			
К(19)	=	4.2000E-12 *	exp(180.0/1)			{/.683/8E-12
k(8	80)	=	4.2000E-12 *	exp(180.0/T			$\{7, 68378E - 12\}$
1 ((00)		1.20000 12	Chp(100.0/1)			
к(8	QΤ)	=	4.2000E-12 *	exp(180.0/T)			{/.68378E-12
k(8	82)	=	4.2000E-12 *	exp(180.0/T)			$\{7,68378E-12\}$
1= (0	021	_	4 2000 12 *	<u>-</u> - (100 0/m)			7 602700 10
к(а	83)	=	4.20008-12 ^	exp(T80.0/T)			{/.083/8E-12
k(8	84)	=	4.2000E-12 *	exp(180.0/T)			{7.68378E-12
1= (0	0 5 1	_	4 2000 12 *	<u>-</u> - (100 0/m)			7 602700 10
K ((05)	=	4.2000E-12 "	exp(100.0/1)			{/.003/0E-IZ
k(8	86)	=	4.2000E-12 *	exp(180.0/T)			{7.68378E-12
1= (0	07)	_	4 2000 12 *	<u>-</u> - (100 0/m)			7 602700 10
K ((0/)	=	4.2000E-12 "	exp(100.0/1)			{/.003/0E-IZ
k(8	88)	=	4.2000E-12 *	exp(180.0/T)			{7.68378E-12
1-1	001	_	4 2000 - 12 *	orn	100 0/m)			17 60270E 12
V (0	09)	_	4.2000E-12 "	exp(180.0/1)			J.003/0E-IZ
k(9	90)	=	4.2000E-12 *	exp(180.0/T)			{7.68378E-12
rig	01 \	_	4 2000 - 12 *	ovní	180 0/m)			ໂ7 68378⊑_12
V (3	91)	-	4.2000E-12 "	exb(100.0/1)			(1.003/0E-IZ
k(9	92)	=	4.2000E-12 *	exp(180.0/T)			{7.68378E-12
rig	031	_	6 00000-13 *	ovní	-2058 0/m)			JE 01030E-16
N(2	231	-	0.0000E-13	evb(-2030.0/1)			(0.01030E-10
k(9	94)	=	1.4000E-12 *	exp(-1900.0/T)			{2.38307E-15
k(q)	95)	-	6 00008-13 *	evn(-2058 0/T)			(6 01030F-16
17 (-	,,,,	-	0.0000115	CAP	2050.0/1/			
k(9	96)	=	1.4000E-12 *	exp(-1900.0/T)			{2.38307E-15
k(9	97)	=	1.4000E-12 *	exp(-1900.0/T)			{2.38307E−15
1 ()			2.10002 12	CITE (1,000.0717			
K(9	98)	=	2.2000E-11					{2.20000E-II
k(9	99)	=	2.0000E-12 *	exp(-2923.0/T)			{1.09940E-16
1-(1)		_	1 0000 11 *	<u>-</u> - (1005 0/m)			1 72000 14
K(T(00)	=	T.0000E-II "	exp(-1095.0/1)			{I./2099E-I4
k(10	01)	=	3.2300E-11 *	exp(-975.0/T)			{1.22539E-12
1-11	021	_	E 0100m 12	- <u></u>	,			LE 01000E 12
V(T(02)	-	5.8100E-13					(2.8T000E-I2
k(10	03)	=	1.2000E-14 *	exp(-2633.0/T)			{1.74559E-18
レ(1)	04)	_	1 32005-14 *	ovn	-2105 0/m)			J1 12022E-17
1. / 7 /		-		CVP (1100.0/1/			
ĸ(1(U5)	=	/.2900E-15 *	exp(-1136.0/T)			{1.61125E-16
k(10	06)	=	1.2300E-14 *	exp(-2013.0/T)			{1.43295E-17
2/1/	071	_	7 7000 14 *	ovn (1300 0/m			JE 01020E 10
V(T(-		evh(1300.0/1)			10.04030E-12
k(1(U8)	=	/./000E-14 *	exp(1300.0/T)			{6.04038E-12
k(10	09)	=	7.7000E-14 *	exp(1300 0/1)			{6 04038E-12
1= / 1 -	101	_	7 7000 14 -	C (1200 0/-			
К(Т.	TU)	=	/./UUUE-14 *	exp(1300.0/T)			{0.U4U38E-12
k(11	11)	=	7.7000E-14 *	exp(1300.0/T)			{6.04038E-12
1_ / 1 -	121		7 7000 14 +	<u>r</u> (1200 0/m			LE 04030E 10
K (1 .	⊥∠)	=	/./UUUE-14 *	exp(T200.0/1)			[0.U4U38E-12
k(11	13)	=	7.7000E-14 *	exp(1300.0/T)			{6.04038E-12
2/1-	1/1	_	7 70005 14 *	ovní	1300 0/m			JE 01020# 10
V(T-	14/	-	7.7000E-14 °	exb(T200.0/1)			10.04030E-12
k(11	15)	=	7.7000E-14 *	exp(1300.0/T)			{6.04038E-12
k(1	16)	=	7.70001-14 *	evní	1300 0/1			\$6 04038E-12
1-(_		CVD (1000.0/1/			
k(11	T.\)	=	/./000E-14 *	exp(1300.0/T)			{6.04038E-12
k(1	18)	=	7.7000E-14 *	exp(1300 0/1)			{6 04038E-12
1= / 1 -	101	_	7 7000 14 -	C (1200 0/-			
К(Т.	тЭ)	=	/./0008-14 *	exp(⊥3UU.U/'I')			{0.U4U38E-12
k(12	20)	=	7.7000E-14 *	exp(1300.0/T)			{6.04038E-12
1_ / 1 /	21		1 0000 12 4	<u>r</u> (220.0/m			12 075220 12
K (1 4	∠⊥)	=	T.2000E-T2 *	exp(ZZU.U/T)			[3.9/533E-13
k(12	22)	=	1.4000E-13 *	exp(220.0/T)			{2.92919E-13
1-11	22 V		1 2000 11 +		220 0/m			10 707500 14
K (1 4	4S)	=	H.∠UUUE-14 *	exp(ZZU.U/T)			[0./8/58E-14
k(12	24)	=	3.4000E-14 *	exp(220.0/T)			{7.11376E-14
k(1'	251	=	2.90008-14 *	evní	220 0/11			
12 (14		-	7.2000R-T4	CVD (220.0/1)			
k(12	26)	=	⊥.4000E-13 *	exp(220.0/T)			{2.92919E-13
k(1)	27)	=	1.4000E-13 *	exp(220 0/11			{2 92919E-13
1= / 1 /	201	-	1 70000 14 -	C11P(220.0/1/			
К(Т	Z8)	=	1./UUUE-14 *	exp(220.0/T)			{3.55688E-14
k(12	29)	=	1.7000E-14 *	exp(220.0/T)			{3.55688E-14
	201		0 6000 12 4	<u>r</u> (220 0/m			12 000500 12
F / 1		=	2.000006-13 *	EXD(ZZU.U/T)			くえ ロロおうタビー しん

K(I3I) = I.7000E	-14 * exp(220.0/T)	{3.55688E-14}
k(132) = 1.7000E	-14 * exp(220.0/T)	(3.55688E-14)
k(133) = 9.6000E	-13 * exp(220.0/T)	{2.00859E-12}
k(134) = 1.7000E	-14 * exp(220.0/T)	(3.55688E−14)
k(135) = 3.4000E	-13 * exp(220.0/T)	(7.11376E-13)
k(136) = 1.0000E	-13 * exp(220.0/T)	{2.09228E-13}
k(137) = 8.4000E	-14 * exp(220.0/T)	(1.75752E-13)
k(138) = 7.2000E	-14 * exp(220.0/T)	{1.50644E-13}
k(139) = 3.4000E	-13 * exp(220.0/T)	(7.11376E-13)
k(140) = 3.4000E	-13 * exp(220.0/T)	{7.11376E-13}
k(141) = 4.2000E	-14 * exp(220.0/T)	{8.78758E-14}
k(142) = 4.2000E	-14 * exp(220.0/T)	{8.78758E-14}
k(143) = 1.1900E	-12 * exp(220.0/T)	{2.48981E-12}
k(144) = 4.2000E	-14 * exp(220.0/T)	{8.78758E-14}
k(145) = 4.2000E	-14 * exp(220.0/T)	{8.78758E-14}
k(146) = 1.1900E	-12 * exp(220.0/T)	{2.48981E-12}
k(147) = 4.2000E	-14 * exp(220.0/T)	{8.78758E-14}
k(148) = 3.6000E	-16 * exp(220.0/T)	{7.53221E-16}
k(149) = 7.7000E	-14 * exp(1300.0/T)	{6.04038E-12}
k(150) = 1.7000E	-14 * exp(220.0/T)	{3.55688E-14}
k(151) = 4.2000E	-14 * exp(220.0/T)	{8.78758E-14}
k(152) = 3.6000E	-16 * exp(220.0/T)	{7.53221E-16}
k(153) = 4.2000E	-12 * exp(180.0/T)	{7.68378E-12}
k(154) = 4.2000E	-12 * exp(180.0/T)	{7.68378E-12}
k(155) = 7.7000E	-14 * exp(1300.0/T)	{6.04038E-12}
k(156) = 1.7000E	-14 * exp(220.0/T)	{3.55688E-14}
k(157) = 4.2000E	-14 * exp(220.0/T)	{8.78758E-14}
k(158) = 3.6000E	-16 * exp(220.0/T)	{7.53221E-16}
k(159) = 1.0000E	+00 * k(58)	{6.75269E-11}
k(160) = 1.0000E	+00 * k(101)	{1.22539E-12}
k(161) = 1.0000E	+00 * k(105)	{1.61125E-16}

Table 8A-8. RADM2_AE and RADM2_AE_AQ Mechanisms

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reactior	List							
$ \left\{ \begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>> { 1} NO2</pre>	+ hv		>	 03P	+	NO		<
$ \begin{bmatrix} 3 \\ 4 \\ 1 \\ 4 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	{ 2} 03	+ hv		>	01D				
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 3} 03	+ hv		>	O3P				
$ \begin{cases} 5 \\ 6 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	{ 4 } HON	10 + hv		>	HO	+	NO		
$ \begin{cases} 6 \\ 7 \\ 103 \\ 7 \\ 103 \\ 102 \\ 1$	{ 5} HNC	3 + hv		>	HO	+	NO2		
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 6 } HNC	04 + hv		>	HO2	+	NO2		
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 7} NO3	+ hv		>	NO				
$ \begin{cases} 9 \\ 10 \\ HCR0 + hv \\ 10 \\ HCR0 + hv \\ 10 \\ HCR0 + hv \\ 10 \\ 11 \\ HCR0 + hv \\ 10 \\ 12 \\ ALD + hv \\ 10 \\ 12 \\ ALD + hv \\ 10 \\ 13 \\ 10 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	{ 8} NO3	+ hv		>	NO2	+	O3P		
$ \begin{bmatrix} 10 \\ 11 \\ 11 \\ 11 \\ 12 \\ 11 \\ 12 \\ 13 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 16 \\ 14 \\ 16 \\ 12 \\ 14 \\ 15 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 14 \\ 16 \\ 12 \\ 14 \\ 16 \\ 14 \\ 16 \\ 16 \\ 14 \\ 16 \\ 16$	{ 9} H20	2 + hv		>	2.000*HO				
$ \begin{bmatrix} 11 \\ 13 \\ ALD + hv &> HO2 + HO2 + CO \\ 13 \\ ADD + hv &> HC2 + HO2 + CO \\ 13 \\ OPI + hv &> HC0 + HO2 + HO \\ HO3 + HO \\ HO2 + HO \\ HO2 + HO \\ HO3 + HO \\ HO2 + HO \\ HO2 + HO \\ HO3 + HO \\ HO2 + HO \\ HO3 + HO \\ HO2 + HO \\ HO \\ HO + HO \\ HO2 + HO \\ HO + HO \\ HO2 + HO \\ HO + HO2 \\ HO2 + HO \\ HO + HO \\ HO3 + HO \\ HO2 + HO \\ HO + HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\ HO + HO \\$	{ 10} HCH	10 + hv		>	CO				
$ \begin{bmatrix} 12\\ 13\\ 0P1 + hv &> MC2 + HO2 + CO \\ 14 & 0P2 + hv &> MLC + HO2 + HO \\ 14 & 0P2 + hv &> MLC + HO2 + HO \\ 15 & PAA + hv &> MLC + HO2 + HO \\ 16 & KET + hv &> MLC + HO2 + HO \\ 16 & KET + hv &> MLC + HO2 + HO \\ 17 & GLT + hv &> 0.130^{+}HCHO + 1.670^{+}CO \\ 18 & GLT + hv &> 0.450^{+}HCHO + 1.550^{+}CO + 0.800^{+}HO2 \\ 19 & MGLT + hv &> 0.450^{+}HCHO + 1.550^{+}CO + 0.800^{+}HO2 \\ 10 & DCB + hv &> 0.980^{+}HO2 + 0.020^{+}ACO3 + TCO3 \\ 10 & DCB + hv &> 0.980^{+}HO2 + 0.020^{+}ACO3 + TCO3 \\ 10 & HO1 + hV &> 0.980^{+}HO2 + 0.800^{+}KET + HO2 \\ 10 & OLD + HO1 + HO2 &> OR0 \\ 22 & O3P + HO1 + (O2) &> O3P \\ 24 & O1D + HO2 &> O3P \\ 25 & O1D + HO2 &> HO2 \\ 25 & O1D + HO2 &> HO2 \\ 26 & O3 + HO &> HO2 \\ 28 & O3 + HO &> HO2 + HO \\ 30 & HO2 &> HO2 + HO \\ 31 & HO2 &> HO2 + HO2 \\ 34 & HO2 &> HO2 \\ 34 & HO2 &> HO2 + HO2 \\ 35 & HO2 &> HO2 + HO2 \\ 36 & HO &> HO2 + HO2 \\ 36 & HO &> HO2 + HO2 \\ 37 & NO &> HO2 + HO2 \\ 38 & HO2 & +HO &> HO2 + HO2 \\ 39 & HO2 &> HO2 + HO2 \\ 39 & O3 & HO &> HO2 + HO2 \\ 31 & HO2 &> HO2 + HO2 \\ 31 & HO2 &> HO2 + HO2 \\ 31 & HO2 &> HO2 + HO2 \\ 33 & HO2 &> HO2 + HO2 \\ 34 & HO2 &> HO2 + HO2 \\ 34 & HO2 &> HO2 + HO2 \\ 35 & HO0 &> HO2 + HO2 \\ 36 & HO & +HO &> HO2 \\ 36 & HO &> HO2 + HO2 \\ 37 & NO &> HO2 + HO2 \\ 38 & HO1 &> HO2 + HO2 \\ 38 & HO2 &> HO2 + HO2 \\ 41 & HO3 & +HO &> HO2 \\ 42 & HO & +HO &> HO3 \\ 42 & HO & +HO &> HO3 \\ 43 & HO2 &> HO3 \\ 44 & HO2 &> HO3 \\ 45 & HO & +HO3 &> HO3 \\ 45 & HO & +HO3 &> HO2 \\ 46 & HO &> HO3 \\ 47 & HO & +HNO &> HO2 \\ 49 & HO & +SO2 &> HO3 \\ 45 & HO &> HO2 \\ 46 & HO &> HO2 + 0.170^{+}HO2 + 0.09^{+}HCHO \\ 46 & HO &> HO2 \\ 57 & HC & +HO &> HO2 \\ 58 & HO & +HO &> HO2 \\ 59 & HO & +HO &> HO2 \\ 50 & HO & -HO &> HO2 \\ 50 & HO & -HO &> HO2 \\ 50 & HO & -HO &> HO2 + 0.750^{+}HO \\ 51 & HO &> HO2 + 0.750^{+}HO \\ 52 & HO & +HO &> HO2 + 0.750^{+}HO \\ 53 & HO &> HO &> HO2 + 0.700^{+}HO \\ 54 & HO &> HO$	{ 11} HCH	10 + hv		>	HO2	+	HO2	+	CO
$ \begin{bmatrix} 13\\ 14 \\ 15 \\ 14 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$	{ 12} ALI) + hv		>	MO2	+	HO2	+	CO
$ \begin{bmatrix} 14 \\ 15 \\ 15 \\ 16 \\ 16 \\ 17 \\ 16 \\ 17 \\ 17 \\ 17 \\ 17$	{ 13} OP1	+ hv		>	HCHO	+	HO2	+	HO
$ \begin{bmatrix} 15 \\ 8.27 \\ 15 \\ 16 \\ 16 \\ 17 \\ 16 \\ 17 \\ 18 \\ 12 \\ 17 \\ 18 \\ 12 \\ 12 \\ 10 \\ 18 \\ 18 \\ 12 \\ 12 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	{ 14} OP2	+ hv		>	ALD	+	HO2	+	HO
$ \begin{bmatrix} 16 \\ ker \\ 17 \\ clr \\ clr$	{ 15} PAA	+ hv		>	MO2	+	HO		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 16} KET	+ hv		>	ACO3	+	ETHP		
$ \begin{bmatrix} 18 \\ 19 \\ MGL \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	{ 17} GLY	+ hv		>	0.130*HCHO	+ 1.	870*CO		
$ \begin{bmatrix} 19 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 21 \\ 20 \\ 21 \\ 20 \\ 21 \\ 21$	{ 18} GLY	f + hv		>	0.450*HCHO	+ 1.	550*CO	+ 0.8	300*HO2
$ \begin{bmatrix} 20 \\ 21 \\ 0 \text{ DCB} \\ + \text{ hv} \\ + \text{ NO2} \\ + \text{ NO2} \\ + \text{ NO2} \\ + \text{ O.800*KC3} \\ + \text{ O.800*KC3} \\ + \text{ HO2} \\ + $	{ 19} MGI	Y + hv		>	ACO3	+	HO2	+	CO
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 20} DCE	3 + hv		>	0.980*HO2	+ 0.	020*ACO3	+	TCO3
$ \begin{bmatrix} 22 \\ 03P + [M] + [02] &> \\ 03 \\ 24 \\ 01D + [M2] &> \\ 03P \\ 25 \\ 01D + [02] &> \\ 03P \\ 25 \\ 01D + [120] &> \\ 03P \\ 26 \\ 01D + [120] &> \\ 03P \\ 26 \\ 01D + [120] &> \\ 03P \\ 27 \\ 03 & + NO &> \\ NO2 \\ 28 \\ 03 & + HO &> \\ HO2 \\ 29 \\ 03 & + HO &> \\ HO2 \\ 29 \\ 03 & + HO &> \\ HO2 \\ 29 \\ 03 & + HO &> \\ HO2 \\ 41 \\ HO2 & + NO &> \\ HO2 \\ 41 \\ HO2 & + HO &> \\ HO2 \\ 41 \\ HO2 & + HO2 & + [H2O] \\> \\ HO2 \\ 41 \\ HO2 & + HO2 & + [H2O] \\> \\ HO2 \\ 41 \\ HO2 & + HO2 & + [H2O] \\> \\ HO2 \\ 41 \\ HO3 & + HO2 &> \\ HO2 \\ 41 \\ HO3 & + HO2 &> \\ HO3 \\ 41 \\ HO3 & + HO2 &> \\ HO3 \\ 42 \\ HO3 & + HO2 &> \\ HO3 \\ 41 \\ HO3 & + HO2 &> \\ HO3 \\ 42 \\ HO3 & + HO2 &> \\ HO3 \\ 44 \\ HO3 & + HO2 &> \\ HO3 \\ 44 \\ HO3 & + HO2 &> \\ HO3 \\ 44 \\ HO3 & + HO2 &> \\ HO3 \\ 45 \\ HO & + HO3 &> \\ HO3 \\ 47 \\ HO & + HNO3 &> \\ HO3 \\ 47 \\ HO & + HNO3 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO3 \\ 47 \\ HO & + HO4 &> \\ HO2 \\ 51 \\ HC3 & HO &> \\ HO2 \\ 51 \\ HC3 & HO &> \\ HO2 \\> \\ HO2 \\ 51 \\ HC3 & HO &> \\ HO2 \\> \\ HO3 \\> \\ HO2 \\> \\ HO2 \\> \\ HO2 \\ + \\ HO2 \\> \\ HO2 \\> \\ HO2 \\ + \\ HO2 \\ + \\ HO2 \\> \\ HO2 \\ + \\ $	$\{21\}$ ONI	T + hv		>	0.200*ALD	+ 0.	800*KET	+	HO2
$ \begin{bmatrix} 22 \\ 32 \\ 33 \\ 24 \\ 01D + [N2] + [N] + [02] &> 03 \\ 24 \\ 01D + [N2] &> 03P \\ 25 \\ 01D + [02] &> 03P \\ 26 \\ 01D + [H20] &> 2.000*B0 \\ 27 \\ 03 + N0 &> N02 \\ 28 \\ 03 + H02 &> H02 \\ 29 \\ 03 + H02 &> H02 \\ 29 \\ 03 + H02 &> H02 \\ 31 \\ H02 + N02 &> H02 + H0 \\ 31 \\ H02 + N02 &> H02 \\ 34 \\ H02 + H02 + [H20] &> H02 \\ 34 \\ H02 + H02 + [H20] &> H02 \\ 35 \\ H202 + H0 &> H02 \\ 35 \\ H202 + H0 &> H02 \\ 36 \\ N0 + H0 &> H02 \\ 36 \\ N0 + H0 &> H02 \\ 36 \\ N0 + H0 &> H02 \\ 37 \\ N0 + N0 &> H02 \\ 38 \\ 03 + N02 &> H00 \\ 39 \\ N03 + N02 &> N03 \\ 41 \\ N03 + N02 &> N02 + N03 \\ 42 \\ N03 + N02 &> N02 + N03 \\ 41 \\ N03 + N02 &> N02 + N03 \\ 42 \\ N03 + N02 &> N02 + N03 \\ 41 \\ N205 &> N02 + N03 \\ 44 \\ N205 &> N02 + N03 \\ 45 \\ H0 + HN03 &> N02 \\ 44 \\ N205 + [H20] &> N02 \\ 44 \\ N205 + [H20] &> N02 \\ 44 \\ N205 + [H20] &> N02 \\ 45 \\ H0 + HN03 &> N02 \\ 46 \\ H0 + HN03 &> N02 \\ 47 \\ H0 + HN04 &> N02 \\ 48 \\ H0 + H02 &> \\ 49 \\ H0 + S02 &> \\ 1.830*BC3 + 0 \\> BC2 \\ 51 \\ HC5 + H0 &> BC2 \\ 52 \\ ETH + H0 &> BC3 \\ 53 \\ HC3 + H0 &> BC3 \\ 54 \\ HC5 + H0 &> BC3 \\ 55 \\ HC6 \\ 55$	()	· · · · ·	[]		+ NO2				
$ \begin{bmatrix} 23 \\ 24 \\ 01D \\ + [N2] \\ 25 \\ 01D \\ + [R2] \\ 1-2 \\ 03P \\ 10D \\ + [R2] \\ 1-2 \\ 03P \\ 10D \\ 1$	{ 22} 03	• + [M]	+ [02]	>	03				
$ \begin{bmatrix} 2+0 & 01D & + & 1021 &2 & 03P \\ 26 & 01D & + & [120] &2 & 2.000^{HD} \\ 27 & 03 & + NO &2 & NO2 \\ 28 & 03 & + H02 &2 & HO2 \\ 29 & 03 & + H02 &2 & HO2 \\ 30 & HO2 & + NO2 &2 & HO4 \\ 31 & HO2 & + NO2 &2 & HO4 \\ 32 & HNO4 &2 & HO2 & + & NO2 \\ 33 & HO2 & + HO2 &2 & HO2 \\ 34 & HO2 & + HO2 & + & [H20] &2 & HO2 \\ 35 & H2O2 & + HO &2 & HO2 \\ 36 & NO & + HO &2 & HO2 \\ 37 & NO & + NO & + & [O2] &2 & NO3 \\ 39 & NO3 & + NO &2 & NO0 & + & NO2 \\ 41 & NO3 & + NO2 &2 & NO3 \\ 41 & NO3 & + NO2 &2 & NO3 \\ 42 & NO3 & + NO2 &2 & NO3 \\ 43 & NO2 &2 & NO3 & + & NO2 \\ 44 & NZO5 & HO2 &2 & NO3 & + & NO2 \\ 44 & NZO5 & HO2 &2 & NO3 & + & NO3 \\ 45 & HO & + HO2 &2 & NO2 & + & NO3 \\ 46 & HO & + HNO3 &2 & NO3 & + & NO3 \\ 47 & HO & + HNO4 &2 & NO2 & + & NO3 \\ 48 & HO & + NO2 &2 & NO3 & + & HO2 \\ 50 & CO & + HO &2 & HNO3 & + & HO2 \\ 51 & HO & + & NO2 &2 & NO2 & + & NO3 \\ 49 & HO & + & SO2 &2 & NO2 & + & NO3 \\ 47 & HO & + & HNO4 &2 & NO2 & + & HO2 \\ 51 & HO & + & HO2 &2 & HNO3 & + & 0.170^{*}HO2 & + & 0.009^{*}HCHO \\ + & 0.075^{*}ALD & + & 0.025^{*}HC1 & + & 0.009^{*}HCHO \\ + & 0.075^{*}ALD & + & 0.250^{*}SO2 & + & 0.250^{*}SO2 \\ 52 & E^{*}H & + HO &2 & HCSP & + & 0.250^{*}SO2 \\ 53 & HC3 & + & HO &2 & HCSP & + & 0.250^{*}SO2 \\ 54 & HC5 & + & HO &2 & HCSP & + & 0.250^{*}SO2 \\ 55 & HC6 & + & HO &2 & HCSP & + & 0.250^{*}SO2 \\ 55 & HC6 & + & HO &2 & HCSP & + & 0.250^{*}SO2 \\ 56 & CL2 & + & HO &2 & OL2P \\ 58 & OL1 & + & HO &2 & OL2P \\ 59 & OL1 & + & HO &2 & OL2P \\ 59 & OL1 & + & HO &2 & OL2P \\ 59 & OL1 & + & HO &2 & OL2P \\ 59 & TOL & + & HO &2 & HCSP & + & 0.250^{*}SO2 \\ 51 & HCH & + & HO &2 & HCSP & + & 0.250^{*}SO2 \\ 51 & HCH & + & HO &2 & HCSP & + & 0.170^{*}HC2 & + & 0.900^{*}TCO3 \\ 51 & HCH & HO &2 & HCSP & + & 0.250^{*}SO2 & + & 0.900^{*}TCO3 \\ 52 & CL1 & + & HO &2 & HC2 & + & CO \\ 63 & DCE & + & HO &2 & HC2 & + & CO \\ 64 & ALD & + & HO &2 & HC2 & + & CO \\ 67 & MELY & + & HO &2 & 0.500^{*}HCD & + & 0.50$	{ 23} 03E	+ NO2		>	NO				
$ \begin{bmatrix} 25 \\ 26 \\ 01D \\ + \\ 14201 \\ 27 \\ 03 \\ + \\ H0 \\ + \\ H0 \\ 29 \\ 03 \\ + \\ H0 \\ + \\ H0 \\ 29 \\ 03 \\ + \\ H0 \\ + \\ H0 \\ 11 \\ H0 \\ + \\ H0 \\ 12 \\ H0A \\ + \\ H0 \\ $	{ 24} 011) + [NZ]		>	03P				
$ \begin{bmatrix} 27 & 0.3 & + & NO &> & NO2 \\ 28 & 0.3 & + & HO &> & HO2 \\ 29 & 0.3 & + & HO2 &> & HO2 \\ 30 & HO2 & + & NO &> & NO2 & + & HO \\ 31 & HO2 & + & NO &> & HO2 & + & NO2 \\ 32 & HNO4 &> & HO2 & + & NO2 \\ 33 & HO2 & + & HO &> & HO2 & + & NO2 \\ 34 & HO2 & + & HO2 &> & HO2 & + & NO2 \\ 35 & H2O2 & + & HO &> & HO2 & + & HO1 \\ 36 & NO & + & HO &> & HO2 & + & HO2 \\ 36 & NO & + & HO &> & HO2 & + & HO2 \\ 38 & O3 & + & NO2 &> & NO2 & + & HO2 \\ 38 & O3 & + & NO2 &> & NO2 & + & NO2 \\ 40 & NO3 & + & NO2 &> & NO2 & + & NO2 \\ 41 & NO3 & + & NO2 &> & NO2 & + & NO2 \\ 42 & NO3 & + & NO2 &> & NO2 & + & NO3 \\ 42 & NO3 & + & NO2 &> & NO2 & + & NO3 \\ 43 & N2O5 &> & NO2 & + & NO3 \\ 44 & N2O5 & + & HEO &> & NO2 & + & NO3 \\ 45 & HO & + & NO2 &> & NO2 & + & NO3 \\ 46 & HO & + & HNO3 &> & NO2 & + & NO3 \\ 47 & HO & + & HNO4 &> & NO2 & + & \\ 49 & HO & + & HO2 &> & HNO3 & + & 0.255 $	{ 25} 011			>	0.00 × 110				
$ \begin{bmatrix} 27 & 0.3 & + 10.0 &3 & 10.2 \\ 29 & 0.3 & + 10.2 &3 & 10.0 \\ 29 & 0.3 & + 10.2 &3 & 10.0 \\ 30 & 10.2 & + 10.2 &3 & 10.0 \\ 31 & 10.2 & + 10.2 &3 & 10.0 \\ 32 & 100.4 &3 & 10.0 \\ 33 & 10.2 & + 10.2 &3 & 10.0 \\ 34 & 10.2 & + 10.2 &3 & 10.0 \\ 35 & 12.02 & + 10.0 &3 & 10.0 \\ 35 & 12.02 & + 10.0 &3 & 10.0 \\ 37 & 10.0 & + 10.0 &3 & 10.0 \\ 37 & 10.0 & + 10.0 &3 & 10.0 \\ 37 & 10.0 & + 10.0 &3 & 10.0 \\ 37 & 10.0 & + 10.0 &3 & 10.0 \\ 38 & 0.3 & + 10.2 &3 & 10.0 \\ 39 & 10.3 & + 10.2 &3 & 10.0 \\ 40 & 10.3 & + 10.2 &3 & 10.0 \\ 40 & 10.3 & + 10.2 &3 & 10.0 \\ 41 & 10.3 & + 10.2 &3 & 10.0 \\ 42 & 10.3 & + 10.2 &3 & 10.0 \\ 42 & 10.3 & + 10.2 &3 & 10.0 \\ 42 & 10.3 & + 10.2 &3 & 10.0 \\ 43 & 10.0 & + 10.2 &3 & 10.0 \\ 44 & 10.0 & + 10.2 &3 & 10.0 \\ 44 & 10.0 & + 10.0 &3 & 10.0 \\ 45 & 10.0 & + 10.0 &3 & 10.0 \\ 46 & 10.0 &3 & 10.0 \\ 47 & 10.0 & + 10.0 &3 & 10.0 \\ 49 & 10.0 & + 50.2 &3 & 10.0 \\ 49 & 10.0 & + 50.2 &3 & 10.0 \\ 51 & 10. &3 & 10.0 \\ 51 & 10. &3 & 10.0 \\ 51 & 10. &3 & 0.10 \\ 51 & 10.$	{ 26} UII) + [H2O]		>	2.000^HO				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{ 2/ \} 03$	+ NO		>	NO2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 20} 03	+ HO		>	HOZ				
$ \begin{cases} 10, 102, + 100, 102, + 100, 102, + 100, 102, + 100, 102, 102, 100, 102, 100, 102, 100, 100$	{ 29} U3	T HOZ			NO2		чо		
$ \begin{bmatrix} 1 & 10.2 & + 10.2 & + -> & 110.2 & + & NO2 \\ 32 & HNO4 &> & HO2 & + & NO2 \\ 34 & HO2 & + HO2 & + & [H2O] &> & HO2 \\ 35 & H2O2 & + HO &> & HO2 \\ 36 & NO & + HO &> & HONO \\ 37 & NO & + NO & + & [O2] &> & NO3 \\ 39 & NO3 & + & NO &> & 2.000*NO2 \\ 40 & NO3 & + & NO2 &> & NO3 \\ 40 & NO3 & + & NO2 &> & NO0 & + & NO2 \\ 411 & NO3 & + & HO2 &> & HNO3 &> & NO2 \\ 421 & NO3 & + & NO2 &> & NO2 & + & NO3 \\ 421 & NO3 & + & NO2 &> & NO2 & + & NO3 \\ 421 & NO3 & + & NO2 &> & NO2 & + & NO3 \\ 431 & N2O5 &> & NO2 & + & NO3 \\ 442 & N2O5 & + & (H2O] &> & NO2 & + & NO3 \\ 443 & N2O5 &> & NO2 & + & NO3 \\ 444 & N2O5 & + & (H2O] &> & NO2 & + & NO3 \\ 456 & HO & + & HNO4 &> & NO2 \\ 468 & HO & + & HNO4 &> & NO2 \\ 488 & HO & + & HO2 &> & MO2 \\ 511 & HO &> & MO2 \\ 521 & ETH & + & HO &> & ETHP \\ 531 & HC3 & + & HO &> & ETHP \\ 531 & HC3 & + & HO &> & HC5P & + & 0.170*HO2 & + & 0.009*HCHO \\ & + & 0.075*ALD & + & 0.170*HO2 & + & 0.009*HCHO \\ & + & 0.075*ALD & + & 0.170*HO2 & + & 0.09*HCHO \\ & + & 0.075*ALD & + & 0.250*XO2 \\ 561 & OL2 & + & HO &> & OL2P \\ 571 & OLT & + & HO &> & OL2P \\ 573 & OLT & + & HO &> & OL1P \\ 580 & OL1 & + & HO &> & OL2P \\ 573 & OLT & + & HO &> & OL2P \\ 573 & OLT & + & HO &> & OL2P \\ 574 & OL2 & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 575 & OLT & + & HO &> & OL2P \\ 576 & OL2 & + & HO &> & OL2P \\ 576 & OL2 & + & HO &> & OL2P \\ 576 & OL2 & + & HO &> & OL2P \\ 577 & OLT & + & HO &> & OL2P \\ 578 & OL1 & + & HO &> & OL2P \\ 578 & OL1 & + & HO &> & OL2P \\ 579 & OL2 & + & HO &> & OL2P \\ 570 & OL2 & + & HO &> & OL2P \\ 570 & OL2 & + & HO &> & OL2P \\ 570 & OL2 & + & HO &> & OL2P \\ 570 & OL2 & + &$		+ NO2			INOZ UNOA	т	но		
$ \begin{bmatrix} 1 & 2 & 1102 & 1 & 102 \\ 33 & H02 & + H02 & + H20 \\ 34 & H02 & + H02 & + H20 \\ 35 & H202 & + H0 &> H202 \\ 36 & N0 & + H0 &> H002 \\ 37 & N0 & + N0 & + [02] &> N03 \\ 39 & N03 & + N02 &> N03 \\ 40 & N03 & + N02 &> N03 & + N02 \\ 41 & N03 & + N02 &> N00 & + N02 \\ 41 & N03 & + N02 &> N00 & + N02 \\ 42 & N03 & + N02 &> N00 & + N03 \\ 43 & N205 &> N02 & + N03 \\ 44 & N205 &> N02 & + N03 \\ 45 & H0 & + N02 &> N03 \\ 46 & H0 & + H003 &> N03 \\ 46 & H0 & + H003 &> N02 \\ 48 & H0 & + S02 &> N02 \\ 50 & C0 & + H0 &> N02 \\ 51 & H0 &> N02 \\ 52 & ETH & + H0 &> N02 \\ 53 & HC3 & + H0 &> H02 \\ 54 & HC3 & + H0 &> HC5P & + 0.170*H02 & + 0.009*HCH0 \\ 55 & HC8 & + H0 &> HC5P & + 0.250*X02 \\ 55 & HC8 & + H0 &> HC5P & + 0.250*X02 \\ 56 & OL2 & + H0 &> OL2P \\ 57 & OLT & + H0 &> OL2P \\ 58 & OL1 & + H0 &> OL1P \\ 58 & OL1 & + H0 &> OL1P \\ 58 & OL1 & + H0 &> OL1P \\ 58 & OL1 & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL2P \\ 57 & OLT & + H0 &> OL1P \\ 58 & OL1 & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL2P \\ 51 & OLT & + H0 &> OL2P \\ 51 & OLT & + H0 &> OL1P \\ 58 & OL1 & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL1P \\ 51 & OLT & + H0 &> OL1P \\ 51 & OLT & + H0 &> OL1P \\ 52 & ETH & + H0 &> OL1P \\ 53 & HC8 & + H0 &> OL1P \\ 54 & HC9 &> OL2P \\ 57 & OLT & + H0 &> OL1P \\ 58 & OLT & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL1P \\ 50 & OLT & + H0 &> OL100*H02 & + 0.900*X02 & + 0.900*TC03 \\ 62 & CSL & + H0 &> CSL \\ 63 & HCR0 & + H0 &> H02 & + C0 \\ 64 & ALD & + H0 &> H02 & + C0 \\ 65 & KET & + H0 &> H02 & + C0 \\ 66 & OLY & + H0 &> H02 & + C0 \\ 67 & MGLY & + H0 &> H02 & + 0.500*H00 & + 0.500*H00 \\ 70 & OP2 & + H0 &> OL500*H02 & + 0.500*H00 & + 0.500*H00 \\ 70 & OP2 & + H0 &> OL500*H02 & + 0.500*H00 & + 0.500*H00 \\ 70 & OP2 & + H0 &> OL500*H02 & + 0.500*H00 & + 0.500*H00 \\ 70 & OP2 & + H0 &> OL500*H02 & + 0.500*H00 & + 0.500*H00 \\ 70 & OP2 & + H0$		- TNOZ			HN04 H02	+	NO2		
	1 33 UNC	- ⊥ u∩2			1102 1102	т	INOZ		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 34 } HO2	+ HO2	+ [H2O]	>	H2O2				
$ \begin{bmatrix} 36 \\ 80 \\ 37 \\ 80 \\ 38 \\ 03 \\ + N0 \\ 80 \\ 38 \\ 03 \\ + N0 \\ 40 \\ N03 \\ + N0 \\ 41 \\ N03 \\ + H0 \\ 42 \\ N03 \\ + H0 \\ 43 \\ N02 \\ 44 \\ H0 \\ + H02 \\ 44 \\ H0 \\ + H02 \\ 46 \\ H0 \\ + HN03 \\ 47 \\ H0 \\ + HN04 \\> \\ N02 \\ 46 \\ H0 \\ + HN03 \\ 47 \\ H0 \\ + HN04 \\> \\ N02 \\ 46 \\ H0 \\ + HN04 \\> \\ N02 \\ 46 \\ H0 \\ + HN04 \\> \\ N02 \\ 46 \\ H0 \\ + H0 \\> \\ M02 \\ 51 \\ H0 \\> \\ M02 \\ 52 \\ ETH \\ + H0 \\> \\ M02 \\ 52 \\ ETH \\ + H0 \\> \\ M02 \\ 52 \\ ETH \\ + H0 \\> \\ M02 \\ 52 \\ ETH \\ + H0 \\> \\ M02 \\ 52 \\ ETH \\ + H0 \\> \\ M02 \\ 53 \\ HC3 \\ + H0 \\> \\ M02 \\ 54 \\ HC5 \\ + H0 \\> \\ M02 \\ 55 \\ HC8 \\ + H0 \\> \\ M02 \\ + 0.075^{+}ALD \\ + 0.170^{+}H02 \\ + 0.250^{+}X02 \\ + 0.009^{+}HCH0 \\ + 0.250^{+}X02 \\ + 0.250^{+}K02 \\ + 0.250^{+}H02 \\ + 0.900^{+}TC03 \\ + 0.900^{+}TC03 \\ + 0.900^{+}TC03 \\ + C0 \\ 48 \\ DCB \\ + H0 \\> \\ AC03 \\ + C0 \\ 48 \\ DCB \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + 0.500^{+}H0 \\> \\ AC03 \\ + C0 \\ 40 \\ ALD \\ + 0.500^{+}H0 \\> \\ AC03 \\ + C0 \\> \\ AC0 \\ + C0 \\> \\ AC0 \\ + C0 \\> \\ AC0 \\ + C0 \\> $	{ 35} H20	2 + HO	. [1120]	>	HO2				
$ \begin{cases} 37 \\ NO + NO + [02] &> 2.000*NO2 \\ 38 \\ 03 + NO2 &> NO3 \\ 39 \\ NO3 + NO2 &> NO + NO2 \\ 41 \\ NO3 + HO2 &> NO + NO2 \\ 41 \\ NO3 + HO2 &> NO + NO2 \\ 42 \\ NO3 + HO2 &> NO2 + NO3 \\ 43 \\ N205 + [H20] &> 2.000*NO3 \\ 44 \\ N205 + [H20] &> 2.000*NO3 \\ 45 \\ HO + HO2 &> NO2 + NO3 \\ 46 \\ HO + HO3 &> NO2 \\ 47 \\ HO + HNO3 &> NO2 \\ 48 \\ HO + HO2 &> NO2 \\ 49 \\ HO + SO2 &> SULF + HO2 \\ 51 \\ HO &> MO2 \\ 51 \\ HO &> MO2 \\ 53 \\ HC3 + HO &> MO2 \\ 53 \\ HC3 + HO &> MC5P + 0.170*HO2 + 0.009*HCHO \\ + 0.075*ALD + 0.250*KC1 \\ 54 \\ HC5 + HO &> MC5P + 0.250*KC2 \\ 55 \\ HC8 + HO &> MC2P \\ 58 \\ OL1 + HO &> OL2P \\ 58 \\ OL1 + HO &> OL2P \\ 58 \\ OL1 + HO &> OL2P \\ 59 \\ TOL + HO &> OL2P \\ 59 \\ TOL + HO &> OL1P \\ 58 \\ OL1 + HO &> OL1P \\ 58 \\ OL1 + HO &> OL1P \\ 58 \\ OL1 + HO &> OL2P \\ 51 \\ G2 \\ G2 \\ G3 \\ HC4 + HO &> OL2P \\ 53 \\ HC5 + HO &> OL2P \\ 54 \\ HC5 + HO &> OL2P \\ 55 \\ TOL + HO &> OL2P \\ 56 \\ OL2 + HO &> OL2P \\ 56 \\ OL2 + HO &> OL2P \\ 57 \\ OLT + HO &> OL2P \\ 58 \\ TOL + HO &> OL2P \\ 59 \\ TOL + HO &> OL2P \\ 51 \\ 50 \\ C2 \\ C3 \\ HC4 & -+ HO &> OL2P \\ 51 \\ 50 \\ C4 \\ C5 \\ HC5 & +HO &> OL2P \\ 56 \\ C5 \\ C5 \\ HC5 & +HO &> OL2P \\ 57 \\ 59 \\ TOL + HO &> OL2P \\ 59 \\ 59 \\ TOL + HO &> OL2P \\ 59 \\ 59 \\ TOL + HO &> OL2P \\ 59 \\ 59 \\ TOL + HO &> OL2P \\ 59 \\ 59 \\ TOL + HO &> OL2P \\ 50 \\ 50 \\ C5 \\ HC1 & +HO &> OL2P \\ 50 \\ 50 \\ C5 \\ HC1 & +HO &> OL2P \\ 50 \\ 50 \\ C5 \\ HC1 & +HO &> OL2P \\ 50 \\ 50 \\ C5 \\ HC1 & +HO &> OL2P \\ 50 \\ C0 \\ 70 \\ OP \\ 2 & +HO &> OL2P \\ 50 \\ C0 \\ 70 \\ OP \\ 2 & +HO &> OL2P \\ 50 \\ C0 \\ 70 \\ OP \\ 2 & +HO &> OL2P \\ 50 \\ C0 \\ 70 \\ OP \\ 2 & +HO &> OL2P \\ 50 \\ C0 \\ 70 \\ OP \\ 2 & +HO &> OL2P \\ 50 \\ C0 \\ 70 \\ OP \\ 2 & +HO &> OL2P \\ 50 \\ C0 \\ C0 \\ C0 \\ C0 \\ C0 \\ C0 \\ C0$	{ 36} NO	+ HO		>	HONO				
$ \begin{cases} 38 & 03 & + N02 &> N03 \\ 39 & N03 & + N0 &> 2.000*N02 \\ 40 & N03 & + H02 &> HN03 \\ 41 & N03 & + H02 &> HN03 \\ 42 & N03 & + N02 &> N02 + N03 \\ 43 & N205 &> N02 & + N03 \\ 44 & N205 & + [H20] &> 2.000*HN03 \\ 45 & H0 & + HN02 &> N03 \\ 46 & H0 & + HN03 &> N03 \\ 47 & H0 & + HN04 &> N02 \\ 48 & H0 & + H02 &> \\ 49 & H0 & + S02 &> SULF & + H02 \\ 51 & H0 &> H02 \\ 51 & H0 &> H02 \\ 51 & H0 &> H02 \\ 52 & ETH & + H0 &> H02 \\ 53 & HC3 & + H0 &> HC5P & + 0.170*H02 & + 0.009*HCH0 \\ + & 0.075*ALD & + 0.025*KET \\ 54 & HC5 & + H0 &> HC5P & + 0.250*X02 \\ 55 & HC8 & + H0 &> HC5P & + 0.250*X02 \\ 55 & HC8 & + H0 &> HC5P & + 0.250*X02 \\ 55 & HC8 & + H0 &> HC5P & + 0.250*X02 \\ 55 & HC8 & + H0 &> HC5P & + 0.250*CSL & + 0.250*H02 \\ 56 & OL2 & + H0 &> OL1P \\ 58 & OL1 & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL1P \\ 59 & TOL & + H0 &> OL2P \\ 61 & CSL & + H0 &> CSL \\ 61 & CSL & + H0 &> HC30 & + 0.900*X02 & + 0.900*TC03 \\ 62 & CSL & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> HC2 & + C0 \\ 64 & ALD & + H0 &> AC03 & + C0 \\ 64 & ALD & + H0 &> AC03 & + C0 \\ 64 & ALD & + H0 &> AC03 & + C0 \\ 65 & KET & + H0 &> AC03 & + C0 \\ 66 & DCB & + H0 &> AC03 & + C0 \\ 67 & MC1Y & + H0 &> AC03 & + C0 \\ 68 & DCB & + H0 &> AC03 & + C0 \\ 69 & OP1 & + H0 &> AC03 & + 0.500*HO1 & + 0.500*HO \\ 70 & OP2 & + H0 &> O.500*HC3P & + 0.500*HCH0 & + 0.500*H0 \\ 70 & OP2 & + H0 &> O.500*HC3P & + 0.500*HCH0 & + 0.500*H0 \\ 70 & OP2 & + H0 &> O.500*HC3P & + 0.500*HCH0 & + 0.500*HO \\ 70 & OP2 & + H0 &> O.500*HC3P & + 0.500*HCH0 & + 0.500*HO \\ 70 & OP2 & + H0 &>$	{ 37} NO	+ NO	+ [02]	>	2.000*NO2				
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 38} 03	+ NO2		>	NO3				
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 39} NO3	+ NO		>	2.000*NO2				
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 40} NO3	+ NO2		>	NO	+	NO2		
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 41} NO3	+ HO2		>	HNO3				
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 42} NO3	+ NO2		>	N205				
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 43} N20	5		>	NO2	+	NO3		
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 44} N20	95 + [H2O]		>	2.000*HNO3				
$ \begin{cases} 46 \ HO & + \ HNO3 &> NO3 \\ 47 \ HO & + \ HNO4 &> NO2 \\ 48 \ HO & + \ HO2 &> \\ \{ 49 \ HO & + \ SO2 &> SULF & + \ HO2 \\ 50 \ CO & + \ HO &> HO2 \\ 51 \ HO &> MO2 \\ 52 \ ETH & + \ HO &> ETHP \\ \{ 53 \ HC3 & + \ HO &> HC5P & + \ 0.170^*HO2 & + \ 0.009^*HCHO \\ & & + \ 0.075^*ALD & + \ 0.025^*KET \\ \\ \\ 55 \ HC8 & + \ HO &> HC5P & + \ 0.250^*KO2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	{ 45} HO	+ NO2		>	HNO3				
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 46} HO	+ HNO3		>	NO3				
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	{ 47} HO	+ HNO4		>	NO2				
$ \begin{cases} 49 \ HO & + SO2 &> SULF & + HO2 \\ 50 \ CO & + HO &> HO2 \\ 51 \ HO &> MO2 \\ 52 \ ETH & + HO &> ETHP \\ 53 \ HC3 & + HO &> HC5P & + 0.170 \ HO2 & + 0.009 \ HCHO \\ & + 0.075 \ ALD & + 0.025 \ KET \\ 55 \ HC8 & + HO &> HC5P & + 0.250 \ KO2 \\ 55 \ HC8 & + HO &> HC8P & + 0.750 \ KO2 \\ 56 \ OL2 & + HO &> OL2P \\ 57 \ OLT & + HO &> OL1P \\ 58 \ OLI & + HO &> OL1P \\ 59 \ TOL & + HO &> OL1P \\ 59 \ TOL & + HO &> OL1P \\ 60 \ XYL & + HO &> OL1P \\ 61 \ CSL & + HO &> OL10 \ HO2 & + 0.250 \ KO2 & + 0.250 \ HC02 \\ 61 \ CSL & + HO &> OL10 \ HO2 & + 0.900 \ KO2 & + 0.900 \ TCO3 \\ 62 \ CSL & + HO &> CSL \\ 63 \ HCHO & + HO &> HO2 & + CO \\ 64 \ ALD & + HO &> HO2 & + CO \\ 64 \ ALD & + HO &> HO2 & + CO \\ 66 \ GLY & + HO &> HO2 & + CO \\ 66 \ GLY & + HO &> HO2 & + CO \\ 66 \ GLY & + HO &> HO2 & + CO \\ 66 \ GLY & + HO &> HO2 & + CO \\ 66 \ GLY & + HO &> HO2 & + CO \\ 66 \ GLY & + HO &> HO2 & + CO \\ 66 \ GLY & + HO &> HO2 & + CO \\ 66 \ GLY & + HO &> HO2 & + CO \\ 67 \ MGLY & + HO &> HO2 & + CO \\ 68 \ DCB & + HO &> TCO3 \\ 69 \ OP1 & + HO &> OL500 \ MO2 & + 0.500 \ HCHO & + 0.500 \ HO \\ 70 \ OP2 & + HO &> 0.500 \ HC3P & + 0.500 \ ALD & + 0.500 \ HO \\ \end{array}$	{ 48} HO	+ HO2		>					
$ \begin{cases} 50 \\ 51 \\ 10 \\ 52 \\ 53 \\ 10 \\ 10 \\ 53 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	{ 49} HO	+ SO2		>	SULF	+	HO2		
$ \begin{cases} 51 \\ 52 \\ 52 \\ 51 \\ 63 \\ 63 \\ 64 \\ ALD \\ 4D \\ 61 \\ 61 \\ CSL \\ 61 \\ 61 \\ CSL \\ 70 \\ CSL \\ 61 \\ CSL \\ 70 \\ CSL \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 7$	{ 50} CO	+ HO		>	HO2				
$ \begin{cases} 52 \\ 52 \\ 53 \\ HC3 $	{ 51} HO			>	MO2				
$ \begin{cases} 53 \} HC3 + HO &> 0.830*HC3P + 0.170*HO2 + 0.009*HCHO \\ + 0.075*ALD + 0.025*KET \\ + 0.025*KET \\ + 0.025*KC2 \\ + 0.025*KC2 \\ + 0.025*KC2 \\ + 0.250*KO2 \\ \\ 55 \} HC8 + HO &> HC8P + 0.750*XO2 \\ \\ 56 \} OL2 + HO &> OL2P \\ \\ 57 \} OLT + HO &> OLTP \\ \\ 58 \} OLI + HO &> OLTP \\ \\ 59 \} TOL + HO &> 0.750*TOLP + 0.250*CSL + 0.250*HO2 \\ \\ 60 \} XYL + HO &> 0.830*XYLP + 0.170*CSL + 0.170*HO2 \\ \\ 61 \} CSL + HO &> 0.100*HO2 + 0.900*XO2 + 0.900*TCO3 \\ \\ 62 \} CSL + HO &> CSL \\ \\ 63 \} HCHO + HO &> HO2 + CO \\ \\ 64 \} ALD + HO &> HO2 + CO \\ \\ 66 \} GLY + HO &> HO2 + CO \\ \\ 66 \} GLY + HO &> HO2 + 0.900*CO \\ \\ 67 \} MGLY + HO &> HO2 + 0.500*HCHO + 0.500*HO \\ \\ 68 \} DCB + HO &> TCO3 \\ \\ \\ 69 OP1 + HO &> 0.500*MC2 + 0.500*ALD + 0.500*HO \\ \\ 70 \} OP2 + HO &> 0.500*HC3P + 0.500*ALD + 0.500*HO \\ \\ \end{array}$	{ 52} ETH	+ HO		>	ETHP				
$\begin{cases} 54 \ HC5 + H0 &> \ HC5P + 0.25^{*}KET \\ 55 \ HC8 + H0 &> \ HC8P + 0.250^{*}KO2 \\ 56 \ OL2 + H0 &> \ OL2P \\ 57 \ OLT + H0 &> \ OLTP \\ 58 \ OLI + H0 &> \ OLIP \\ 59 \ TOL + H0 &> \ OLIP \\ 60 \ XYL + H0 &> \ O.300^{*}XYLP + 0.170^{*}CSL + 0.250^{*}HO2 \\ 61 \ CSL + H0 &> \ O.100^{*}HO2 + 0.900^{*}XO2 + 0.900^{*}TCO3 \\ 62 \ CSL + H0 &> \ CSL \\ 63 \ HCHO + HO &> \ HO2 + CO \\ 64 \ ALD + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 66 \ GLY + HO &> \ HO2 + CO \\ 67 \ MGLY + HO &> \ HO2 + CO \\ 67 \ MGLY + HO &> \ HO2 + CO \\ 68 \ DCB + HO &> \ TCO3 \\ 69 \ OP1 + HO &> \ O.500^{*}MO2 + 0.500^{*}HCHO + 0.500^{*}HO \\ 70 \ OP2 + HO &> \ O.500^{*}HC3P + 0.500^{*}ALD + 0.500^{*}HO \\> \ O.500^{*}HC3P + 0.500^{*}ALD + 0.500^{*}HC3P \\> \ O.500^{*}HC3P + 0.500^{*}HC3P + 0.500^{*}HC3P \\> \ O.500^{*}HC3P \\> \ O.500^{*}HC3P \\>$	{ 53} HC3	+ HO		>	0.830*HC3P	+ 0.	170*HO2	+ 0.0	009*HCHO
$ \begin{cases} 54 \ HC5 & + HO &> & HC5P & + 0.250*XO2 \\ 55 \ HC8 & + HO &> & OL2P \\ 56 \ OL2 & + HO &> & OL1P \\ 57 \ OLT & + HO &> & OL1P \\ 58 \ OLI & + HO &> & OL1P \\ 59 \ TOL & + HO &> & 0.830*XYLP & + 0.250*CSL & + 0.250*HO2 \\ 60 \ XYL & + HO &> & 0.830*XYLP & + 0.170*CSL & + 0.170*HO2 \\ 61 \ CSL & + HO &> & CSL \\ 62 \ CSL & + HO &> & CSL \\ 63 \ HCHO & + HO &> & HO2 & + & CO \\ 64 \ ALD & + HO &> & HO2 & + & CO \\ 66 \ GLY & + HO &> & HO2 & + & CO \\ 66 \ GLY & + HO &> & HO2 & + & CO \\ 66 \ GLY & + HO &> & HO2 & + & CO \\ 66 \ GLY & + HO &> & HO2 & + & CO \\ 66 \ GLY & + HO &> & HO2 & + & CO \\ 67 \ MGLY & + HO &> & HO2 & + & CO \\ 68 \ DCB & + HO &> & TCO3 \\ 69 \ OP1 & + HO &> & 0.500*MO2 & + 0.500*HCHO & + 0.500*HO \\ 70 \ OP2 & + HO &> & 0.500*HC3P & + 0.500*ALD & + 0.500*HO \\ \end{cases}$	(- ()				+ 0.075*ALD	+ 0.	025*KET		
$ \begin{cases} 56 \\ 612 \\ 57 \\ 611 \\ 612 \\ 611 \\ 612 \\ 611 \\ 612 \\ 611 \\ 612 \\ 611 \\ 612 \\ 611 \\ 612 \\ 611 \\ 612 \\ 611 \\ 612 \\ 611 \\ 612 \\ 611 \\ 612 \\ 611$	{ 54} HC5	+ HO		>	HC5P	+ 0.	250*X02		
$ \begin{cases} 56 \\ 5012 \\ 57 \\ 57 \\ 0LT \\ + H0 \\ 58 \\ 0LI \\ + H0 \\ 59 \\ TOL \\ + H0 \\> \\ 0.750^*TOLP \\ + 0.250^*CSL \\ + 0.250^*HO2 \\ + 0.170^*HO2 \\ + 0.170^*HO2 \\ + 0.170^*HO2 \\ + 0.900^*XO2 \\ + 0.900^*TCO3 \\ 61 \\ CSL \\ + H0 \\> \\ CSL \\ 63 \\ HCHO \\ + HO \\> \\ HO2 \\ + \\ CO \\ 64 \\ ALD \\ + HO \\> \\ ACO3 \\ 65 \\ KET \\ + HO \\> \\ HO2 \\ + \\ CO \\ 64 \\ 61 \\ CSL \\ + \\ 0.900^*TCO3 \\> \\ RETP \\ 66 \\ 61 \\ GLY \\ + HO \\> \\ ACO3 \\ + \\ CO \\ 68 \\ DCB \\ + HO \\> \\ TCO3 \\ 69 \\ OP1 \\ + HO \\> \\ 0.500^*MO2 \\ + 0.500^*HCHO \\ + 0.500^*HO \\ + 0.500^*HO \\ + 0.500^*HO \\> \\ 0.500^*HCHO \\ + 0.500^*HO \\ + 0$	{ 55} HC8	+ HO		>	HC8P	+ 0.	/50*X02		
$ \begin{cases} 57 \\ 50LT + HO \\ 58 \\ 58 \\ OLI + HO \\ 59 \\ TOL + HO \\ 60 \\ XYL + HO \\ 61 \\ CSL + HO \\ 70 \\ 61 \\ CSL + HO \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 7$	{ 50} OL2	+ HO		>	OLZP				
$ \begin{cases} 58 \\ 59 \\ 70L \\ 59 \\ 70L \\ 60 \\ XYL \\ + HO \\ 61 \\ CSL \\ 61 \\ CSL \\ + HO \\ 62 \\ CSL \\ 61 \\ CSL \\ + HO \\ 62 \\ CSL \\ + HO \\ 62 \\ CSL \\ + HO \\ 62 \\ CSL \\ 61 \\ CSL \\ 61 \\ CSL \\ + HO \\> \\ 0.100^{+HO2} \\> \\ CSL \\ 62 \\ CSL \\ + HO \\> \\ CSL \\ 63 \\ HCHO \\ + HO \\> \\ HO2 \\ + \\ CO \\ 64 \\ ALD \\ + HO \\> \\ HO2 \\ + \\ CO \\ 66 \\ GLY \\ + HO \\> \\ HO2 \\ + \\ CO \\ 66 \\ GLY \\ + HO \\> \\ HO2 \\ + \\ CO \\ 66 \\ GLY \\ + HO \\> \\ HO2 \\ + \\ CO \\ 66 \\ GLY \\ + HO \\> \\ HO2 \\ + \\ CO \\ 66 \\ GLY \\ + HO \\> \\ CO \\ 67 \\ HCLY \\ + HO \\> \\ CO \\ 67 \\ HCLY \\ + HO \\> \\ CO \\ 67 \\ HCLY \\ + HO \\> \\ CO \\ 67 \\ HCLY \\ + HO \\> \\ CO \\ 67 \\ HCLY \\ + HO \\> \\ CO \\ 67 \\ HCLY \\ + HO \\> \\ CO \\ 67 \\ HCLY \\ + HO \\> \\ CO \\ 67 \\ HCLY \\ + HO \\> \\ CO \\ 67 \\ HCLY \\ + HO \\> \\ CO \\ C$	{ 5/} OL1	+ HO		>	OLTP				
$ \begin{cases} 60 \\ 801 \\ 602 \\ 801 \\ 80$	{ 58} ULI	. + HO		>	OLIP		250+001		
	{ 59} TOL	+ HO		>	0./50^TOLP	+ 0.	250 °CSL	+ 0.2	250^HOZ
$ \begin{cases} 61 \\ 62 \\ CSL \\ 63 \\ HCHO \\ 40 \\ 64 \\ ALD \\ +HO \\ 66 \\ 61 \\ CSL \\ +HO \\> \\ HO2 \\ +CO \\ 66 \\ CLY \\ +HO \\> \\ HO2 \\ +CO \\ +C$	{ 60 } XII	+ HO		>	0.830^XYLP	+ 0.	1/0*CSL	+ 0.1	
$ \begin{cases} 62 \\ 63 \\ HCHO \\ 64 \\ ALD \\ 4LD \\ +HO \\ 66 \\ 65 \\ KET \\ +HO \\ 66 \\ 61 \\ CI \\ 46 \\ 61 \\ CI \\ 66 \\ CI \\ 46 \\ 61 \\ CI \\ C$		+ HO		>	0.100"HOZ	+ 0.	900"A02	+ 0.5	900-1003
$ \begin{cases} 64 \\ 64 \\ ALD \\ + HO \\ 65 \\ KET \\ + HO \\ 66 \\ GLY \\ + HO \\ 67 \\ MGLY \\ + HO \\ 68 \\ DCB \\ + HO \\> \\ 0.500^*MO2 \\ + 0.500^*ALD \\ + 0.500^*HO \\ + 0.500^*HO \\ + 0.500^*HO \\> \\ 0.500^*HCH \\ + 0.500^*HO \\ + $				>	LOD		CO		
$ \begin{cases} 63 \\ 65 \\ KET \\ 66 \\ GLY \\ + HO \\ 67 \\ MGLY \\ + HO \\ 67 \\ MGLY \\ + HO \\ 67 \\ MGLY \\ + HO \\> \\ ACO3 \\ + CO \\ CO \\ 68 \\ DCB \\ + HO \\> \\ TCO3 \\ \begin{cases} 69 \\ OP1 \\ + HO \\ 70 \\ OP2 \\ + HO \\> \\ 0.500^*HC3P \\ + 0.500^*ALD \\ + 0.500^*HO \\ + 0.500^*HO \\> \\ 0.500^*HC3P \\ + 0.500^*ALD \\ + 0.500^*HO \\> \\ 0.500^*HO $				>	лUZ 7.CO2	т	0		
$ \begin{cases} 66 \\ 61Y \\ 66 \\ 67 \\ 80LY \\ 67 \\ 80LY \\ 68 \\ 80CB \\ 68 \\ 80CB \\ 68 \\ 90P1 \\ 70 \\ 90P2 \\ 70 \\ 90P2 \\ 70 \\ 80L \\ 70 \\ 70 \\ 80L \\ 70 \\ 70 \\ 80L \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ $	{ 65 \ KET	· + HO		>	ACO3 ATTA				
$ \begin{cases} 67 \\ 67 \\ 68 \\ DCB \\ 40 \\ 70 \\ 9P2 \\ + H0 \\ 70 \\ 9P2 \\ + H0 \\> \\ 0.500 + MC2 \\> \\ 0.500 + MC2 \\> \\ 0.500 + MC4 \\$		- HO		>	HU3	+ 2	000*00		
68 DCB + HO > TCO3 69 OP1 + HO > 0.500*MO2 + 0.500*HCHO + 0.500*HO { 70} OP2 + HO > 0.500*HC3P + 0.500*ALD + 0.500*HO	{ 67 } MGT	Y + HO		>	ACUJ	+ 2.	CO		
69 OP1 + HO > 0.500*MO2 + 0.500*HCHO + 0.500*HO {70} OP2 + HO > 0.500*HC3P + 0.500*ALD + 0.500*HO	{ 68 } DCF	+ HO		>	TCO3		00		
{70} OP2 + HO> 0.500*HC3P + 0.500*ALD + 0.500*HO	{ 69} OP1	 + HO		>	0.500*MO2	+ 0.	500*HCHO	+ 0.5	500*но
	{ 70} OP2	+ HO		>	0.500*HC3P	+ 0.	500*ALD	+ 0.5	500*но

Table 8A-9. RADM2_CIS1 and RADM2_CIS1_AQ Mechanisms

Table 8A-9. RADM2_CIS1 and RADM2_CIS1_AQ Mechanisms

{ 71} PAA	+ HO	> ACO3		
{ 72} PAN	+ HO	> HCHO	+ NO3	+ XO2
{ 73} ONIT	+ HO	> HC3P	+ NO2	
{ 74} ACO3	+ NO2	> PAN		
75 PAN		> ACO3	+ NO2	
	. 102	> ACOJ	1 102	
{ 76} 1003	+ NO2	> TPAN		
{ 77} TPAN		> TCO3	+ NO2	
{ 78} MO2	+ NO	> HCHO	+ HO2	+ NO2
1 791 HC3D	+ NO	> 0 750*ALD	+ 0 250*KFT	+ 0 090*#CHO
(,) j nesi	110		- 0.250 KHI	0.064*002
(+ 0.036"ONII	+ 0.964"NO2	+ 0.964"HOZ
{ 80} HC5P	+ NO	> 0.380*ALD	+ 0.690*KET	+ 0.080*ONLT
		+ 0.920*NO2	+ 0.920*HO2	
{ 81} HC8P	+ NO	> 0.350*ALD	+ 1.060*KET	+ 0.040*HCHO
. ,		+ 0.240*ONTT	$+ 0.760 \times NO2$	+ 0.760*HO2
	L NO		101,000 102	NO2
{ 82} UL2P	+ NO	> 1.600"HCHO	+ HOZ	+ NO2
<i>.</i>		+ 0.200*ALD		
{ 83} OLTP	+ NO	> ALD	+ HCHO	+ HO2
		+ NO2		
{ 84} OT TP	+ NO	> HO2	+ 1 450*AT.D	+ 0 280*#CHO
[04] OHH	1 110	0 100*KEE	1.150 ALD	1 0.200 110110
		+ 0.100"KE1	+ NO2	
{ 85} ACO3	+ NO	> MO2	+ NO2	
{ 86} TCO3	+ NO	> NO2	+ 0.920*HO2	+ 0.890*GLY
		+ 0.110*MGLY	+ 0.050*ACO3	+ 0.950*CO
		1 2 000****		
		+ 2.000 A02		
{ 87} IOPb	+ NO	> NO2	+ HO2	+ 0.1/0*MGLY
		+ 0.160*GLY	+ 0.700*DCB	
{ 88} XYLP	+ NO	> NO2	+ HO2	+ 0.450*MGLY
. ,		+ 0 806*DCB		
	L NO	- 0.000 DCB		NO2
{ 89} EIHP	+ NO	> ALD	+ HO2	+ NO2
{ 90} KETP	+ NO	> MGLY	+ NO2	+ HO2
{ 91} OLN	+ NO	> HCHO	+ ALD	+ 2.000*NO2
{ 92} HCHO	+ NO3	> HO2	+ HNO3	+ CO
		> 7002	LINO2	
(95) ALD	+ NO3	==> ACO3	+ HNO3	0.000100
{ 94} GLY	+ NO3	> HNO3	+ HO2	+ 2.000*CO
{ 95} MGLY	+ NO3	> HNO3	+ ACO3	+ CO
{ 96} DCB	+ NO3	> HNO3	+ TCO3	
ATL CGT.	+ NO3	> HNO3	+ XNO2	+ 0 500*CST.
	1 1103	> 01N	1 2002	1 0.500 CBH
{ 98} ULZ	+ NO3			
{ 99} OLT	+ NO3	> OLN		
{100} OLI	+ NO3	> OLN		
(101) OT 2	+ 03	> HCHO	+ 0.400*ORA1	+ 0.420*CO
()		- 0 120*HO2		
[100] 07 77		+ 0.120 1102	0 500+315	0.220+00
{IO7} OP.L	+ 03	> 0.530*HCHO	+ 0.500*ALD	+ 0.330*CO
		+ 0.200*ORA1	+ 0.200*ORA2	+ 0.230*HO2
		+ 0.220*MO2	+ 0.100*HO	
{103} OT T	+ 03	> 0 180*HCHO	+ 0 720*ALD	+ 0 100*KFT
[105] 011	1 65	2 0.100 Hello	0.060*0D31	0.200*0002
		+ 0.230*C0	+ 0.060"ORAL	+ 0.290"ORAZ
		+ 0.260*HO2	+ 0.140*HO	+ 0.310*MO2
{104} HO2	+ MO2	> OP1		
₹105} HO2	+ ETHP	> OP2		
{106} HO2	+ HC3P	> OP2		
(107) 102	I HOED	> 012		
(100) HUZ	THUSP	> UP2		
{108} HO2	+ HC8P	> OP2		
{109} HO2	+ OL2P	> OP2		
{110} HO2	+ OLTP	> OP2		
1111 HO2	+ OLTP	> 002		
(112) 102		> 0F2		
{IIZ} HO2	+ KETP	> OP2		
{113} HO2	+ ACO3	> PAA		
{114} HO2	+ TOLP	> OP2		
{115} но2	+ XYLP	> OP2		
(116) 102		> 012		
(110) HUZ	+ 1003	> OP2		
{II/} HO2	+ OLN	> ONIT		
{118} MO2	+ MO2	> 1.500*HCHO	+ HO2	
{119} MO2	+ ETHP	> 0.750*HCHO	+ HO2	+ 0.750*ALD
(120) MO2	+ HC3P	> 0 840*HCHO	+ 0.770*AT.D	+ 0.260*KET
(120) 1102	. 11031		· • • • • • • • • • • •	. 0.200 101
(1		+ HU2		
{121} MO2	+ HC5P	> 0.770*HCHO	+ 0.410*ALD	+ 0.750*KET
		+ HO2		
{122} MO2	+ HC8P	> 0.800*HCHO	+ 0.460*ALD	+ 1.390*KET
()		± 1100		
[100]				
{123} MO2	+ OLZP	> 1.550*HCHO	+ 0.350*ALD	+ HO2
{124} MO2	+ OLTP	> 1.250*HCHO	+ 0.750*ALD	+ HO2
{125} MO2	+ OLIP	> 0.890*HCHO	+ 0.725*ALD	+ HO2
,	-	+ 0 550*rrr		
		· •••••		

Table 8A-9. RADM2_CIS1 and RADM2_CIS1_AQ Mechanisms

(105)		0.5501-0000	0	
{I26} MO2	+ KETP	> 0.750*HCHO	+ 0.750*MGLY	+ HO2
{127} MO2	+ ACO3	> HCHO	+ 0 500*HO2	+ 0 500*MO2
(127) 1102	11005		0.000 102	0.000 1102
		+ 0.500*ORA2		
{128} MO2	+ TOLP	> HCHO	+ 0 170*MGLY	+ 0 160*GLY
[120] 1102	1011	2 500 15 55		0.100 011
		+ 0.700*DCB	+ 2.000*HO2	
(129) MO2	+ XVI.D	> НСНО	+ 0 450*MCLV	+ 0 806*DCB
[12]] 1102	1 MIDI		0.450 0001	1 0.000 DCD
		+ 2.000*HO2		
{130} MO2	+ TCO3	> 0 500*HCHO	+ 0 445*CT.V	+ 0 055*MCLV
[130] 102	1 1005	> 0.500 memo	· 0.445 GHI	1 0.055 MODI
		+ 0.500*ORA2	+ 0.025*ACO3	+ 0.460*HO2
		0 475*00	VO2	
		+ 0.475*00	+ A02	
{131} MO2	+ OLN	> 1.750*HCHO	+ 0.500*HO2	+ ALD
()		L NOO		
		+ NOZ		
{132} ETHP	+ ACO3	> ALD	+ 0.500*HO2	+ 0.500*MO2
()		- 0 E00*0D30		
		+ 0.500"ORAZ		
{133} HC3P	+ ACO3	> 0.770*ALD	+ 0.260*KET	+ 0.500*HO2
()		0 500 ****00	0 500*00000	
		+ 0.500^MOZ	+ 0.500*ORAZ	
{134} HC5P	+ ACO3	> 0.410*ALD	+ 0.750*KET	+ 0.500*HO2
(101) 11001	11005			0.000 1101
		+ 0.500*MO2	+ 0.500*ORA2	
{135} HC8P	+ ACO3	> 0 460*ALD	+ 1 390*KET	+ 0 500*HO2
(100) 11001	11005		2.590 1021	0.000 1101
		+ 0.500*MOZ	+ 0.500*ORAZ	
{136} OT.2P	+ ACO3	> 0.800*HCHO	+ 0.600*AT.D	+ 0.500*HO2
(130) 0121	. 11005			0.000 1102
		+ 0.500*MO2	+ 0.500*ORA2	
{137} OLTP	+ ACO3	> AT.D	+ 0.500*HCHO	+ 0.500*HO2
(10) 0011				0.000 1102
		+ 0.500*MO2	+ 0.500*ORA2	
{138} OT.TP	+ ACO3	> 0.725*AT.D	+ 0.550*KET	+ 0.140*HCHO
(130) 0011	. 11005			
		+ 0.500*HO2	+ 0.500*MO2	+ 0.500*ORA2
{139} KETP	+ ACO3	> MGLY	+ 0 500*HO2	+ 0 500*MO2
(155) KEII	I ACOS	2 11011	1 0.500 1102	0.500 102
		+ 0.500*ORA2		
11101 ACO3	+ 1003	> 2 000*MO2		
ITTO ACOS	+ ACOS	> 2.000 MOZ		
{141} ACO3	+ TOLP	> MO2	+ 0.170*MGLY	+ 0.160*GLY
. ,		± 0 700*DCP	+ UO2	
(+ 0.700 DCB	+ 1102	
{142} ACO3	+ XYLP	> MO2	+ 0.450*MGLY	+ 0.806*DCB
		+ HO2		
[142] 3002		1102	0.000+1100	0.000+07.77
{143} ACO3	+ 1003	> MO2	+ 0.920*HO2	+ 0.890*GLY
		+ 0.110*MGLY	+ 0.050*ACO3	+ 0.950*CO
		0.000+3000		
		+ 2.000"X02		
{144} ACO3	+ OLN	> HCHO	+ ALD	+ 0.500*ORA2
t ,		+ NO2	± 0 500*MO2	
		+ 102	+ 0.300 MOZ	
{145} OLN	+ OLN	> 2.000*HCHO	+ 2.000*ALD	+ 2.000*NO2
11161 VO2	+ UO2	> 002		
	11102	2 012		
{147} XO2	+ MO2	> HCHO	+ HO2	
1148 XO2	+ ACO3	> MO2		
[110] 102	11005	, 1102		
{149} XO2	+ XO2	>		
{150} x02	+ NO	> NO2		
[150] X02	1 NO	2 1102		
{151} XNO2	+ NO2	> ONIT		
ໄ1 ⊑ 2 ໂ ⊻NIO 2	+ UO2	> 002		
1152 ANOZ	+ 1102	> OF 2		
{153} XNO2	+ MO2	> IIIIII	1 1100	
			+ HUZ	
1134 MOZ	+ ACO3	> HCHO	+ HUZ	
{155} XNO2	+ ACO3	> MO2	+ H02	
2	+ ACO3 + XNO2	> MO2	+ H02	
1156 J TRO	+ ACO3 + XNO2 + HO	> MO2	+ 0.079*¥02	
{156} ISO	+ ACO3 + XNO2 + HO	> MO2 > ISO_RO2	+ 0.079*X02	
{156} ISO {157} ISO_RO2	+ ACO3 + XNO2 + HO + NO	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT	+ 0.079*X02 + 0.912*N02	+ 0.912*HO2
{156} ISO {157} ISO_RO2	+ ACO3 + XNO2 + HO + NO	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD	+ 0.079*X02 + 0.912*N02 + 0.629*HCHO	+ 0.912*HO2
{156} ISO {157} ISO_RO2	+ ACO3 + XNO2 + HO + NO	> MO2 > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD	+ 0.079*X02 + 0.912*N02 + 0.629*HCHO	+ 0.912*HO2
{156} ISO {157} ISO_RO2 {158} ISO_RO2	+ ACO3 + XNO2 + HO + NO + HO2	> MCHO > MO2 > > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > OP2	+ 0.079*X02 + 0.912*N02 + 0.629*HCHO	+ 0.912*HO2
<pre>{156} ISO {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > OP2 > 0.500*HO2	+ 0.079*X02 + 0.912*N02 + 0.629*HCHO + 0.500*M02	+ 0.912*H02 + 0.500*ORA2
<pre>{156} ISO {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > OP2 > 0.500*HO2	+ 0.079*X02 + 0.912*N02 + 0.629*HCHO + 0.500*M02	+ 0.912*HO2 + 0.500*ORA2
<pre>{156} ISO {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 </pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > OP2 > 0.500*HO2 + ISOPROD	+ 0.079*X02 + 0.912*N02 + 0.629*HCHO + 0.500*M02	+ 0.912*HO2 + 0.500*ORA2
<pre>{156} IS0 {157} IS0_R02 {158} IS0_R02 {159} IS0_R02 {160} IS0_R02</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO	+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2	+ 0.912*HO2 + 0.500*ORA2 + ISOPROD
<pre>{156} IS0 {157} IS0_R02 {158} IS0_R02 {159} IS0_R02 {160} IS0_R02 {161} IS0_R02</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0P2 > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO	+ 0.079*X02 + 0.912*N02 + 0.629*HCHO + 0.500*M02 + 0.500*H02 + 0.650*ISOPPOD	+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*OPA1
<pre>{156} IS0 {157} IS0_R02 {158} IS0_R02 {159} IS0_R02 {160} IS0_R02 {161} IS0</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO	+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD	+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1
<pre>{156} IS0 {157} ISO_R02 {158} ISO_R02 {159} ISO_R02 {160} ISO_R02 {161} ISO</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0P2 > 0.500*HC2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO	+ 0.079*X02 + 0.912*N02 + 0.629*HCHO + 0.500*M02 + 0.500*H02 + 0.650*ISOPROD + 0.070*H02	+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0
<pre>{156} IS0 {157} IS0_R02 {158} IS0_R02 {159} IS0_R02 {160} IS0_R02 {161} IS0</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.270*NO2	<pre>+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCH0 + 0.500*M02 + 0.500*H02 + 0.650*ISOPROD + 0.070*H02 + 0.200*ACO3</pre>	+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD
<pre>{156} ISO {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0P2 > 0.500*HCO > 0.600*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2	+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3	+ 0.912*HO2 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD
<pre>{156} IS0 {157} IS0_R02 {158} IS0_R02 {159} IS0_R02 {160} IS0_R02 {161} IS0 {162} IS0</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD	<pre>+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCH0 + 0.500*M02 + 0.650*ISOPROD + 0.650*ISOPROD + 0.200*AC03 + 0.250*AC03</pre>	+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCHO
<pre>{156} ISO {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3 + O3P	> HCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HC2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 + 0.250*ACO3</pre>	+ 0.912*HO2 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCHO
<pre>{156} IS0 {157} ISO_R02 {158} ISO_R02 {159} ISO_R02 {160} ISO_R02 {161} IS0 {162} IS0 {160} IS0</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2	<pre>+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCH0 + 0.500*M02 + 0.500*H02 + 0.650*ISOPROD + 0.070*H02 + 0.200*AC03 + 0.250*AC03</pre>	+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCHO
<pre>{156} ISO {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3 + O3P + NO3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HCO + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > ISON_RO2	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 + 0.250*ACO3</pre>	+ 0.912*HO2 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*CO + 0.150*ALD + 0.250*HCHO
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON PO</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > ISON_RO2 > NO2	+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCHO + 0.500*M02 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*AC03 + 0.250*AC03	+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCHO
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3 + O3P + NO3 2 + NO	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HC0 > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > ISON_RO2 > NO2	+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 + 0.250*ACO3	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT</pre>
<pre>{156} ISO {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > ISON_RO2 > NO2 + 0.800*HO2	+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.200*ACO3 + 0.250*ACO3 2 + 0.800*ALD + 0.200*ISOPROD	+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCHO + 0.800*ONIT + 0.200*NO2
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {165} ISON_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3 + O3P + NO3 2 + NO 2 + HO2	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HC0 > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > ISON_RO2 > NO2 + 0.800*HO2 > NO2 + 0.800*HO2	+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.200*ACO3 + 0.250*ACO3 2 + 0.800*ALD + 0.200*ISOPROD	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {165} ISON_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO 2 + HO2	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.500*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > ISON_RO2 > NO2 + 0.800*HO2 > ONIT	+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCHO + 0.500*M02 + 0.500*H02 + 0.650*ISOPROD + 0.200*AC03 + 0.250*AC03 2 + 0.800*ALD + 0.200*ISOPROD	+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCHO + 0.800*ONIT + 0.200*NO2
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {166} ISON RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3 + O3P + NO3 2 + NO 2 + HO2 2 + HO2 2 + ACO3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HC0 > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.500*MC2 > ISON_RO2 > NO2 + 0.800*HO2 > 0.500*HC2	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 + 0.250*ACO3 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*MO2</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {165} ISON_RO2 {166} ISON_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO 2 + HO2 2 + ACO3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.500*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > NO2 + 0.800*HO2 > 0.500*HO2 > 0.500*HO2 > 0.500*HO2 > 0.500*HO2 > 0.500*HO2 > 0.500*HO2 > 0.500*HO2	<pre>+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCH0 + 0.500*M02 + 0.500*H02 + 0.650*ISOPROD + 0.200*AC03 + 0.200*AC03 + 0.250*AC03 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*M02 + 0.500*M02</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {166} ISON_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3 + O3P + NO3 2 + NO 2 + HO2 2 + HO2 2 + ACO3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HC2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > NO2 + 0.800*HO2 > NO2 + 0.800*HO2 > 0.500*HO2 + ALD	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 + 0.250*ACO3 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*MO2 + 0.500*MO2 + 0.NIT</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {165} ISON_RO2 {166} ISON_RO2 {167} ISON RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO 2 + HO2 2 + ACO3 2 + HO2 2 + ACO3	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.500*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > NO2 + 0.800*HO2 > 0.500*HC2 > 0.500*HCHO	<pre>+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCH0 + 0.500*M02 + 0.500*H02 + 0.650*ISOPROD + 0.070*H02 + 0.200*AC03 + 0.250*AC03 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*M02 + 0.500*M02 + 0.500*H02</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2 + ALD</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {166} ISON_RO2 {167} ISON_RO2</pre>	+ ACO3 + XNO2 + HO + HO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO 2 + HO2 2 + ACO3 2 + MO2	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > NO2 + 0.800*HO2 > NO2 + 0.800*HO2 > 0.500*HCHO > 0.500*HCHO + ALD > 0.500*HCHO	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 + 0.250*ACO3 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*MO2 + 0.500*MO2 + 0.500*HO2</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2 + ALD</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {165} ISON_RO2 {167} ISON_RO2 </pre>	+ AC03 + XN02 + H0 + N0 + H02 + AC03 + M02 + 03 + 03P + N03 2 + N0 2 + H02 2 + AC03 2 + M02	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > NO2 + 0.800*HO2 > 0.500*HC2 > 0.500*HCHO + 0.500*HCHO	<pre>+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCH0 + 0.500*M02 + 0.500*H02 + 0.650*ISOPROD + 0.070*H02 + 0.200*AC03 + 0.250*AC03 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*M02 + 0.500*M02 + 0.500*H02</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2 + ALD</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {166} ISON_RO2 {167} ISON_RO2 {168} ISOPROD</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO 2 + HO2 2 + ACO3 2 + MO2 + HO	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > NO2 + 0.800*HO2 > NO2 + 0.800*HO2 > NO2 + 0.500*HCHO > 0.500*HCHO + 0.500*ACO3	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*MO2 + ONIT + 0.500*HO2 + 0.500*IP_RO2</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2 + ALD + 0.200*X02</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {165} ISON_RO2 {166} ISON_RO2 {167} ISON_RO2 {168} ISOPROD {169} IP_RO2</pre>	+ AC03 + XN02 + H0 + N0 + H02 + AC03 + M02 + 03P + 03P + N03 2 + N0 2 + H02 2 + AC03 2 + H02 + H0 + H0 + N0	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0P2 > 0.500*HCO > 0.500*HCHO + ISOPROD > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > NO2 + 0.800*HO2 > 0.500*HC2 > 0.500*HCHO + ALD > 0.500*ACO3 > NO2	<pre>+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCH0 + 0.500*M02 + 0.500*H02 + 0.650*ISOPROD + 0.070*H02 + 0.200*AC03 + 0.250*AC03 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*M02 + 0.500*M02 + 0.500*H02 + 0.500*IP_R02 + HO2</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2 + ALD + 0.200*X02 + 0.590*C0</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {166} ISON_RO2 {167} ISON_RO2 {168} ISOPROD {169} IP_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO 2 + HO2 2 + ACO3 2 + MO2 + HO + HO + NO	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.270*HO + 0.200*XO2 > NO2 + 0.800*HO2 > NO2 + 0.800*HO2 > NO2 + 0.500*HCHO > 0.500*HCHO + ALD > 0.500*ACO3 > NO2 > 0.500*ACO3 > NO2	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*MO2 + ONIT + 0.500*HO2 + 0.500*HO2 + 0.500*IP_RO2 + HO2 + 0.500*IP_RO2 + HO2</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*CO + 0.150*ALD + 0.250*HCHO + 0.800*ONIT + 0.200*NO2 + 0.500*ORA2 + ALD + 0.200*XO2 + 0.590*CO </pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {162} ISO {163} ISO {164} ISON_RO2 {166} ISON_RO2 {167} ISON_RO2 {168} ISOPROD {169} IP_RO2</pre>	+ AC03 + XN02 + H0 + N0 + H02 + AC03 + M02 + 03P + 03P + N03 2 + N0 2 + H02 2 + AC03 2 + H02 2 + AC03 2 + H02 + H0 + N0	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0P2 > 0.500*HCO + ISOPROD > 0.500*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > NO2 + 0.800*HO2 > 0.500*HCD > 0.500*HCHO + 0.550*ALD	<pre>+ HO2 + 0.079*X02 + 0.912*N02 + 0.629*HCH0 + 0.500*M02 + 0.500*H02 + 0.650*ISOPROD + 0.070*H02 + 0.200*AC03 + 0.250*AC03 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*M02 + 0.500*M02 + 0.500*H02 + 0.500*IP_R02 + HO2 + 0.250*HCH0</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2 + ALD + 0.200*X02 + 0.590*C0 + 0.080*GLY</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {162} ISO {163} ISO {164} ISON_RO2 {166} ISON_RO2 {167} ISON_RO2 {168} ISOPROD {169} IP_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO 2 + HO2 2 + ACO3 2 + MO2 + HO + HO + NO	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO > 0.600*HCHO + 0.200*XO2 > 0.500*ISOPROD + 0.250*MO2 > NO2 + 0.800*HO2 > 0.500*HCA > 0.500*HCA + ALD > 0.500*ACO3 > NO2 + 0.500*ALD + 0.500*ALD + 0.500*ALD + 0.500*ALD + 0.500*ALD + 0.500*ALD	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*MO2 + ONIT + 0.500*HO2 + 0.500*HO2 + 0.500*HC4 + 0.250*HCH0 + 0.630*WTT</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.200*N02 + 0.500*ORA2 + ALD + 0.200*X02 + 0.590*C0 + 0.080*GLY</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {162} ISO {163} ISO {164} ISON_RO2 {166} ISON_RO2 {167} ISON_RO2 {168} ISOPROD {169} IP_RO2 </pre>	+ AC03 + XN02 + H0 + N0 + H02 + AC03 + M02 + 03P + 03P + N03 2 + N0 2 + H02 2 + AC03 2 + H02 2 + AC03 2 + H02 + H0 + N0	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > OP2 > 0.500*HCO + ISOPROD > 0.600*HCHO + 0.270*HO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > NO2 + 0.800*HO2 > NO2 + 0.800*HO2 > 0.500*HCD + 0.500*HCD + 0.500*ALD + 0.340*MGLY	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 + 0.250*ACO3 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*MO2 + ONIT + 0.500*MO2 + ONIT + 0.500*HO2 + HO2 + HO2 + 0.250*HCHO + 0.630*KET</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.150*ALD + 0.250*HCHO + 0.800*ONIT + 0.200*N02 + 0.500*ORA2 + ALD + 0.200*X02 + 0.590*C0 + 0.080*GLY</pre>
<pre>{156} ISO {157} ISO_RO2 {157} ISO_RO2 {158} ISO_RO2 {159} ISO_RO2 {160} ISO_RO2 {161} ISO {162} ISO {163} ISO {164} ISON_RO2 {165} ISON_RO2 {166} ISON_RO2 {167} ISON_RO2 {168} ISOPROD {169} IP_RO2 {170} IP_RO2</pre>	+ ACO3 + XNO2 + HO + NO + HO2 + ACO3 + MO2 + O3P + NO3 2 + NO 2 + HO2 2 + ACO3 2 + MO2 + HO + HO + NO + HO + HO	> MCHO > MO2 > ISO_RO2 > 0.088*ONIT + 0.912*ISOPROD > 0.500*HO2 + ISOPROD > 0.500*HCHO + 0.200*XO2 > 0.750*ISOPROD + 0.250*MO2 > NO2 + 0.800*HO2 > NO2 + 0.500*HCHO + 0.500*HCHO + 0.500*HCH > 0.500*HC2 + ALD > 0.500*HCH + 0.150*ALD + 0.340*MGLY > 0P2	<pre>+ HO2 + 0.079*XO2 + 0.912*NO2 + 0.629*HCHO + 0.500*MO2 + 0.500*HO2 + 0.650*ISOPROD + 0.070*HO2 + 0.200*ACO3 2 + 0.800*ALD + 0.200*ISOPROD + 0.500*MO2 + ONIT + 0.500*MO2 + ONIT + 0.500*HO2 + 0.500*IP_RO2 + HO2 + 0.250*HCHO + 0.630*KET</pre>	<pre>+ 0.912*H02 + 0.500*ORA2 + ISOPROD + 0.390*ORA1 + 0.070*C0 + 0.150*ALD + 0.250*HCH0 + 0.800*ONIT + 0.200*N02 + 0.500*ORA2 + ALD + 0.200*X02 + 0.590*C0 + 0.080*GLY</pre>

Table 8A-9. RADM2_CIS1 and RADM2_CIS1_AQ Mechanisms

{171} IP_RO2	+ ACO3	> 0.500*HO2	+ 0.500*MO2	+ 0.500*ORA2
{172} IP_RO2	+ MO2	+ 0.500*ALD > 0.500*HCHO	+ 0.500*KET + 0.500*HO2	+ 0.500*ALD
{173} ISOPROD	+ 03	+ 0.500*KET > 0.268*HO	+ 0.100*HO2	+ 0.114*ACO3
		+ 0.054*MO2 + 0.146*HCHO	+ 0.070*X02 + 0.020*ALD	+ 0.155*CO + 0.010*GLY
{174} ISOPROD	+ hv	+ 0.850*MGLY > 0.970*ACO3	+ 0.090*KET + 0.333*HO2	+ 0.462*ORA1 + 0.700*MO2
		+ 0.200*HCHO + 0.033*KET	+ 0.333*CO	+ 0.067*ALD
{175} ISOPROD	+ NO3	> 0.075*ACO3 + 0.282*HCHO	+ 0.075*HNO3 + 0.925*ONIT	+ 0.643*CO + 0.282*ALD
>		+ 0.925*HO2	+ 0.925*X02	<

Rate Expression

Rate Constant

==		==		===:		
k(1) uses photo table NO2_RADM88	,	scaled	by	1.00000E+00	{0.00000E+00}
k(2) uses photo table 0301D RADM88		scaled	by	1.00000E+00	{0.00000E+00}
kĺ	3) uses photo table 0303P RADM88	ć	scaled	by	1 00000E+00	{0,0000E+00}
k (4) uses photo table HONO RADM88	'	scaled	by	1 00000E+00	$\{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
2	5) uses photo table HNO3 PADM88	'	ggaled	by	1 000000±000	
1= (6) uses photo table INOS_NADMOO	'	scaled	by br	1.0000000000000000000000000000000000000	[0.00000E+00]
K (6) uses photo table HNO4_RADM66	'	scaled	by	1.00000E+00	{0.00000E+00}
K. (7) uses photo table NOSNO_RADM88	'	scaled	by	1.000000000000	{0.00000E+00}
K(8) uses photo table NO3NO2_RADM88	'	scaled	by	1.00000E+00	{0.00000E+00}
K(9) uses photo table H2O2_RADM88	,	scaled	by	1.00000E+00	{0.00000E+00}
k(10) uses photo table HCHOmol_RADM88	,	scaled	by	1.00000E+00	{0.00000E+00}
k(11) uses photo table HCHOrad_RADM88	,	scaled	by	1.00000E+00	{0.00000E+00}
k(12) uses photo table ALD_RADM88	,	scaled	by	1.00000E+00	{0.00000E+00}
k(13) uses photo table MHP_RADM88	,	scaled	by	1.00000E+00	{0.00000E+00}
k(14) uses photo table HOP_RADM88	,	scaled	by	1.00000E+00	{0.00000E+00}
k(15) uses photo table PAA_RADM88	,	scaled	by	1.00000E+00	{0.00000E+00}
k(16) uses photo table KETONE_RADM88	,	scaled	by	1.00000E+00	{0.00000E+00}
k(17) uses photo table GLYform RADM88	,	scaled	by	1.00000E+00	<pre>{0.00000€+00}</pre>
k(18) uses photo table GLYmol RADM88	,	scaled	by	1.00000E+00	<pre>\`{0.00000E+00\$</pre>
k(19) uses photo table MGLY RADM88	,	scaled	by	1.00000E+00	<pre>\`{0.00000E+00\$</pre>
k (20) uses photo table UDC RADM88	÷	scaled	by	1.00000E+00	{0.00000E+00}
k (21) uses photo table ORGNIT RADM88	ć	scaled	by	1.00000E+00	{0.00000E+00}
k (22) = 6.0000E-34 * (T/300)**(-2.30)	'				$\{6.09302E-34\}$
k ((23) = 65000E - 12 * exp(120 0/T)					$\{9, 72293E = 12\}$
k (24) = 1.8000E - 11 * exp(110.0/T)					$\{2, 60365E-11\}$
k ($25) = 3.2000 \text{F} = 11 * \exp(-70.0/\text{T})$					$\{4, 04730F = 11\}$
12 (12 ($25) = 3.2000 \pm 11 \text{ Cxp}(70.071)$					12 20000E-10
л. (]с (20) = 2.2000E = 10 27) = 2.0000E = 12 * orm(- 1400 0/m)					(2.20000E-I0)
л. (]= /	27) = 2.0000E = 12 + exp(-1400.0/1)					(L.022/2E-14)
K (28) = 1.6000E - 12 - exp(-940.0/1)					{0.02050E-14}
K ($29) = 1.1000E - 14 \circ \exp(-500.0/T)$					{2.05452E-15}
K ($30) = 3.7000E - 12^{\circ} exp(240.071)$					{8.2/883E-12}
К (31) is a falloff expression using:	、				{1.39058E-12}
	KU = 1.8000E-31 * (T/300) **(-3.20))				
	$\operatorname{Kinf} = 4.7000 \operatorname{E} - 12 * (17300) * * (-1.40)$)				
	F = 0.60, n = 1.00				(10000 0/-)	(0, (0,0,0,0,-, 0,0))
k(32) = k(31) / Keq, where Keq = 2.1	10	0E-27 *	exp	p(10900.0/T)	{8.62399E-02}
k(33) is a special rate expression of	th	e form:			{3.01634E-12}
	k = k1 + k2[M], where					
	k1 = 2.2000E - 13 * exp(620.0/T)					
	k2 = 1.9000E-33 * exp(980.0/T)					
k(34) is a special rate expression of	th	e form:			{6.78905E-30}
	k = k1 + k2[M], where					
	k1 = 3.0800E-34 * exp(2820.0/T)					
	k2 = 2.6600E-54 * exp(3180.0/T)					
k(35) = 3.3000E - 12 * exp(-200.0/T)					{1.68671E-12}
k(36) is a falloff expression using:					{4.87144E-12}
	k0 = 7.0000E-31 * (T/300) **(-2.60))				,
	kinf = $1.5000E - 11 * (T/300) * (-0.50)$)				
	F = 0.60, $n = 1.00$,				
k(37) = 3.3000E-39 * exp(530.0/T)					{1.95397E-38}
k (38) = 1.4000E - 13 * exp(-2500.0/T)					$\{3, 18213E = 17\}$
k (39) = 1.7000E - 11 * exp(150 0/T)					$\{2, 81225E-11\}$
k (40) = 2.5000E - 14 * exp(-1230 0/T)					$\{4, 03072E - 16\}$
k (41) = 25000E - 12					$\{2, 50000E - 12\}$
k (42) is a falloff expression using:					{1 26440F-12}
ν (12, 15 a lation copression using.					[1.201100-12]
	$k_0 = 2 2000 k_{-30} * (r_{-300} * * / - 4 30)$)				

Table 8A-9. RADM2_CIS1 and RADM2_CIS1_AQ Mechanisms

	kinf =	1.5000E-12 * (T/300)**(-0.50)	
	F = 0	.60, n = 1.00	
k(43) =	k(42) / Keq, where Keq = 1.100E-27 * exp(11200.0/T)	{5.47034E-02}
k(44) =	2.0000E-21	{2.00000E-21}
K(45) 1s	a falloff expression using:	{1.14885E-11}
	KU =	2.6000E-30 * (T/300)**(-3.20) 2.4000E-11 * (T/300)**(-1.30)	
	F = 0	2.4000E = 1 00	
k(46) is	a special rate expression of the form:	{1.47236E-13}
	k = k0	+ $\{k_3[M] / (1 + k_3[M]/k_2)\}$, where	(11,1,2002,10)
	k0 =	7.2000E-15 * exp(785.0/T)	
	k2 =	4.1000E-16 * exp(1440.0/T)	
	k3 =	1.9000E-33 * exp(725.0/T)	
k(47) =	1.3000E-12 * exp(380.0/T)	{4.65309E-12}
k(48) =	4.6000E-11 * exp(230.0/T)	{9.95294E-11}
K(49) 1s	a falloff expression using:	{8.88848E-13}
	ku =	3.0000E-31 = (1/300) = (-3.30) 1 5000E-12 * (T/300) **(0.00)	
	F = 0	n = 1.00	
k(50) =	1.5000E-13 * (1.0 + 0.6*Pressure)	{2.40000E-13}
k(51) =	2.8300E+01 * (T/300)**(2.00) * exp(-1280.0/T)	{3.80672E-01}
k(52) =	1.2330E-12 * (T/300)**(2.00) * exp(-444.0/T)	{2.74210E−13}
k(53) =	1.5900E-11 * exp(-540.0/T)	{2.59669E-12}
k(54) =	1.7300E-11 * exp(-380.0/T)	{4.83334E-12}
k(55) =	3.6400E-11 * exp(-380.0/T)	{1.01696E-11}
K (56) =	2.1500E - 12 * exp(411.0/T)	{8.53916E-12}
K.(と(57) = 58) -	5.5200E = 12 exp(504.0/1)	{2.00004E-11} ∫6 75260₽_11\
k (50) = 59) =	2 1000E = 12 * exp(322 0/T)	$\{6, 18715E-12\}$
k(60) =	1.8900E - 11 * exp(116.0/T)	$\{2.78943E-11\}$
k(61) =	4.0000E-11	{4.00000E-11}
k(62) =	9.0000E-01 * k(61)	{3.60000E−11}
k(63) =	9.0000E-12	(9.00000E-12)
k(64) =	6.8700E-12 * exp(256.0/T)	{1.62197E-11}
k(65) =	1.2000E-11 * exp(-745.0/T)	{9.85020E-13}
k(66) =	1.1500E-11	{1.15000E-11}
K(67) =	1./UUUE-11 2.8000m 11	{1./0000E-11} {2.0000E 11}
k (69) -	1 0000E-11	{2.80000E-11} {1 00000F-11}
k (70) =	1.0000E-11	$\{1,00000E-11\}$
k(71) =	1.0000E-11	{1.00000E-11}
k(72) =	6.1650E-13 * (T/300)**(2.00) * exp(-444.0/T)	(1.37105E-13)
k(73) =	1.5500E-11 * exp(-540.0/T)	{2.53137E−12}
k(74) =	2.8000E-12 * exp(181.0/T)	{5.13974E-12}
k(75) =	1.9500E+16 * exp(-13543.0/T)	{3.57235E-04}
K(76) = 77) =	4.7000E - 12	{4./0000E-12} {2.57225E.04}
k (78) -	4 2000E = 12 * exp(-13543.0/1)	$\{3.57255E=04\}$ $\{7.68378E=12\}$
k (79) =	$4.2000E 12 \exp(100.0/T)$	$\{7, 68378E - 12\}$
k(80) =	4.2000E-12 * exp(180.0/T)	{7.68378E-12}
k(81) =	4.2000E-12 * exp(180.0/T)	{7.68378E-12}
k(82) =	4.2000E-12 * exp(180.0/T)	{7.68378E-12}
k(83) =	4.2000E - 12 * exp(180.0/T)	{7.68378E-12}
K (84) =	4.2000E - 12 * exp(180.0/T)	{/.68378E-12}
K(と(85) =	$4.2000E = 12 \circ exp(180.0/T)$	{/.083/8E-12} /7 68378E-12}
k(87) =	4.2000E - 12 * exp(180.0/T)	{7.68378E-12}
k(88) =	4.2000E-12 * exp(180.0/T)	{7.68378E-12}
k(89) =	4.2000E-12 * exp(180.0/T)	{7.68378E-12}
k(90) =	4.2000E-12 * exp(180.0/T)	{7.68378E−12}
k(91) =	4.2000E-12 * exp(180.0/T)	{7.68378E-12}
k(92) =	6.0000E-13 * exp(-2058.0/T)	{6.01030E-16}
k(93) =	$1.4000E - 12 * \exp(-1900.0/T)$	{2.38307E-15}
к(ъ/	94) = 95) -	$0.0000E - 13 \circ \exp(-2058.0/T)$ 1 4000E-12 * $\exp(-1900.0/T)$	{0.UIU3UE-16} ∫2.28207⊡ 1⊑]
r. (k /	96) -	1.4000E - 12 = exp(-1900.0/1) 1.4000E - 12 + exp(-1900.0/T)	[2.38307E-15]
k(97) =	2.2000E-11	$\{2.20000E-11\}$
k(98) =	$2.0000E - 12 * \exp(-2923.0/T)$	{1.09940E-16}
k(99) =	1.0000E-11 * exp(-1895.0/T)	{1.73099E−14}́
k(100) =	3.2300E-11 * exp(-975.0/T)	{1.22539E-12}
k(101) =	1.2000E-14 * exp(-2633.0/T)	{1.74559E-18}
k()	102) =	$1.3200E - 14 * \exp(-2105.0/T)$	{1.12933E-17}
к() ъ/	104) =	7.2900E - 15 * exp(-1136.0/T) 7.7000E-14 * exp(-1300.0/T)	{I.01125E-10}
К(.	104) =	/./UUUE-14 " exp(1500.0/1)	ιυ.υ4υ38E-12}

	Table 8A-9.	RADM2	CIS1 and	RADM2	CIS1	AC) Mechanisms
--	-------------	-------	----------	-------	------	----	--------------

k(105)	=	7.7000E-14 *	exp(1300.0/T)	4	[6.04038E-12]
1-(106)	_	7 7000 14 *	arr (1200.0/m)		6 04020E 121
K(100)	=	7.7000E-14 "	exp(1300.0/1)	1	[0.04036E-12]
k(107)	=	7.7000E-14 *	exp(1300.0/T)	4	[6.04038E-12]
2(108)	_	7 70000-14 *	$e_{\rm VD}$ (1300 0/m)		โด กุกกรณะ_าวโ
12(100)	-	7.70001 14	CAP(1500.0/1)		
K(109)	=	7.7000E-14 *	exp(1300.0/T)	1	[6.04038E-12]
k(110)	=	7.7000E-14 *	exp(1300.0/T)		$\{6, 04038E - 12\}$
1-(111)		7 70000 14 *	1200 0 (TT)		
K(III)	=	/./0008-14 ^	exp(1300.0/1)	1	[0.04038E-12]
k(112)	=	7.7000E-14 *	exp(1300.0/T)	4	[6.04038E-12]
1-(112)	_	7 70000 14 *	arm (1200 0/m)		(C 04020E 12)
K(113)	=	7.7000E-14 "	exp(1300.0/1)	1	[0.04030E-12]
k(114)	=	7.7000E-14 *	exp(1300.0/T)	•	6.04038E-12
k(115)	-	7 70008-14 *	evp(1300.0/T)	,	6 04038F-121
12(11)	-	7.7000114	CAP(1500.0/1)		
k(116)	=	'/.'/000E-14 *	exp(1300.0/T)	1	{6.04038E-12}
k(117)	=	7 7000E-14 *	exp(1300.0/T)		6 04038E-12
1 (110)		1.00000 12 +	CMP(1900.0/1)		
K(TT8)	=	1.9000E-13 *	exp(220.0/T)	1	[3.9/533E-13]
k(119)	=	1.4000E-13 *	exp(220.0/T)	4	{2.92919E-13}
1-(120)	_	4 2000 14 *	orro (220 0/m)		0 707500 1/1
K(IZU)	-	4.20006-14	exp(220.0/1)		0./0/JOE-14
k(121)	=	3.4000E-14 *	exp(220.0/T)	1	{7.11376E-14}
k(122)	-	2 90008-14 *	evn(220.0/T)	,	6 067628-14
1 (102)		1 40005 12 +	CAP(220.0/1)		
K(123)	=	1.4000E-13 *	exp(220.0/T)	1	{2.92919E-13}
k(124)	=	1.4000E-13 *	exp(220.0/T)	4	{2.92919E-13}
1-(125)	_	1 7000 14 *	orro (220 0/m)		
V(T73)	-	T.1000E-T4 "	CAP(220.0/1)	1	[3.33000E-14]
k(126)	=	⊥.7000E-14 *	exp(220.0/T)	1	[3.55688E−14}
k(127)	=	9.6000E-13 *	exp(220.0/T)		(2.00859E - 12)
1 (100)		1 60005 14 +			
K(128)	=	1./0008-14 *	exp(220.0/1)	1	[3.55688E-14]
k(129)	=	1.7000E-14 *	exp(220.0/T)	4	[3.55688E-14]
12(130)	-	9 60008-13 *	evp(220 0/T)		2 008598-121
12(100)		J.0000E 15	CAP(220.0/1)		
K(131)	=	1.7000E-14 *	exp(220.0/T)	1	{3.55688E-14}
k(132)	=	3.4000E-13 *	exp(220.0/T)		$\{7, 11376E - 13\}$
1-(122)	_	1 0000 12 *	orm (220.0/T)		
K(133)	=	1.0000E-13 ^	exp(220.0/1)	1	[Z.09ZZ8E-I3]
k(134)	=	8.4000E-14 *	exp(220.0/T)	4	[1.75752E-13]
12(135)	_	7 2000 - 14 *	evro(220 0/m)		้ำ ธกศุภภิษ-าวโ
K(133)	_	7.2000E-14	exp(220.0/1)		[1.30044E-13]
k(136)	=	3.4000E-13 *	exp(220.0/T)	1	{7.11376E-13}
k(137)	=	3 4000E-13 *	exp(220.0/T)	1	7 11376E-13
1 (120)		5.1000E 15	CAP(220.0/1)		
K(138)	=	4.2000E-14 *	exp(220.0/T)	1	[8./8/58E-14}
k(139)	=	4.2000E-14 *	exp(220.0/T)	4	[8.78758E-14]
$l_{r}(140)$	_	1 1000 - 12 *	orm (220 0/m)		2 10001 - 12
K(140)	-	1.1900E-12 "	exp(220.0/1)		2.409016-12
k(141)	=	4.2000E-14 *	exp(220.0/T)	1	{8.78758E-14}
k(142)	=	4.2000E-14 *	exp(220.0/T)		(8.78758E-14)
1-(142)		1 10000 10 *			
K(143)	=	1.1900E-12 ^	exp(220.0/1)	1	[Z.4898IE-IZ}
k(144)	=	4.2000E-14 *	exp(220.0/T)	4	8.78758E-14
1/1/5)	_	3 60000-16 *	evro(220 0/m)		ไว ธววว1 ₽_16โ
V(T-1))	_	3.0000E-10	exp(220.0/1)		[7.33ZZIE-10]
k(146)	=	7.7000E-14 *	exp(1300.0/T)	1	{6.04038E-12}
k(147)	=	1.7000E-14 *	exp(220.0/T)	4	3.55688E-14
1-(140)		4 200000 14 *	CKP(220.0/1)		
K(148)	=	4.20008-14 ^	exp(220.0/1)	1	[8./8/58E-14]
k(149)	=	3.6000E-16 *	exp(220.0/T)	4	[7.53221E-16]
k(150)	_	4 20008-12 *	evp(180 0/T)		7 683788-121
1(150)		4.00000 12	CAP(100.0/1)		
K(151)	=	4.2000E-12 *	exp(180.0/1)	1	{/.683/8E-12}
k(152)	=	7.7000E-14 *	exp(1300.0/T)	4	[6.04038E-12]
1-(1-52)	_	1 7000 14 *	orro (220 0/m)		2 55600 1/1
V(T00)	-	T. 1000E-T4 "		1	[3.33000E-14]
k(154)	=	4.2000E-14 *	exp(220.0/T)	1	{8.78758E-14}
k(155)	=	3.6000E-16 *	exp(220.0/T)	}	7.53221E-16
k(156)	-	2 54000-11 *	(T/300)**/ 1 00)	* evp(407 6/m)	0 90710E-111
V(T20)	-	7.2400E-TT	(1)300, "(1.00)		
ĸ(157)	=	4.2000E-12 *	(1.00)**(1.00)	* exp(181.2/T)	(/.66335E-12}
k(158)	=	7.7000E-14 *	(T/300)**(1.00)	* exp(1298.3/T)	5.96598E-12
L= (1E0)	-	0 4000 14 +	(17/200)**/ 1 00)	* orro (221 4 /m)	1 754000 101
K(159)	=	0.40008-14 *	(1/300)"^(1.00)	$e_{AP}(221.4/T)$	LT.12402E-T3}
k(160)	=	3.4000E-14 *	(T/300)**(1.00)	* exp(221.4/T) {	7.09961E-14
k(161)	=	7.8600E-15 *	(T/300) * * (1,00)	$* \exp(-1912.2/T)$	1.27569E-17
1-(100)	_		(1,000)		
к(162)	=	3.6UUUE-11		1	[3.60000Ε-ΤΤ}
k(163)	=	3.0300E-12 *	(T/300)**(1.00)	* exp(-447.9/T)	6.69552E-13
1611	-	4 2000 - 12 *	(T/300)**(100)	* evp(181 2/m)	7 663358-101
V(T04)	-	T.ZUUUE-IZ ^	(1/300) "(1.00)	CAP(101.2/1)	(1.00333E-12)
k(165)	=	7.7000E-14 *	(T/300)**(1.00)	* exp(1298.3/T) {	{5.96598E-12}
k(166)	=	8.4000E-14 *	(T/300) * * (1.00)	* exp(221.4/T)	(1.75402E-13)
1-(100)		2 40000 14 -	(T) 300, (T) 00)	* orm (201 4/m)	
к(те/)	=	3.4UUUE-14 *	(I/300)^*(I.00)	" exp(221.4/T) {	[/.U9901E-14}
k(168)	=	3.3600E-11		4	3.36000E-11}
1601	-	4 2000 - 12 *	(〒/300)**/ 1 00)	* evp(181 2/m)	7 663358-101
V(T03)	-		(1/300)(1.00)	CAP(101.2/1)	[/.00333E-12]
k(170)	=	/./000E-14 *	(T/300)**(1.00)	* exp(1298.3/T)	[5.96598E-12}
k(171)	=	8.4000E-14 *	(T/300) * * (1.00)	* exp(221.4/T)	(1.75402E-13)
1= (1 7 0)		2 40000 14 -	(T) 300, (T) 00)	* orm (201 4/m)	
K(T/2)	=	3.4UUUE-14 *	(T/300)**(I.00)	^ exp(221.4/'l')	[/.U9961E-14}
,		7 11000 10			17 11000E = 18
k(173)	=	1.11008-10			1
k(173)	=	As photo table	ACROLETN	scaled by $3 60000 = 02$	0 0000000100
k(173) k(174)	= us	es photo table	e ACROLEIN	, scaled by 3.60000E-03	(0.00000E+00)
k(173) k(174) k(175)	= us =	es photo table 1.0000E-15	e ACROLEIN	, scaled by 3.60000E-03	{0.00000E+00} {1.00000E-15}

EPA/600/R-99/030

Table 8A-10.	RADM2 CI	S1 AE and RADM2	CIS1 AE AC) Mechanisms

React	tion List								
{ 1}	NO2	+ hv		>	03P	+			<
{ 2}	03	+ hv		>	01D				
{ 3}	03	+ hv		>	O3P				
\dot{i} $4\dot{j}$	HONO	+ hv		>	HO	+	NO		
{ 5}	HNO3	+ hv		>	HO	+	NO2		
{ 6}	HNO4	+ hv		>	HO2	+	NO2		
$\left\{\begin{array}{c}7\\7\end{array}\right\}$	NO3	+ hv		>	NO				
{ 8}	NO3	+ hv		>	NO2	+	O3P		
{ 9}	H2O2	+ hv		>	2.000*HO				
{ 10}	HCHO	+ hv		>	CO				
$\{11\}$	HCHO	+ hv		>	HO2	+	HO2	+	CO
$\{12\}$	ALD	+ hv		>	MO2	+	HO2	+	CO
{ 13}	0P1	+ hv		>	нсно	+	HO2	+	HO
{ 14 }	OP2	+ hv		>	ALD	+	HO2	+	HO
{ 15}	PAA	+ hv		>	MO2	+	HO		
{ 16}	KET	+ hv		>	ACO3	+	ETHP		
$\{17\}$	GLY	+ hv		>	0.130*HCHO	+	1.870*CO		
{ 18}	GLY	+ hv		>	0.450*HCHO	+	1.550*CO	+	0.800*HO2
{ 19}	MGLY	+ hv		>	ACO3	+	HO2	+	CO
$\{20\}$	DCB	+ hv		>	0.980*HO2	+	0.020*ACO3	+	TCO3
$\{21\}$	ONIT	+ hv		>	0.200*ALD	+	0.800*KET	+	HO2
(==)				+	NO2				
{ 22}	03P	+ [M]	+ [02]	>	03				
{ 23 }	03P	+ NO2	. [02]	>	NO				
$\{ 24 \}$	01D	+ [N2]		>	03P				
{ 25}	01D	+ [02]		>	03P				
{ 26}	01D	+ [H20]		>	2.000*HO				
{ 27}	03	+ NO		>	NO2				
$\{28\}$	03	+ HO		>	HO2				
{ 29}	03	+ HO2		>	HO				
$\{30\}$	HO2	+ NO		>	NO2	+	HO		
{ 31 }	HO2	+ NO2		>	HNO4				
$\{32\}$	HNO4	1102		>	HO2	+	NO2		
{ 33}	HO2	+ HO2		>	H2O2		1.02		
{ 34 }	HO2	+ HO2	+ [H2O]	>	H2O2				
{ 35}	H2O2	+ HO	. [1120]	>	HO2				
{ 36}	NO	+ HO		>	HONO				
{ 37}	NO	+ NO	+ [02]	>	2.000*NO2				
{ 38}	03	+ NO2		>	NO3				
{ 39}	NO3	+ NO		>	2.000*NO2				
{ 40}	NO3	+ NO2		>	NO	+	NO2		
{ 41}	NO3	+ HO2		>	HNO3				
{ 42}	NO3	+ NO2		>	N205				
{ 43}	N205			>	NO2	+	NO3		
{ 44}	N205	+ [H2O]		>	2.000*HNO3				
{45}	HO	+ NO2		>	HNO3				
{ 46}	HO	+ HNO3		>	NO3				
<pre>{ 47}</pre>	HO	+ HNO4		>	NO2				
{ 48}	HO	+ HO2		>					
{ 49}	HO	+ SO2		>	SULF	+	HO2	+	SULAER
{ 50}	CO	+ HO		>	HO2				
{ 51}	HO			>	MO2				
{ 52}	ETH	+ HO		>	ETHP				
{ 53}	HC3	+ HO		>	0.830*HC3P	+	0.170*HO2	+	0.009*HCHO
				+	0.075*ALD	+	0.025*KET		
{ 54}	HC5	+ HO		>	HC5P	+	0.250*XO2		
{ 55}	HC8	+ HO		>	HC8P	+	0.750*XO2	+	HC8AER
{ 56}	OL2	+ HO		>	OL2P				
{ 57}	OLT	+ HO		>	OLTP				
{ 58}	OLI	+ HO		>	OLIP	+	OLIAER		
{ 59}	TOL	+ HO		>	0.750*TOLP	+	0.250*CSL	+	0.250*HO2
				+	TOLAER				
{ 60}	XYL	+ HO		>	0.830*XYLP	+	0.170*CSL	+	0.170*HO2
. ,				+	XYLAER				
{ 61}	CSL	+ HO		>	0.100*HO2	+	0.900*XO2	+	0.900*TCO3
. ,				+	CSLAER				
{ 62}	CSL	+ HO		>	CSL				
{ 63}	HCHO	+ HO		>	HO2	+	CO		
{ 64}	ALD	+ HO		>	ACO3				
{ 65}	KET	+ HO		>	KETP				
{ 66}	GLY	+ HO		>	HO2	+	2.000*CO		
{ 67}	MGLY	+ HO		>	ACO3	+	CO		

Table 8A-10. RADM2_CIS1_AE and RADM2_CIS1_AE_AQ Mechanisms

(
{ 68} DCB	+ HO	>	TCO3		
{ 69} OP1	+ HO	> 0.	500*MO2	+ 0.500*HCHO	+ 0.500*HO
{ 70 } OP2	+ HO	> 0.	500*HC3P	+ 0.500*ALD	+ 0.500*HO
	. 110		ACO2		0.500 110
{ /1} PAA	+ HO	>	ACUS		
{ 72} PAN	+ HO	>	HCHO	+ NO3	+ XO2
{ 73} ONIT	+ HO	>	HC3P	+ NO2	
1 741 2003	+ NO2	>	DAN		
	1 1102		1 400		
{ /5} PAN		>	ACO3	+ NO2	
{ 76} TCO3	+ NO2	>	TPAN		
ί 77ί πρακι		>	TCO3	+ NO2	
			1005	. 1102	
{ /8} MOZ	+ NO	>	нсно	+ HO2	+ NO2
{ 79} HC3P	+ NO	> 0.	750*ALD	+ 0.250*KET	+ 0.090*HCHO
		+ 0.	036*ONIT	+ 0.964*NO2	+ 0.964*HO2
	+ NO	> 0	280*710	+ 0 690*KET	+ 0 080*ONTT
(80) HC3P	+ NO	0.1	380 ALD	+ 0.090"KEI	+ 0.080 ONII
		+ 0.	920*NO2	+ 0.920*HO2	
{ 81} HC8P	+ NO	> 0.	350*ALD	+ 1.060*KET	+ 0.040*HCHO
		+ 0.	240*ONIT	+ 0.760*NO2	+ 0.760*HO2
		. 1	600*110110	1102	NO2
{ 02} UL2P	+ NO	> 1.	500 " HCHO	+ HO2	+ NO2
		+ 0.	200*ALD		
{ 83} OLTP	+ NO	>	ALD	+ HCHO	+ HO2
,		±	NO 2		
		1	NOZ	1 450+315	0.000+110110
{ 84} OLIP	+ NO	>	HOZ	+ 1.450*ALD	+ 0.280*HCHO
		+ 0.	100*KET	+ NO2	
{ 85} ACO3	+ NO	>	MO2	+ NO2	
	. 110		NO2	. 0 020*102	
(00) TCO3	+ INU	>		T U.920^HU2	+ 0.090^GLY
		+ 0.	110*MGLY	+ 0.050*ACO3	+ 0.950*CO
		+ 2.	000*XO2		
J 97 J TOT D	+ NO	>	NO 2	+ HO3	+ 0 170 *MCT V
(07) IOHF	+ NO		102	1 102	+ 0.170 MGHI
		+ 0.	160*GLY	+ 0.700*DCB	
{ 88} XYLP	+ NO	>	NO2	+ HO2	+ 0.450*MGLY
t ,		+ 0	806*DCB		
	. 110		JUU DED		
{ 89} EIHP	+ NO	>	ALD	+ HO2	+ NO2
{ 90} KETP	+ NO	>	MGLY	+ NO2	+ HO2
(91) OLN	+ NO	>	HCHO	+ ALD	+ 2.000*NO2
	+ NO3	>	u02	+ UNO3	+ CO
	+ 1005	>	1102	+ 11005	+ 00
{ 93} ALD	+ NO3	>	ACO3	+ HNO3	
{ 94} GLY	+ NO3	>	HNO3	+ HO2	+ 2.000*CO
l 95 μcr.γ	+ NO3	>	HNO3	+ ACO3	+ CO
	NOS		11103		
{ 96} DCB	+ NO3	>	HNO3	+ 1003	
{ 97} CSL	+ NO3	>	HNO3	+ XNO2	+ 0.500*CSL
. ,		+ 0.	500*CSLAER		
	1 10 2		OT N		
{ 98} UL2	+ NO3	>	OLIN		
{ 99} OP.L	+ NO3	>	OLN		
{100} OLI	+ NO3	>	OLN	+ OLIAER	
(101) OT.2	+ 03	>	нсно	+ 0 400*ORA1	+ 0 420*00
[101] 012	1 05		120*1102	· 0.100 01011	0.120 00
(+ 0.	120°HOZ		
{102} OLT	+ 03	> 0.	530*HCHO	+ 0.500*ALD	+ 0.330*CO
		+ 0.	200*ORA1	+ 0.200*ORA2	+ 0.230*HO2
		+ 0	220*MO2	+ 0 100*40	
[102] 017			100*11010	· 0.100 HO	· 0 100+KDB
{103} OLI	+ 03	> 0.	180°HCHO	+ 0.720^ALD	+ 0.100^KET
		+ 0.	230*CO	+ 0.060*ORA1	+ 0.290*ORA2
		+ 0. + 0.	230*CO 260*HO2	+ 0.060*ORAL + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
		+ 0. + 0. +	230*CO 260*HO2 OLTAER	+ 0.060*ORAL + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
[104] 100		+ 0. + 0. +	230*CO 260*HO2 OLIAER	+ 0.060*ORAL + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
{104} HO2	+ MO2	+ 0. + 0. +	230*CO 260*HO2 OLIAER OP1	+ 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
{104} HO2 {105} HO2	+ MO2 + ETHP	+ 0. + 0. + >	230*CO 260*HO2 OLIAER OP1 OP2	+ 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
{104} HO2 {105} HO2 {106} HO2	+ MO2 + ETHP + HC3P	+ 0. + 0. +> >	230*CO 260*HO2 OLIAER OP1 OP2 OP2	+ 0.060*ORAI + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {106} HO2 {107} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P	+ 0. + 0. +> >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2	+ 0.060*ORAI + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {107} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P	+ 0. + 0. +> > >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {107} HO2 {108} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P	+ 0. + 0. +> > > >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {107} HO2 {108} HO2 {109} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC5P + HC8P + OL2P	+ 0. + 0. +> > > > >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OLTP	+ 0. + 0. + 0. +> > > > >	230 * CO 260 * HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OLTP + OLTP	+ 0. + 0. + 0. > > > > >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {110} HO2 {111} HO2 {111} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC5P + OL2P + OL2P + OLTP + OLIP	+ 0. + 0. + 0. + > > > > >	230*CO 260*HO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP	+ 0. + 0. + 0. +> > > > > > >	230 * CO 260 * HO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP + ACO3	+ 0. + 0. + 0. + > > > > > > > >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OLTP + OLTP + CLIP + KETP + ACO3 + TOLP	+ 0. + 0. + 0. +> > > > > > > > > >	230 * CO 260 * HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {114} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + YUP	+ 0. + 0. + 0. + > > > > > > > > >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 PAA OP2 OP2 OP2 PAA	+ 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {114} HO2 {115} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OLTP + OLTP + KETP + AC03 + TOLP + XYLP	+ 0. + 0. + 0. +> > > > > > > > > >	230*CO 260*HO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3	+ 0. + 0. + 0. +> > > > > > > > > >	230 * CO 260 * HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 PAA OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {114} HO2 {115} HO2 {117} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN	+ 0. + 0. + 0. + > > > > > > > > > -	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.140*HO	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {117} HO2 {118} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + CL1P + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2	+ 0. + 0. + 0. +> > > > > > > > > >	230 * CO 260 * HO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO + HO2	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {118} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2	+ 0. + 0. + 0. +> > > > > > > > > >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.140*HO + 0.140*HO + HO2	+ 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {119} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2 + ETHP	+ 0. + 0. + 0. +> > > > > > > > > >	230*CO 260*HO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO + HO2 + HO2	+ 0.290*ORA2 + 0.310*MO2 + 0.750*ALD
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {117} HO2 {118} MO2 {120} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2 + ETHP + HC3P	+ 0. + 0. + 0. +> > > > > > > > > >	230 * CO 260 * HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO + HO2 + HO2 + 0.770*ALD	+ 0.290*ORA2 + 0.310*MO2 + 0.750*ALD + 0.260*KET
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {119} MO2 {120} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2 + ETHP + HC3P	$\begin{array}{c} + & 0 \\ + & 0 \\ + & 0 \\ + \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\ 1. \\> & 0 \\> \\ 0 \\ + \end{array}$	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO + HO2 + HO2 + O.770*ALD	+ 0.290*ORA2 + 0.310*MO2 + 0.750*ALD + 0.260*KET
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {115} HO2 {116} HO2 {116} HO2 {117} HO2 {118} MO2 {120} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + CL1P + AC03 + TOLP + XYLP + TC03 + OLN + MO2 + ETHP + HC3P	+ 0. + 0. + 0. + 0. +> > > > > > > > > >	230*CO 260*HO2 OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO + HO2 + HO2 + 0.770*ALD + 0.410*31D	+ 0.290*ORA2 + 0.310*MO2 + 0.750*ALD + 0.260*KET + 0.750*KET
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {120} MO2 {121} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2 + ETHP + HC3P + HC5P	+ 0. + 0. >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO + 0.140*HO + HO2 + 0.770*ALD + 0.410*ALD	<pre>+ 0.290*ORA2 + 0.310*MO2 + 0.750*ALD + 0.260*KET + 0.750*KET</pre>
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {119} MO2 {120} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2 + ETHP + HC3P + HC5P	$\begin{array}{c} + & 0 & . \\ + & 0 & . \\ + & 0 & . \\ + & 0 & . \\ + & 0 & . \\ + & 0 & . \\ - & 0 & . \\ - & - & 0 & . \\ - & - & 0 & . \\ - & - & 0 & . \\ + & - & - & 0 & . \\ + & - & 0 & . \\ + & - & + & 0 & . \end{array}$	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.140*ORA1 + 0.140*HO + HO2 + HO2 + 0.770*ALD + 0.410*ALD	<pre>+ 0.290*ORA2 + 0.310*MO2 + 0.750*ALD + 0.260*KET + 0.750*KET</pre>
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {120} MO2 {121} MO2 {122} MO2</pre>	<pre>+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2 + ETHP + HC3P + HC3P</pre>	+ 0. + 0. + 0. + 0. +> > > > > > > > > >	230*CO 260*HO2 OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	+ 0.060*ORA1 + 0.140*HO + 0.140*HO + HO2 + HO2 + 0.770*ALD + 0.410*ALD + 0.460*ALD	<pre>+ 0.290*ORA2 + 0.310*MO2 + 0.750*ALD + 0.260*KET + 0.750*KET + 1.390*KET</pre>

Table 8A-10. RADM2_CIS1_AE and RADM2_CIS1_AE_AQ Mechanisms

			1 100		
{123} MO2	+ OT.2P	>	+ HOZ	+ 0 350*ALD	+ HO3
{123} MO2 {124} MO2	+ OLZF + OLTP	>	1 250*HCHO	+ 0.350 ALD + 0.750*ALD	+ HO2
{125} MO2	+ OLTP	>	0 890*HCHO	+ 0 725*ALD	+ HO2
[125] 1102	· OHII		+ 0.550*KET	· 0.725 IIID	. 1102
{126} MO2	+ KETP	>	0.750*HCHO	+ 0.750*MGLY	+ HO2
{127} MO2	+ ACO3	>	НСНО	+ 0.500*HO2	+ 0.500*MO2
()			+ 0.500*ORA2		
{128} MO2	+ TOLP	>	HCHO	+ 0.170*MGLY	+ 0.160*GLY
			+ 0.700*DCB	+ 2.000*HO2	
{129} MO2	+ XYLP	>	HCHO	+ 0.450*MGLY	+ 0.806*DCB
			+ 2.000*HO2		
{130} MO2	+ TCO3	>	0.500*HCHO	+ 0.445*GLY	+ 0.055*MGLY
			+ 0.500*ORA2	+ 0.025*ACO3	+ 0.460*HO2
			+ 0.475*CO	+ XO2	
{131} MO2	+ OLN	>	1.750*HCHO	+ 0.500*HO2	+ ALD
			+ NO2		
{132} ETHP	+ ACO3	>	ALD	+ 0.500*HO2	+ 0.500*MO2
(+ 0.500*ORA2		
{133} HC3P	+ ACO3	>	0.770*ALD	+ 0.260*KET	+ 0.500*HO2
(+ 0.500*MO2	+ 0.500*ORA2	
{134} HC5P	+ ACO3	>	0.410*ALD	+ 0.750*KET	+ 0.500*HO2
(+ 0.500*MO2	+ 0.500*ORA2	
{135} HC8P	+ ACO3	>	0.460*ALD	+ 1.390*KET	+ 0.500*HO2
()			+ 0.500*MO2	+ 0.500*ORA2	
{I36} OL2P	+ ACO3	>	0.800*HCHO	+ 0.600*ALD	+ 0.500*HO2
(105) 0			+ 0.500*MO2	+ 0.500*ORA2	
{137} OLTP	+ ACO3	>	ALD	+ 0.500*HCHO	+ 0.500*HO2
(100)			+ 0.500*MO2	+ 0.500*ORA2	0.1.1.0.1
{138} OPI5	+ ACO3	>	0.725*ALD	+ 0.550*KET	+ 0.140*HCHO
(120) 77777			+ 0.500*HO2	+ 0.500*MO2	+ 0.500*ORA2
{139} KETP	+ AC03	>	MGLY	+ 0.500*HO2	+ 0.500^MOZ
[140] 3002	1 1002		+ 0.500*0RA2		
{140} ACO3	+ ACUS	>	2.000 "MO2	0 170*MCT V	0 160*CTV
{141} ACU3	+ 1015	>	MO2	+ 0.170"MGL1	+ 0.100"GL1
[142] ACO2			+ 0.700 DCB		
[142] ACOS	+ XIDF	>	+ HO2	+ 0.450 MGH1	+ 0.000 DCB
1121 ACO2	+ TCO3	>	+ 1102 MO2	± 0 920*¤O2	
(11) ACOS	1 1005		+ 0 110*MGLY	+ 0.050 * ACO3	+ 0.950*00
			$+ 2.000 \times 202$	0.050 11005	. 0.950 00
{144} ACO3	+ OLN	>	нсно	+ AT.D	+ 0 500*ORA2
(11) 11005			+ NO2	$+ 0.500 \times MO2$. 0.500 01012
{145} OLN	+ OLN	>	2.000*HCHO	+ 2.000*ALD	+ 2.000*NO2
{146} x02	+ HO2	>	OP2		
{147} x02	+ MO2	>	НСНО	+ но2	
{148} x02	+ ACO3	>	MO2		
{149} xo2	+ XO2	>			
₹150} xo2	+ NO	>	NO2		
{151} XNO2	+ NO2	>	ONIT		
{152} XNO2	+ HO2	>	OP2		
{153} XNO2	+ MO2	>	HCHO	+ HO2	
{154} XNO2	+ ACO3	>	MO2		
{155} XNO2	+ XNO2	>			
{156} TERP	+ HO	>	TERPAER	+ HO	
{157} TERP	+ NO3	>	TERPAER	+ NO3	
{158} TERP	+ 03	>	TERPAER	+ 03	
{159} ISO	+ HO	>	ISO_RO2	+ 0.079*XO2	
{160} ISO_RO2	+ NO	>	0.088*ONIT	+ 0.912*NO2	+ 0.912*HO2
()			+ 0.912*ISOPROD	+ 0.629*HCHO	
{161} ISO_RO2	+ HO2	>	OP2		
{162} ISO_RO2	+ ACO3	>	0.500*HO2	+ 0.500*MO2	+ 0.500*ORA2
(1.52) - 22 - 20			+ ISOPROD	0.500,000	
{164} ISU_RO2	+ MO2	>	0.500*HCHO	+ 0.500*HO2	+ LSOPROD
(104) ISO	+ 03	>	U.OUU"HCHU	+ 0.050^1SOPROD	T U.39U^UKAL
			+ 0.2/0°HU	+ 0.0/0"HUZ	
{165} TCO	+ 03D		T U.200 AUZ	+ 0.200"ACUS	+ 0.100"ALD + 0.250*UCUO
(TOJ) TOO	+ USP	>	+ 0 250*MO2	0.230"ACU3	· 0.230"RCRU
{166} TCO	+ NO3	_ <	TON DOG)	
(167) TOON DO	2 + NO	>	TOON_ROZ	+ 0 800*at.d	+ 0 800*∩\TT
(10,) 1000_00	2 . 110		+ 0.800*HO2	+ 0.200*TSOPROD	+ 0.200*NO2
{168} ISON RO	2 + HO2	>	ONIT	1.111 1001100	
{169} ISON RO	2 + ACO3	>	0.500*HO2	+ 0.500*MO2	+ 0.500*ORA2
. ,					

Table 8A-10.	RADM2 CIS1	AE and RADM2	CIS1 AE A	O Mechanisms

											2		
{170}	ISON_RO2	+ MO2		>	+	0.500	ALD *HCH	0	+	0.500*1	HO2	+	ALD
{171}	ISOPROD	+ HO		>	+	0.500	ONI *ACO	Г 3	+	0.500*3	IP RO2	+	0.200*XO2
{172}	IP_RO2	+ NO		>			NO2		+]	HO2	+	0.590*CO
. ,	—				+	0.550	*ALD		+	0.250*1	нсно	+	0.080*GLY
					+	0.340	*MGL	Y	+	0.630*1	KET		
{173}	IP_RO2	+ HO2		>			OP2						
{174}	IP_RO2	+ ACO3		>		0.500	*но2		+	0.500*1	MO2	+	0.500*ORA2
. ,	—				+	0.500	*ALD		+	0.500*1	KET		
{175}	IP_RO2	+ MO2		>		0.500	*HCH	0	+	0.500*1	HO2	+	0.500*ALD
					+	0.500	*KET						
{176}	ISOPROD	+ 03		>		0.268	*HO		+	0.100*1	HO2	+	0.114*ACO3
					+	0.054	*MO2		+	0.070*2	xo2	+	0.155*CO
					+	0.146	*HCH	0	+	0.020*2	ALD	+	0.010*GLY
					+	0.850	*MGL	Y	+	0.090*1	KET	+	0.462*ORA1
{177}	ISOPROD	+ hv		>		0.970	*ACO	3	+	0.333*1	HO2	+	0.700*MO2
. ,					+	0.200	*HCH	0	+	0.333*0	20	+	0.067*ALD
					+	0.033	*KET						
{178}	ISOPROD	+ NO3		>		0.075	*ACO	3	+	0.075*1	HNO3	+	0.643*CO
. ,					+	0.282	*HCH	0	+	0.925*0	DNIT	+	0.282*ALD
					+	0.925	*но2		+	0.925*2	xo2		
>													<
Rate 1	Expressio	n]	Rate Con	sta	int
=====		==========		====	= = :	======	====	=====	==	=======		===	:==
k(1) uses ph	oto table	NO2_RADM88		, :	scaled	by	1.0000) () E	2+00	{0.00000	E+0	00}
k(2) uses ph	oto table	0301D_RADM88		, :	scaled	by	1.0000	0 E	+00	{o.oooo:	E+0)0}
k(3) uses ph	oto table	0303P_RADM88		, :	scaled	by	1.0000	0 E	+00	{0.00000	E+0)0}
k(4) uses ph	oto table	HONO_RADM88		, :	scaled	by	1.0000	0 E	+00	{o.oooo:	E+0)0}
k(5) uses ph	oto table	HNO3_RADM88		, :	scaled	by	1.0000	0 E	+00	{o.oooo:	E+0)0}
k(6) uses ph	oto table	HNO4_RADM88		, :	scaled	by	1.0000	0 E	+00	{0.00000	E+0)0}
k(7) uses ph	oto table	NO3NO_RADM88		, :	scaled	by	1.0000	0 E	+00	{o.oooo:	E+0)0}
k(8) uses ph	oto table	NO3NO2_RADM88		, :	scaled	by	1.0000	0 E	+00	{o.oooo:	E+0)0}
k(9) uses ph	oto table	H2O2_RADM88		, :	scaled	by	1.0000	0 E	+00	{0.00000	E+0)0}
k(10) uses ph	oto table	HCHOmol_RADM8	8	, :	scaled	by	1.0000	0 E	+00	{o.oooo:	E+0)0}
k(11) uses ph	oto table	HCHOrad_RADM8	8	, :	scaled	by	1.0000	0 E	+00	{o.oooo:	E+0)0}
k(12) uses ph	oto table	ALD_RADM88		, :	scaled	by	1.0000	0 E	+00	{0.00000	E+0)0}
k(13) uses ph	oto table	MHP_RADM88		, :	scaled	by	1.0000) () E	+00	{0.00000	E+0)0}
k(14) uses ph	oto table	HOP_RADM88		, :	scaled	by	1.0000	0 E	+00	{o.oooo:	E+0)0}
k(15) uses ph	oto table	PAA_RADM88		, :	scaled	by	1.0000	0 E	+00	{0.00000	E+0)0}
k(16) uses ph	oto table	KETONE_RADM88		, :	scaled	by	1.0000	0 E	+00	{o.oooo:	E+0)0}
k(17) uses ph	oto table	GLYform_RADM8	8	, :	scaled	by	1.0000) () E	2+00	{0.00000	E+0)0}
k(18) uses ph	oto table	GLYmol_RADM88		, ;	scaled	by	1.0000	0 E	2+00	{0.00000	E+0)0}
k(19) uses ph	oto table	MGLY_RADM88		, ;	scaled	by	1.0000	0 E	2+00	{o.oooo:	E+0)0}
k(20) uses ph	oto table	UDC_RADM88		, ;	scaled	by	1.0000	0 E	2+00	{o.oooo:	E+0)0}
k(21) uses ph	oto table	ORGNIT RADM88			scaled	by	1.0000) () E	2+00	{o.oooo	E+0	io į
k(22) = 6.00	00E-34 *	(T/300)**(-2.3	0)			-				6.09302	E-3	34}
k(23) = 6.50	00E-12 * e	exp(120.0/T	')							{9.72293	E-1	_2}́
k(24) = 1.80	00E-11 * e	exp(110.0/T	')							{2.60365	E-1	.1}
k(25) = 3.20	00E-11 * e	exp(70.0/I	')							4.04730	E-1	.1}
k(26) = 2.20	00E-10									{2.20000	E-1	.0}
k(27) = 2.00	00E-12 * e	exp(-1400.0/T	')							{1.82272	E-1	.4}
k(28) = 1.60	00E-12 * e	exp(-940.0/I	')							6.82650	E-1	4
k(29) = 1.10	00E-14 * e	exp(-500.0/I	')							2.05452	E-1	.5}
k(30) = 3.70	00E-12 * e	exp(240.0/I	')							8.27883	E-1	.2}
k(31) is a fa	lloff exp	ression using:								1.39058	E-1	_2 }
k0	= 1.8	000E-31 *	(T/300)**(-3.	20)							•		
ki	nf = 4.7	000E-12 *	(T/300)**(-1.	40)									
	0 00	- 1 0/											

KIIII = 4.7000E - 12 " (1/300)""(-1.40)	
F = 0.60, n = 1.00	
32) = k(31) / Keq, where Keq = $2.100E-27 * exp(10900.0/T)$	{8.62399E-02}
33) is a special rate expression of the form:	{3.01634E-12}
k = k1 + k2[M], where	
k1 = 2.2000E - 13 * exp(620.0/T)	
k2 = 1.9000E-33 * exp(980.0/T)	
34) is a special rate expression of the form:	{6.78905E-30}
k = k1 + k2[M], where	
k1 = 3.0800E - 34 * exp(2820.0/T)	
k2 = 2.6600E-54 * exp(3180.0/T)	
35) = 3.3000E - 12 * exp(-200.0/T)	{1.68671E-12}
<pre>36) is a falloff expression using:</pre>	{4.87144E-12}
k0 = 7.0000E-31 * (T/300) ** (-2.60)	
kinf = $1.5000E - 11 * (T/300) * (-0.50)$	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$

F = 0.60, n = 1.00	
k(37) = 3.3000E-39 * exp(530.0/T)	{1.95397E-38}
k(38) = 1.4000E - 13 * exp(-2500.0/T)	(3.18213E-17)
k(39) = 1.7000E - 11 * exp(150.0/T)	$\begin{cases} 2 81225E - 11 \end{cases}$
R(30) = 2.5000114 corp(-120.0/T)	[2.01223E 11]
$R(40) = 2.5000E^{-14} = \exp(-1250.071)$	(4.030/2E=10)
k(41) = 2.5000E - 12	{2.50000E-12}
k(42) is a falloff expression using:	{1.26440E-12}
$k_0 = 2.2000E - 30 * (T/300) * * (-4.30)$	
$k_{inf} = 1.5000 r_{-12} * (T/300) * * (-0.50)$	
$R_{\rm H} = 1.500 R_{\rm H} = 1.00$	
F = 0.60, n = 1.00	
k(43) = k(42) / Keq, where $Keq = 1.100E-27 * exp(11200.000)$	J/T) {5.47034E-02}
k(44) = 2.0000E-21	{2.00000E-21}
k(45) is a falloff expression using:	₹1,14885E-11\$
$h(10) = 2.600002.00 \times (7200) \times (2.20)$	(11100001 11)
KO = 2.0000E - 50 - (1/500) + (-5.20)	
kinf = $2.4000E - 11 * (T/300) * * (-1.30)$	
F = 0.60, n = 1.00	
k(46) is a special rate expression of the form:	{1.47236E-13}
$k = k0 + \{k3[M] / (1 + k3[M]/k2)\}$ where	(
$K = K0 + \{KS[M]\} / \{1 + KS[M]/KZ\}\}, where$	
$R_0 = 7.2000E - 15 * exp(785.071)$	
k2 = 4.1000E - 16 * exp(1440.0/T)	
$k_3 = 1.9000E - 33 * exp(725.0/T)$	
k(47) = 1.3000E - 12 * exp(380.0/T)	$\{4, 65309E - 12\}$
k(48) = 4.6000 F = 11 * evp(230.0/T)	{9 9520/₽_11)
$r_{10} = 1.00000 \pm c_{AP}(200.0/1)$	
K(49) is a falloff expression using:	{8.88848E-13}
k0 = 3.0000E - 31 * (T/300) * (-3.30)	
kinf = 1.5000E - 12 * (T/300) * * (0.00)	
F = 0.60, n = 1.00	
k(50) = 1.5000 F = 13.8 (1.0 + 0.6 * Dreggure)	{2 40000 <u></u> -12]
$K(50) = 1.5000E^{-13} (1.0 + 0.0) + (1.000) $	[2.40000E-13]
K(51) = 2.8300E+01 * (T/300) **(2.00) * exp(-1280.0/T)	{3.806/2E-01}
k(52) = 1.2330E-12 * (T/300) **(2.00) * exp(-444.0/T)	{2.74210E-13}
k(53) = 1.5900E - 11 * exp(-540.0/T)	{2.59669E-12}
k(54) = 1.7300E - 11 * exp(-380.0/T)	$\left\{4 83334E - 12\right\}$
$R(54) = 1.7500 \pm 11 + CAP(-300.0/1)$	[1.03554E 12]
k(55) = 3.6400E - 11 + exp(-380.0/T)	{I.UI090E-II}
k(56) = 2.1500E - 12 * exp(411.0/T)	{8.53916E-12}
k(57) = 5.3200E - 12 * exp(504.0/T)	{2.88684E-11}
k(58) = 1.0700E - 11 * exp(549.0/T)	(6.75269E-11)
k(59) = 21000E = 12 * exp(-322.0/T)	$\int 6 19715 r = 121$
R(39) = 2.1000E + 12 CAP(322.071)	
$\kappa(60) = 1.8900E - 11 * \exp(-116.0/T)$	{2./8943E-II}
k(61) = 4.0000E-11	{4.00000E-11}
k(62) = 9.0000E - 01 * k(61)	{3.60000E-11}
k(63) = 9.0000E-12	
$k_{1}(64) = 6.8700 \pm 1.2 + \text{orr}(-256.0/\text{T})$	().000000 ±2) ∫1 €2107π 11)
R(04) = 0.0700E = 12 - exp(-230.071)	(1.0219/E-11)
$K(65) = 1.2000E-11 * \exp(-745.0/T)$	{9.85020E-I3}
k(66) = 1.1500E-11	{1.15000E-11}
k(67) = 1.7000E - 11	{1.70000E-11}
k(68) = 2.8000E - 11	$\frac{1}{2}$ 80000E-11
k(69) = 1.0000E - 11	$\int 1 00000 = 11$
$h_{1}(0,0) = 1.00000 11$	
K(70) = 1.0000E-11	{I.00000E-II}
$\kappa(71) = 1.0000E-11$	{1.00000E-11}
k(72) = 6.1650E-13 * (T/300) **(2.00) * exp(-444.0/T)	{1.37105E-13}
k(73) = 1.5500E - 11 * exp(-540.0/T)	{2.53137E-12}
k(74) = 2.8000E - 12 * exp(181.0/T)	ξ5.13974E-121
F(75) = 1.0500F10 + 3erc(-12542.0/m)	J2 570250 041
K_{1} (F_{2}) = 1.9500ET10 = $EXP(=13545.0/1)$	
$\kappa(10) = 4.7000E-12$	{4./0000E-12}
k(77) = 1.9500E+16 * exp(-13543.0/T)	{3.57235E-04}
k(78) = 4.2000E - 12 * exp(180.0/T)	{7.68378E-12}
k(79) = 4.2000E - 12 * exp(180.0/T)	(7.68378E-12)
k(90) = 4.2000 E 12 exp(100.0/T)	J7 60070m 101
$\kappa_{1} = 4.2000E = 12 + exp(100.0/1)$	[7.003/0E-12]
$\kappa(\delta I) = 4.2000E - IZ * exp(I80.0/T)$	{/.68378E-12}
k(82) = 4.2000E - 12 * exp(180.0/T)	{7.68378E-12}
k(83) = 4.2000E - 12 * exp(180.0/T)	{7.68378E-12}
k(84) = 4.2000E - 12 * exp(180.0/T)	$\frac{1}{7}$ 68378E-12
$F_{\rm r}$ F_{\rm	∫7 60070E 10]
π_{1} (05) - π_{2} 2000 π_{12} (200.0/1)	
$\kappa(80) = 4.2000E - 12 * \exp(180.0/T)$	{7.68378E-12}
k(87) = 4.2000E - 12 * exp(180.0/T)	{7.68378E-12}
k(88) = 4.2000E - 12 * exp(180.0/T)	{7.68378E-12}
k(89) = 4.2000E - 12 * exp(180.0/T)	$\{7, 68378\pi = 12\}$
$k_{(0,0)} = 4.2000 \pm 2.5 \exp(-100.0/1)$	ر،⊥2∫ ∫7 ۲۵۵۶۰۵۳ ۱۵۱
$\pi_{1} = 90$ = 4.2000E-12 $\approx \exp(100.0/1)$	[7.003/0E-12]
$\kappa(91) = 4.2000E-12 * \exp(-180.0/T)$	{/.683/8E-12}
k(92) = 6.0000E-13 * exp(-2058.0/T)	{6.01030E-16}
k(93) = 1.4000E - 12 * exp(-1900.0/T)	{2.38307E-15}
k(94) = 6.0000E - 13 * exp(-2058.0/T)	(6.01030E-16)
k(95) = 1.4000F = 12 * evp(-1900.0/T)	{2 30207₽_1E
$r_{1} = 1.1000 = 12 = c_{P}(-1000.0/1)$	
V(20) = 1.4000F = 12 = exb(-1300.0/1)	{∠.383U/E-15}

Table 8A-10.	RADM2 CIS1	AE and RADM2	CIS1 AE	AO Mechanisms

k(97)	=	2.2000E-11		$\{2, 20000E-11\}$
k(98)	=	2.0000E-12 *	exp(-2923.0/T)	{1.09940E-16}
k(99)	=	1.0000E-11 *	exp(-1895.0/T)	{1.73099E-14}
k(100)	=	3.2300E-11 *	exp(-975.0/T)	{1.22539E-12}
k(101)	=	1.2000E-14 *	exp(-2633.0/T)	<pre>{1.74559E−18}</pre>
k(102)	=	1.3200E-14 *	exp(-2105.0/T)	{1.12933E-17}
k(103)	=	7.2900E-15 *	exp(-1136.0/T)	{1.61125E-16}
k(104)	=	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(105)	=	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(106)	=	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(107)	=	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(108)	=	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(109)	=	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(110)	=	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(III)	=	7.7000E-14 *	exp(1300.0/1)	{6.04038E-12}
$K(\perp\perp Z)$	=	7.7000E-14 *	exp(1300.0/T)	{0.04038E-12}
K(113)	-	7.7000E-14 "	exp(1300.0/1)	{0.04030E-12}
L(115)	_	7.7000E-14 *	exp(1300.0/T)	10.04030E-12)
k(116)	_	7 7000E-14 *	exp(1300.0/T)	$\{6, 04038F = 12\}$
k(117)	_	7 7000E 11 *	exp(1300.0/T)	$\{6, 04038E - 12\}$
k(118)	_	1.9000E-13 *	exp(220.0/T)	$\{3, 97533E = 13\}$
k(119)	=	1.4000E-13 *	exp(220.0/T)	$\{2, 92919E-13\}$
k(120)	=	4.2000E-14 *	exp(220.0/T)	{8.78758E-14}
k(121)	=	3.4000E-14 *	exp(220.0/T)	{7.11376E-14}
k(122)	=	2.9000E-14 *	exp(220.0/T)	{6.06762E-14}
k(123)	=	1.4000E-13 *	exp(220.0/T)	{2.92919E-13}
k(124)	=	1.4000E-13 *	exp(220.0/T)	{2.92919E-13}
k(125)	=	1.7000E-14 *	exp(220.0/T)	{3.55688E-14}
k(126)	=	1.7000E-14 *	exp(220.0/T)	{3.55688E-14}
k(127)	=	9.6000E-13 *	exp(220.0/T)	{2.00859E-12}
k(128)	=	1.7000E-14 *	exp(220.0/T)	{3.55688E-14}
k(129)	=	1.7000E-14 *	exp(220.0/T)	{3.55688E-14}
k(130)	=	9.6000E-13 *	exp(220.0/1)	{2.00859E-12}
K(131)	=	1./000E-14 *	exp(220.0/T)	{3.55688E-14}
K(132)	=	3.4000E-13 ^	exp(220.0/T)	{/.113/0E-13}
K(133)	_	2.0000E-13 " 8.4000E-14 *	exp(220.0/1)	{2.09220E-13} ∫1 75752₽_13]
L(135)	_	7 2000E-14 *	exp(220.0/1)	1 50644E-13
k(136)	_	3 4000E-13 *	exp(220.0/T)	{7 11376F-13}
k(137)	=	3.4000E-13 *	exp(220.0/T)	$\{7, 11376E - 13\}$
k(138)	=	4.2000E-14 *	exp(220.0/T)	$\{8, 78758E - 14\}$
k(139)	=	4.2000E-14 *	exp(220.0/T)	{8.78758E-14}
k(140)	=	1.1900E-12 *	exp(220.0/T)	{2.48981E−12}
k(141)	=	4.2000E-14 *	exp(220.0/T)	<pre>{8.78758E−14}</pre>
k(142)	=	4.2000E-14 *	exp(220.0/T)	{8.78758E-14}
k(143)	=	1.1900E-12 *	exp(220.0/T)	{2.48981E-12}
k(144)	=	4.2000E-14 *	exp(220.0/T)	{8.78758E-14}
k(145)	=	3.6000E-16 *	exp(220.0/T)	{7.53221E-16}
k(146)	=	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(147)	=	1.7000E-14 *	exp(220.0/1)	{3.55688E-14}
K(148)	=	4.2000E-14 *	exp(220.0/T)	{8./8/58E-14}
K(149)	-	3.0000E-10 "	$\exp(-\frac{180.0}{T})$	{7.55221E-10}
k(150)	_	4.2000E=12 *	exp(180.0/T)	[7.00370E=12] ∫7.68378⊑_12]
k(152)	_	7 7000E-12 *	exp(1300.0/T)	$\{6, 04038F = 12\}$
k(153)	_	1.7000E-14 *	exp(220.0/T)	$\{3, 55688E - 14\}$
k(154)	=	4.2000E-14 *	exp(220.0/T)	$\{8, 78758E - 14\}$
k(155)	=	3.6000E-16 *	exp(220.0/T)	{7.53221E-16}
k(156)	=	1.0000E+00 *	k(58)	{6.75269E-11}
k(157)	=	1.0000E+00 *	k(100)	<pre>{1.22539E−12}</pre>
k(158)	=	1.0000E+00 *	k(103)	{1.61125E−16}
k(159)	=	2.5400E-11 *	(T/300)**(1.00) * exp(407.6/T)	{9.90719E-11}
k(160)	=	4.2000E-12 *	(T/300)**(1.00) * exp(181.2/T)	{7.66335E-12}
k(161)	=	7.7000E-14 *	(T/300)**(1.00) * exp(1298.3/T)	{5.96598E-12}
k(162)	=	8.4000E-14 *	$(T/300)**(1.00)*\exp(221.4/T)$	{1.75402E-13}
k(163)	=	3.4000E-14 *	(T/300)**(1.00) * exp(221.4/T)	{7.09961E-14}
k(164)	=	7.8600E-15 *	(T/300)** (1.00) * exp $(-1912.2/T)$	{1.27569E-17}
K(165)	=	3.6000E-11		{3.60000E-11}
K(160)	=	3.0300E-12 *	$(T/300)^{**}(1.00)^{*} \exp(-447.9/T)$	{0.09552E-13}
K(16/)	=	4.2000E-12 *	$(1/300)^{\circ}(1.00)^{\circ} \exp(-181.2/T)$	{/.00335E-12} ∫5 06500m 10]
k(169)	=	8.4000E-14 *	(T/300) * (1.00) = exp(-1220.3/1)	$\{1, 75402E - 13\}$
k(170)	_	3.4000E-14 *	(T/300) * (1.00) * exp(221.4/T)	$\{7, 09961E = 14\}$
	-		(-,, (1.00, Cmp(221.1/1)	(
Table 8A-10. RADM2_CIS1_AE and RADM2_CIS1_AE_AQ Mechanisms

k(171)	=	3.3600E-11						$\{3, 36000E-11\}$
k(172)	=	4.2000E-12 *	(T/300)**(1.00)	*	exp(181.2/T)	{7.66335E-12}
k(173)	=	7.7000E-14 *	(T/300)**(1.00)	*	exp(1298.3/T)	<pre>{5.96598E−12}</pre>
k(174)	=	8.4000E-14 *	(T/300)**(1.00)	*	exp(221.4/T)	$\{1.75402E-13\}$
k(175)	=	3.4000E-14 *	(T/300)**(1.00)	*	exp(221.4/T)	{7.09961E-14}
k(176)	=	7.1100E-18						{7.11000E-18}
k(177)	use	es photo table	e ACROLEIN		,	scale	d by 3.60000E-03	{0.00000E+00}
k(178)	=	1.0000E-15						(1.00000E-15)
	===			======	===	======		

Reaction Lis	t							
{ 1} NO2	+ hv		>	03P	+	NO		<
{ 2} 03	+ hv		>	01D				
{ 3} 03	+ hv		>	O3P				
{ 4 } HONO	+ hv		>	HO	+	NO		
{ 5} HNO3	+ hv		>	HO	+	NO2		
{ 6} HNO4	+ hv		>	HO2	+	NO2		
{ 7} NO3	+ hv		>	NO				
{ 8} NO3	+ hv		>	NO2	+	03P		
{ 9} H2O2	+ nv		>	2.000*HO				
$\{10\}$ HCHO	+ nv		>	00		1100		00
	+ 11V		>	HOZ MO2	+	HOZ	+	C0 C0
	+ 11V + hv			UCUO	- -	102	+	цО ПО
{ 14} OP2	+ hv		>	ALD	+	HO2	+	HO
{ 15} PAA	+ hv		>	MO2	+	HO	·	110
{ 16} KET	+ hv		>	ACO3	+	ETHP		
{ 17} GLY	+ hv		>	0.130*HCHO	+ 1.	.870*CO		
{ 18} GLY	+ hv		>	0.450*HCHO	+ 1.	.550*CO	+ 0.8	300*HO2
{ 19} MGLY	+ hv		>	ACO3	+	HO2	+	CO
{ 20} DCB	+ hv		>	0.980*HO2	+ 0.	.020*ACO3	+	TCO3
{ 21} ONIT	+ hv		>	0.200*ALD	+ 0.	.800*KET	+	HO2
<i>.</i>				+ NO2				
{ 22} O3P	+ [M]	+ [02]	>	03				
{ 23} 03P	+ NO2		>	NO				
{ 24} 01D	+ [N2]		>	03P				
{ 25} OID	+ [02]		>	03P				
{ 20} UID	+ [H20]		>	2.000"HO				
{ 2/} U3	+ NO		>	NO2				
{ 20} 03	+ HO2		>	HO				
{ 30} HO2	+ NO		>	NO2	+	HO		
{ 31 } HO2	+ NO2		>	HNO4		110		
{ 32} HNO4			>	HO2	+	NO2		
{ 33} HO2	+ HO2		>	H2O2				
} 34} HO2	+ HO2	+ [H2O]	>	Н2О2				
{̀ 35}́ H2O2	+ HO		>	HO2				
{ 36} NO	+ HO		>	HONO				
{ 37} NO	+ NO	+ [02]	>	2.000*NO2				
{ 38} 03	+ NO2		>	NO3				
{ 39} NO3	+ NO		>	2.000*NO2				
{ 40} NO3	+ NO2		>	NO	+	NO2		
{ 41} NO3	+ HO2		>	HNO3				
{ 42} NO3	+ NO2		>	N205		NO 2		
{ 43} N205	- [1120]		>	NUZ	+	NO3		
1 44 M205	+ [H20]		>	Z.000 HNO3				
{ 46} HO	+ HNO3		>	NO3				
{ 47} HO	+ HNO4		>	NO3				
{ 48} HO	+ HO2		>	1102				
{ 49} HO	+ SO2		>	SULF	+	HO2		
{ 50} CO	+ HO		>	HO2				
{ 51} HO			>	MO2				
{ 52} ETH	+ HO		>	ETHP				
{ 53} HC3	+ HO		>	0.830*HC3P	+ 0.	.170*HO2	+ 0.0	009*HCHO
() -				+ 0.075*ALD	+ 0.	.025*KET		
{ 54 } HC5	+ HO		>	HC5P	+ 0.	.250*X02		
{ 55} HC8	+ HO		>	HC8P	+ 0.	.750*X02		
{ 56} OLZ	+ HO		>	OL2P				
{ 5/} OLT	+ HO		>	OLTP				
{ 50} ULI	+ HO		>		+ 0	250*091	+ 0 '	250*102
{ 60} XVI.	+ HO		>	0.730 IOLF	+ 0.	170*CSL	+ 0.2	170*HO2
{ 61 } CSL	+ HO		>	0.030 XIDF	+ 0.	900*x02	+ 0.1	900*TCO3
{ 62 } CSL	+ HO		>	CSL		. 900 1102		1005
{ 63} HCHO	+ HO		>	HO2	+	CO		
{ 64 } ALD	+ HO		>	ACO3				
(65) KET	+ HO		>	KETP				
{ 66} GLY	+ HO		>	HO2	+ 2.	.000*CO		
{ 67} MGLY	+ HO		>	ACO3	+	CO		
{ 68} DCB	+ HO		>	TCO3				
{ 69} OP1	+ HO		>	0.500*MO2	+ 0.	.500*HCHO	+ 0.5	500*HO
{ 70} OP2	+ HO		>	0.500*HC3P	+ 0.	.500*ALD	+ 0.5	500*HO

Table 8A-11. RADM2_CIS4 and RADM2_CIS4_AQ Mechanisms

Table 8A-11. RADM2_CIS4 and RADM2_CIS4_AQ Mechanisms

			1.002			
{ /1} PAA	+ HO	>	ACO3			
{ 72} PAN	+ HO	>	HCHO	+ NO3	+ 202	
{ 73} UNIT	+ HO	>	HC3P	+ NO2		
{ 74} ACO3	+ NO2	>	PAN			
{ 75} PAN		>	ACO3	+ NO2		
{ 76} TCO3	+ NO2	>	TPAN			
{ 77} TPAN		>	TCO3	+ NO2		
{ 78} MO2	+ NO	>	HCHO	+ HO2	+ NO2	
{ 79} HC3P	+ NO	> 0.1	750*ALD	+ 0.250*KET	+ 0.090*HCHO	
		+ 0.0)36*ONIT	+ 0.964*NO2	+ 0.964*HO2	
{ 80} HC5P	+ NO	> 0.3	380*ALD	+ 0.690*KET	+ 0.080*ONIT	
		+ 0.9	920*NO2	+ 0.920*HO2		
{ 81} HC8P	+ NO	> 0.3	350*ALD	+ 1.060*KET	+ 0.040*HCHO	
		+ 0.2	240*ONIT	+ 0.760*NO2	+ 0.760*HO2	
{ 82} OL2P	+ NO	> 1.6	500*HCHO	+ HO2	+ NO2	
		+ 0.2	200*ALD			
{ 83} OLTP	+ NO	>	ALD	+ HCHO	+ HO2	
		+	NO2			
{ 84} OLIP	+ NO	>	HO2	+ 1.450*ALD	+ 0.280*HCHO	
		+ 0.2	100*KET	+ NO2		
{ 85} ACO3	+ NO	>	MO2	+ NO2		
{ 86} TCO3	+ NO	>	NO2	+ 0.920*HO2	+ 0.890*GLY	
		+ 0.1	110*MGLY	+ 0.050*ACO3	+ 0.950*CO	
		+ 2.0	000*XO2			
{ 87} TOLP	+ NO	>	NO2	+ HO2	+ 0.170*MGLY	
		+ 0.2	160*GLY	+ 0.700*DCB		
{ 88} XYLP	+ NO	>	NO2	+ HO2	+ 0.450*MGLY	
		+ 0.8	806*DCB			
{ 89 } ETHP	+ NO	>	ALD	+ HO2	+ NO2	
{ 90} KETP	+ NO	>	MGLY	+ NO2	+ HO2	
{ 91} OLN	+ NO	>	HCHO	+ ALD	+ 2.000*NO2	
	+ NO3	>	HO2	+ HNO3	+ CO	
{ 93} ALD	+ NO3	>	ACO3	+ HNO3		
{ 94 } GLY	+ NO3	>	HNO3	+ HO2	+ 2.000*CO	
{ 95} MGLY	+ NO3	>	HNO3	+ ACO3	+ CO	
{ 96 } DCB	+ NO3	>	HNO3	+ TCO3		
{ 97 } CSL	+ NO3	>	HNO3	+ XNO2	+ 0.500*CSL	
{ 98 } OL2	+ NO3	>	OLN			
{ 99} OLT	+ NO3	>	OLN			
{100} OLT	+ NO3	>	OLN			
{101} OL2	+ 03	>	HCHO	+ 0.400*ORA1	+ 0.420*CO	
(101) 011		+ 0 -	120*HO2		0.120 00	
{102} OLT	+ 03	> 0	530*HCHO	+ 0 500*AT.D	+ 0 330*00	
(100) 001		+ 0 3	200*0RA1	+ 0 200*ORA2	+ 0 230*H02	
		+ 0	220*MO2	+ 0 100*HO	0.200 102	
{103} OLT	+ 03	> 0	180*HCHO	+ 0 720*ALD	+ 0 100*KET	
[105] 011	. 05	+ 0 .	230*00	+ 0.060*0RA1	$+ 0.290 \times 0022$	
		+ 0 1	260*402	+ 0 140*HO	$+ 0.310 \times MO2$	
{104} HO2	+ MO2	>	001	1 0.140 110	1 0.510 MOZ	
105 HO2	+ FTHD	>	022			
{106} HO2	+ HC3P	>	OP2			
107 HO2	+ HC5P	>	022			
108 HO2	+ HC8D	>	022			
{109} HO2	+ 0L2P	>	OP2			
{110} HO2	+ OLTP	>	022			
1111 HO2	+ OLTP	>	022			
112 HO2	+ KETD	>	022			
112 HO2	+ ACO2	>	DAA			
(113) HOZ	+ ACUS	>	PAA OD2			
(114) HOZ	+ IOLP	>	OP2			
116 U02	- TCO2	>	022			
117 HUZ		>	OPZ			
119 MO2		>		± ±0.0		
(110) MO2		> 1.:			. 0. 750****	
(110) MOZ	+ ETHP	> 0.	/ SU^HCHO	+ HUZ	+ U./5U^ALD	
{IZU} MOZ	+ HC3P	> 0.8	54U^HCHO	+ U.//U*ALD	+ U.20U^KET	
(101) 200		+	HUZ	. 0 410+375		
{IZI} MO2	+ HC5P	> 0.	//U*HCHO	+ 0.410*ALD	+ U./5U*KET	
(100) 200		+	HUZ		. 1 200+1155	
{122} MO2	+ HC85	> 0.8	SUU*HCHO	+ U.46U*ALD	+ 1.390*KET	
(100)		+	HO2			
{123} MO2	+ UL2P	> 1.5	5U*HCHO	+ U.350*ALD	+ HO2	
{124} MO2	+ OLTP	> 1.2	25U*HCHO	+ U.750*ALD	+ HO2	
{125} MO2	+ OLIP	> 0.8	SA0*HCHO	+ 0.725*ALD	+ HO2	
		+ 0.5	o5U*KET			

	Table 8A-11.	RADM2_CIS4 and RADM2	_CIS4_AQ Mechanisms
--	--------------	----------------------	---------------------

$ \begin{bmatrix} 126 \\ 127 \end{bmatrix} MO2 + KETP + 0.500^{+}MO2 + 0.500^$	_							(
		{126}	MO2	+]	KETP	>		0.750*HCHO	+	0.750*MGLY	+	HO2
		{127}	MO2	+ ;	ACO3	>	+	HCHO 0.500*0RA2	+	0.500*HO2	+	0.500*MO2
		{128}	MO2	+ ?	TOLP	>		нсно	+	0.170*MGLY	+	0.160*GLY
		{129}	MO2	+ 3	XYLP	>	+	0.700*DCB HCHO	++	2.000*HO2 0.450*MGLY	+	0.806*DCB
		()					+	2.000*HO2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		{130}	MO2	+ '	TCO3	>	+	0.500*HCHO 0.500*ORA2	++	0.445*GLY 0.025*ACO3	++	0.055*MGLY 0.460*HO2
		()					+	0.475*CO	+	XO2		
$ \begin{cases} 132 \\ ETHP + ACO3> ALD + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.100*MGLY + 0.606*MC2 + 0.500*MO2 \\ + 0.100*MGLY + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.100*MGLY + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.100*MGLY + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.100*MGLY + 0.500*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.100*MGLY + 0.050*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.100*MGLY + 0.050*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.100*MGLY + 0.050*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.100*MGLY + 0.050*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.100*MGLY + 0.050*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.000*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MO2 + 0.000*MO2 + 0.500*MO2 + 0.500*MO2 \\ + 0.500*MC2 + 0.020 + MO2 + 0.500*MO2 + 0$		{131}	MO2	+ (OLN	>	+	1.750*HCHO NO2	+	0.500*HO2	+	ALD
		{132}	ETHP	+ 1	ACO3	>		ALD	+	0.500*HO2	+	0.500*MO2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		{133}	HC3P	+ 2	ACO3	>	+	0.770*ALD	+	0.260*KET	+	0.500*HO2
		∫12 <i>/</i> l	UC5D	т ;	ACO3		+	0.500*MO2	+	0.500*ORA2	-	0 500*402
		1124)	нсэр	Τ.	ACO3	/	+	0.500*MO2	+	0.500*ORA2	т	0.500 HOZ
$ \begin{cases} 136 \ 0L2P + AC03 &> 0.800 +HC0 + 0.600 +HC2 \\ 137 \ 0LTP + AC03 &> 0.500 +HC2 + 0.500 +HC2 \\ 138 \ 0LIP + AC03 &> 0.500 +HC2 + 0.500 +HC2 \\ 139 \ KETP + AC03 &> MCL + 0.550 +HC2 + 0.500 +HC2 \\ 140 \ AC03 + AC03 &> MCL + 0.550 +HC2 + 0.500 +HC2 \\ 141 \ AC03 + TOLP &> MCL + 0.500 +HC2 + 0.500 +HC2 \\ 142 \ AC03 + XYLP &> MC2 + 0.400 +HC2 \\ 142 \ AC03 + XYLP &> HC10 + HC2 \\ 143 \ AC03 + TCC3 &> HC10 + AC03 + 0.500 +HC2 + 0.800 +HC2 \\ 144 \ AC03 + CC3 &> HC10 + ALD + 0.500 +HC2 \\ 144 \ AC03 + CC3 &> HC10 + ALD + 0.500 +HC2 \\ 144 \ AC03 + CC3 &> HC10 + ALD + 0.500 +HC2 \\ 144 \ AC03 + CLN &> HC10 + ALD + 0.500 +HC2 \\ 144 \ AC03 + CLN &> HC10 + ALD + 0.500 +HC2 \\ 144 \ AC03 + CLN &> HC10 + HC2 \\ 144 \ AC03 + CLN &> HC10 + HC2 \\ 144 \ AC03 + CLN &> HC10 + HC2 \\ 144 \ AC03 + CLN &> HC10 + HC2 \\ 144 \ AC03 + CLN &> HC10 + HC2 \\ 144 \ AC03 + CLN &> HC10 + HC2 \\ 144 \ AC03 + CLN &> HC10 + HC2 \\ 144 \ AC03 + CLN &> HC10 + HC2 \\ 144 \ AC03 + CLN &> HC10 + HC2 \\ 146 \ AC03 + CC2 &> HC10 + HC2 \\ 146 \ AC03 + CC2 &> HC10 + HC2 \\ 155 \ AR02 + AC03 &> MO2 \\ 155 \ AR02 + KC3 &> HC10 + HC2 \\ 155 \ AR02 + AC03 &> HC10 + HC2 \\ 156 \ AR02 + AC03 &> HC10 + HC2 \\ 157 \ IS0 \ AC0 + HC2 &> CNIT \\ 158 \ AC02 + HC2 &> CNIT \\ 159 \ IS0 \ AC0 + HC2 &> CNIT \\ 150 \ AC0 + HC2 &> CNIT \\ 151 \ AR02 + AC03 &> HC10 + 0.320 + MCR + 0.320 + MCR + 0.320 + MCR \\ + 0.629 +HC10 + 0.320 + MCR + 0.320 + MCA + 0.320 + MCR + 0.320 + MCA + 0.320 + MCA + 0.320 + MCA + 0.320 $		{135}	HC8P	+ 2	ACO3	>	-	0.460*ALD	+	1.390*KET	+	0.500*HO2
$ \begin{cases} 137 \\ 0LTP + ACO3 &> & LD + 0.500*MC2 \\ + 0.500*MC2 + 0.500*MCR2 \\ + 0.500*MC2 + 0.500*MC2 \\ + 0.170*MC1Y + 0.160*C1Y \\ + 0.806*DCB \\ + 0.200*MC2 \\ + 0.100*MC1Y + 0.806*DCB \\ + 0.200*MC2 \\ + 0.100*MC1Y + 0.500*MC2 \\ + 0.500*MC2 \\ + 0.100*MC1Y + 0.500*MC2 \\ + 0.500*MC2 \\ + 0.100*MC1Y + 0.500*MC2 \\ + 0.500*CRA \\ + 0.110*MC1Y + 0.500*MC2 \\ + 0.100*MC1Y + 0.500*MC2 \\ + 0.110*MC1Y + 0.500*MC2 \\ + 0.100*MC1Y + 0.500*MC2 \\ + 0.200*MC2 \\ + 0.100*MC1Y + 0.500*MC2 \\ + 0.200*MC2 \\ + 0.100*MC1Y + 0.500*MC2 \\ + 0.500*MC2 \\ + 0.100*MC1Y + 0.500*MC2 \\ + 0.500*MC2 \\ + 0.100*MC1Y + 0.500*MC2 \\ + 0.500*MC2 \\ + 0.100*MC1Y + 0.050*AC3 \\ + 0.500*MC1Y + 0.100*ALD \\ + 0.200*MC2 \\ + 0.100*MC1Y + 0.079*MC2 \\ + 0.100*MC1Y + 0.079*MC2 \\ + 0.500*MC1Y + 0.912*MC2 \\ + 0.500*MC1Y + 0.912*MC2 \\ + 0.500*MC1Y + 0.912*MC2 \\ + 0.500*MC1Y + 0.230*MACR \\ + 0.320*MVK \\ + 0.520*MC2 \\ + 0.500*MC1 + 0.230*MACR \\ + 0.320*MVK \\ + 0.520*MC2 \\ + 0.320*MVK \\ + 0.520*MC2 \\ + 0.320*MVK \\ + 0.520*MC2 \\ + 0.200*MC2 \\ + 0.500*MC1 \\ + 0.500*MC1 \\ + 0.500*MC2 \\ + 0$		{136}	OL2P	+ 2	ACO3	>		0.800*HCHO	+	0.600*ALD	+	0.500*HO2
		{137}	OLTP	+ 3	ACO3	>	+	0.500*MO2	++	0.500*ORA2	+	0 500*#02
		(±37)	0111	• •		-	+	0.500*MO2	+	0.500*ORA2	•	0.500 1102
$ \begin{cases} 133 \} \text{ KETP } + ACO3 &> & MCLY + 0.500*HO2 + 0.500*HO2 \\ 140 \} ACO3 + ACO3 & + ACO3 &> & 2.000^{4}MO2 \\ 141 \} ACO3 + TOLP &> & MO2 + 0.170^{4}MGLY + 0.160^{4}GLY \\ + 0.700^{4}DCB & + 0.270^{4}MGLY + 0.806^{4}DCB \\ 142 \} ACO3 + XYLP &> & MO2 + 0.450^{4}MGLY + 0.806^{4}DCB \\ 143 \} ACO3 + TCO3 &> & MO2 + 0.920^{4}HO2 & + 0.890^{4}GLY \\ + 0.110^{4}MGLY + 0.050^{*}ACO3 + 0.950^{*}CCO \\ + 0.110^{4}MGLY + 0.20^{*}MO2 + 2.000^{*}MO2 \\ 144 \} XO2 + ACO3 &> & MC2 \\ 144 \} XO2 + ACO3 &> & MC2 \\ 144 \} XO2 + ACO3 &> & MC2 \\ 155 \} IXO2 + HO2 &> & MC2 \\ 155 \} IXO2 + HO2 &> & MC2 \\ 155 \} IXO2 + HO2 &> & 0.008^{*}MCT + 0.912^{*}MO2 + 0.912^{*}HO2 \\ + 0.623^{*}HCHO + 0.079^{*}XO2 \\ 155 \} IXO_{C2} + HO2 &> & 0.500^{*}HCH + 0.912^{*}MACR + 0.320^{*}MWK \\ 160 \} ISO_{RO2} + HO2 &> & 0.500^{*}HCHO + 0.500^{*}MACR + 0.320^{*}MWK \\ 161 \} ISO_{RO2} + HO2 &> & 0.500^{*}HCHO + 0.500^{*}MACR + 0.320^{*}MWK \\ 161 \} ISO_{RO2} + HO2 &> & 0.500^{*}HCHO + 0.500^{*}MACR + 0.320^{*}MWK \\ 161 \} ISO_{RO2} + HO2 &> & 0.500^{*}HCHO + 0.230^{*}MACR + 0.320^{*}MWK \\ 161 \} ISO_{RO2} + HO2 &> & 0.500^{*}HCHO + 0.200^{*}MACR + 0.100^{*}TSOPROD \\ 10161^{*}HCHO + 0.100^{*}TSOPROD & 0.230^{*}MACR + 0.320^{*}MWK \\ 161 \} ISO_{RO2} + HO2 &> & 0.500^{*}HCHO + 0.500^{*}MACR + 0.320^{*}MWK \\ 161 \} ISO_{RO2} + HO2 &> & 0.500^{*}HCHO + 0.200^{*}MACR + 0.300^{*}MOZ \\ 164 \} ISO_{ROR}C2 + HO2 &> & 0.500^{*}HCHO + 0.500^{*}MACR + 0.300^{*}MCT \\ 165 \end{bmatrix} ISO_{RO2} + HO2 &> & 0.5$		{138}	OLIP	+ 1	ACO3	>	+	0.725*ALD 0.500*HO2	+ +	0.550*KET 0.500*MO2	+ +	0.140*HCHO 0.500*ORA2
$ \begin{cases} 140 \\ ACO3 + ACO3 \\ \{141 \\ ACO3 + TOLP \\ \\ 142 \\ ACO3 + TOLP \\ \\ 142 \\ ACO3 + TOLP \\ \\ 142 \\ ACO3 + TOLP \\ \\ 143 \\ ACO3 + TOLP \\ \\ 144 \\ ACO3 + TOLP \\ \\ 144 \\ ACO3 + TCO3 \\ \\ \\ \\ 155 \\ ISO2 + MO2 \\ \\ \\ 155 \\ ISO2 + MO2 \\ \\ \\ \\ 155 \\ ISO + TO2 \\ \\ \\ 155 \\ ISO + TO2 \\ \\ \\ \\ 155 \\ ISO + TO2 \\ \\ \\ \\ 156 \\ ISO + TO2 \\ \\ \\ \\ 156 \\ ISO + TO2 \\ \\ \\ \\ \\ 156 \\ ISO + TO2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		{139}	KETP	+ 2	ACO3	>		MGLY	+	0.500*HO2	+	0.500*MO2
$ \begin{cases} 141 \\ 142 \\ ACO3 + TOLP \\ + 0.700*PCB + H02 \\ + 0.700*PCB + H02 \\ + H0 \\ $		{140}	ACO3	+ 2	ACO3	>	+	0.500*ORA2 2.000*MO2				
$ \begin{cases} 142 \} \ ACO3 + XYLP &> MO2 + 0.450*MGLY + 0.806*DCB \\ + HO2 \\ + HO2 \\ + HO2 \\ + HO2 \\ + O.100*XO2 \\ + O.500*MO2 + 0.920*HO2 + 0.890*GLY \\ + O.000*XO2 \\ + O.000*XO$		{141}	ACO3	+ '	TOLP	>		MO2	+	0.170*MGLY	+	0.160*GLY
$ \begin{cases} 143 \\ ACO3 + TCO3 & + HO2 \\ + HO2 \\ + HO2 \\ + O.110^{+}MGLY + O.920^{+}HO2 + O.890^{+}GLY \\ + O.950^{+}CCO \\ + 2.000^{+}NCO \\ + 2.000^{+}NCO \\ + 2.000^{+}NCO \\ + 2.000^{+}NCO \\ + ALD \\ + O.500^{+}MO2 \\ + 0.500^{+}MO2 \\ + NO2 \\ + O.500^{+}MO2 \\ + HO2 \\ + NO2 \\ + O.500^{+}MO2 \\ + O.50$		{142}	ACO3	+ 3	XYLP	>	+	0.700*DCB MO2	++	HO2 0.450*MGLY	+	0.806*DCB
		[1/2]	1002		TCO2		+	HO2		0 020*1102		0 900*01 V
$ \begin{cases} 144 \ ACO3 + 0LN & + 2.000*XO2 \\ + NO2 + 0.500*MO2 + 0.500*ORA2 \\ + NO2 + 0.500*MO2 & + 0.500*ORA2 \\ + NO2 + 0.500*MO2 \\ + OLDO*NO2 & + 0.500*MO2 \\ + OLDO*NO2 & + 0.500*MO2 & + 0.00*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 & + OLDO*NO2 \\ + OLDO*NO2 & + OLDO*$		{143}	ACOS	т	1003	/	+	0.110*MGLY	+	0.050*ACO3	+	0.950*CO
$ \begin{bmatrix} 141 \\ 146 \\ 101 \\ 146 \\ 1x0 \\ 146 \\ 1$		{144}	ACO3	+ (OT.N	>	+	2.000*XO2	+	AT.D	+	0 500*0222
$ \begin{bmatrix} 145 \\ 146 \\ X02 + H02 &> \\ 147 \\ X02 + H02 &> \\ HCHO + H02 + H02 \\ 148 \\ X02 + AC03 &> \\ HCHO + H02 \\ 149 \\ X02 + X02 &> \\ HCHO + H02 \\ 149 \\ X02 + X02 &> \\ HCHO + H02 \\ 151 \\ XN02 + N0 &> \\ I51 \\ XN02 + H02 &> \\ HCHO + H02 \\ 152 \\ XN02 + H02 &> \\ HCHO + H02 \\ 153 \\ XN02 + K02 &> \\ HCHO + H02 \\ 154 \\ XN02 + X02 &> \\ HCHO + H02 \\ 155 \\ XN02 + XN02 &> \\ HCHO + H02 \\ 155 \\ IS0_R02 + N0 &> \\ I50_R02 + H02 &> \\ 0.50^{+}HCHO + 0.500^{+}M02 + 0.500^{+}M02 \\ 160 \\ IS0_R02 + H02 &> \\ 0.500^{+}HCHO + 0.500^{+}HO2 + 0.320^{+}MVK \\ + 0.629^{+}HCHO \\ \hline \\ \{161 \\ IS0_R02 + H02 &> \\ 0.500^{+}HCHO + 0.320^{+}MACR + 0.320^{+}MVK \\ + 0.300^{+}MACR + 0.230^{+}MVK \\ + 0.300^{+}MACR + 0.100^{+}ISOPROD \\ \hline \\ \{161 \\ IS0_R02 + N03 &> \\ I63 \\ IS0_R02 + N03 &> \\ I50^{+}S1DPCD + 0.200^{+}NC3 \\ \hline \\ \{163 \\ IS0_R02 + H02 &> \\ N1T & + 0.800^{+}HO \\ \hline \\ \{164 \\ IS0N_R02 + H02 &> \\ N1T & + 0.500^{+}MO2 \\ \hline \\ \{165 \\ IS0N_R02 + H02 &> \\ N1T & + 0.500^{+}MO2 \\ \hline \\ \{166 \\ IS0N_R02 + H02 &> \\ NIT & + ALD & + 0.500^{+}MO2 \\ \hline \\ \{168 \\ MACR + H0 &> \\ 0.500^{+}MCO3 + 0.500^{+}MACR_R02 \\ \hline $		[111]	ACOJ				+	NO2	+	0.500*MO2		0.500 ORAZ
$ \begin{bmatrix} 147 \\ 102 \\ 147 \\ 102 \\ 148 \\ 102 \\ 148 \\ 102 \\ 148 \\ 102 \\ 148 \\ 102 \\ 149 \\ 102 \\ 149 \\ 102 \\ 149 \\ 102 \\ 149 \\ 102 \\ 149 \\ 102 \\ 149 \\ 102 \\ 149 \\ 102 \\ 149 \\ 102 \\ 149 \\ 102 \\ 150 \\ 180 \\ 1$		$\{145\}\$	OLN XO2	+ (OLN HO2	> >		2.000*HCHO OP2	+	2.000*ALD	+	2.000*NO2
$ \begin{cases} 148 \\ XO2 + ACO3 &> MO2 \\ 149 \\ XO2 + XO2 & + XO2 &> \\ 150 \\ XO2 + NO &> ONT \\ 151 \\ XNO2 + NO2 &> OP2 \\ 153 \\ XNO2 + HO2 &> MO2 \\ 154 \\ XNO2 + ACO3 &> MO2 \\ 155 \\ XNO2 + ACO3 &> MO2 \\ 155 \\ XNO2 + XNO2 &> \\ 156 \\ 1S0 + HO &> ISO_RO2 + 0.079 * XO2 \\ 155 \\ XNO2 + XNO2 &> \\ 156 \\ 1S0 + HO &> 0.088 CMIT + 0.912 * NO2 + 0.912 * HO2 \\ + 0.362 * ISOPROD + 0.230 * MACR + 0.320 * MVK \\ + 0.629 * HCH + 0 & 0.079 * XO2 \\ 158 \\ 1S0_RO2 + HO2 &> 0.500 * HO2 + 0.500 * MACR + 0.320 * MVK \\ + 0.629 * HCHO + 0.079 * XO2 \\ 158 \\ 1S0_RO2 + ACO3 &> 0.500 * HO2 + 0.500 * MACR + 0.320 * MVK \\ + 0.629 * HCHO + 0.023 * MACR + 0.320 * MVK \\ + 0.629 * HCHO + 0.230 * MACR + 0.320 * MVK \\ + 0.629 * HCHO \\ 160 \\ 1SO_RO2 + MO2 &> 0.500 * HCH + 0.500 * MACR + 0.160 * MVK \\ + 0.390 * ORAI + 0.330 * MACR + 0.160 * MVK \\ + 0.390 * ORAI + 0.270 * HO2 & + 0.200 * MOC \\ 161 \\ 1SO + O3 &> 0.500 * HCH + 0.100 * ISOPROD \\ 161 \\ 1SO + O3 &> ISON_RO2 + 0.200 * MCC3 & + 0.200 * MCC3 \\ + 0.150 * ALD + 0.100 * ISOPROD \\ 1613 \\ 1SO + NO3 &> ISON_RO2 \\ 164 \\ 1SON_RO2 + NO &> ISON_RO2 \\ 165 \\ 1SON_RO2 + ACO3 &> ISON_RO2 \\ 166 \\ 1SON_RO2 + ACO3 &> OSOV + O2 & + 0.500 * MO2 \\ 166 \\ 1SON_RO2 + ACO3 &> OSOV + O \\> OSOV + O2 & + 0.500 * MO2 \\ 166 \\ 1SON_RO2 + MO2 &> OSOV + O \\> OSOV + O2 & + 0.500 * MO2 \\ + 0.500 * MO2 & + 0.500 * MO2 \\ + 0.500 * MO2 & + 0.500 * MO2 \\ 166 \\ 1SON_RO2 + MO2 &> OSOV + O \\> OSOV + O2 & + 0.500 * MO2 \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\ + 0.500 * MCG & + 0.500 * MACR \\$		{147}	X02	+ 1	MO2	>		нсно	+	HO2		
$ \begin{cases} 150 \\ 150 \\ 151 \\ 150 \\ 151 \\ 150 \\ 152 \\ 152 \\ 152 \\ 152 \\ 153 \\ 150 \\ 153 \\ 150 \\ 153 \\ 150 \\ 154 \\ 150 \\ 154 \\ 150 \\ 155 \\ 155 \\ 150 \\ 155 \\ 150 \\ 155 \\ 150 \\ 155 \\ 150 \\ 155 \\ 150 \\ 155 \\ 150 \\ 155 \\ 150 \\ 155 \\ 150 \\ 155 \\ 155 \\ 150 \\ 155 \\ 1$		{148} {149}	XO2 XO2	+ 1	ACO3 XO2	> >		MO2				
$ \begin{cases} 151 \\ 152 \\ 153 \\ XN02 + H02 \\ 153 \\ XN02 + M02 \\ 154 \\ XN02 + ACO3 \\ 155 \\ XN02 + XN02 \\ 155 \\ ISO + H0 \\ 157 \\ ISO_RO2 + NO \\ \end{cases} \begin{array}{c}> \\ 156 \\ ISO + H0 \\> \\ 156 \\ ISO_RO2 + NO \\ 157 \\ ISO_RO2 + HO2 \\ 159 \\ ISO_RO2 + HO2 \\ 159 \\ ISO_RO2 + ACO3 \\ 150 \\ RO2 \\ 160 \\ ISO_RO2 + MO2 \\ 160 \\ ISO_RO2 + MO2 \\ 160 \\ ISO_RO2 + MO2 \\ 161 \\ ISO + O3 \\ 161 \\ ISO \\ 161 \\ ISO \\ 161 \\ ISO \\ 161 \\ ISO \\ 162 \\ ISO \\ 162 \\ ISO \\ 162 \\ ISO \\ 163 \\ ISO \\ 163 \\ ISO \\ 164 \\ ISON_RO2 + HO2 \\ 163 \\ ISO \\ 164 \\ ISON_RO2 + HO2 \\ 165 \\ ISON_RO2 + HO2 \\ 166 \\ ISON_RO2 + MO3 \\ 166 \\ ISON_RO2 + MO3 \\ 166 \\ ISO \\ 166 \\ ISON_RO2 + MO3 \\ 166 \\ ISON_RO2 + HO2 \\ 166 \\ 1SON_RO2 + HO2 \\ 166 \\ 166 \\ 150N_RO2 + HO2 \\ 166 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 $		{150}	XO2	+ 1	NO	>		NO2				
		{151}	XNO2	+ 1	NO2	>		ONIT				
$ \begin{cases} 153 \\ 153 \\ 153 \\ 153 \\ 153 \\ 153 \\ 153 \\ 153 \\ 153 \\ 153 \\ 155 \\ 150 \\ 155 \\ 150 \\ 155 \\ 150 \\ 155 \\ 150 \\ 157 \\ 150 \\ 1$		{152}	XNO2	+ 1	HUZ	>		0P2		110.2		
$ \begin{bmatrix} 194 \\ 1002 \\ 1155 \end{bmatrix} XN02 + AC03 \\ XN02 + HO \\ 1156 \end{bmatrix} ISO + HO \\> ISO_RO2 + 0.079*XO2 \\ 1157 \end{bmatrix} ISO_RO2 + NO \\> 0.088*ONIT + 0.912*NO2 + 0.912*HO2 \\ + 0.362*ISOPROD + 0.230*MACR + 0.320*MVK \\ + 0.629*HCHO + 0.079*XO2 \\ + 0.362*ISOPROD + 0.230*MACR + 0.320*MVK \\ + 0.629*HCHO \\ + 0.362*ISOPROD + 0.230*MACR + 0.320*MVK \\ + 0.629*HCHO \\ + 0.362*ISOPROD + 0.230*MACR + 0.320*MVK \\ + 0.629*HCHO \\ + 0.230*MACR + 0.500*HO2 + 0.362*ISOPROD \\ + 0.230*MACR + 0.320*MVK + 0.629*HCHO \\ + 0.390*ORA1 + 0.270*HO + 0.070*HO2 \\ + 0.070*CO + 0.200*XO2 + 0.200*MCO3 \\ + 0.150*ALD + 0.100*ISOPROD \\ + 0.250*MO2 \\ + 0.250*MO2 \\ \\ 163] ISO + NO3 \\> ISON_RO2 \\ 164] ISON_RO2 + HO2 \\> OSO0*HO2 + 0.200*ISOPROD + 0.200*NO2 \\ \\ 166] ISON_RO2 + HO2 \\> OSO0'HO2 + 0.200*ISOPROD + 0.200*NO2 \\ \\ 166] ISON_RO2 + HO2 \\> OSO0'HO2 + 0.500*MO2 + 0.500*ORA2 \\ + ALD + ONIT \\ \\ \\ 168] MACR + HO \\> OSO0*MCO3 + 0.500*MACR_RO2 \\ \end{bmatrix}$		(153)	XNO2	+ 1	MO2	>		HCHU	+	HUZ		
$ \begin{bmatrix} 157 \\ 150 \\ 1$		1155	XNO2	 	ACO3			MOZ				
$ \begin{bmatrix} 157 \\ 150 \\ 157 \end{bmatrix} ISO_RO2 + NO \\ + NO \\ + O.608*ONIT + O.912*NO2 + O.912*HO2 \\ + 0.362*ISOPROD + 0.230*MACR + 0.320*MVK \\ + 0.629*HCHO + 0.079*XO2 \\ + 0.362*ISOPROD + 0.230*MACR + 0.320*MVK \\ + 0.629*HCHO \\ + 0.362*ISOPROD + 0.230*MACR + 0.320*MVK \\ + 0.629*HCHO \\ + 0.629*HCHO \\ \end{bmatrix} \\ \begin{bmatrix} 160 \\ 1SO_RO2 + MO2 \\ + O.362*ISOPROD \\ + 0.230*MACR + 0.320*MVK + 0.629*HCHO \\ + 0.629*HCHO \\ + 0.230*MACR + 0.320*MVK + 0.629*HCHO \\ + 0.230*MACR + 0.320*MVK + 0.629*HCHO \\ + 0.230*MACR + 0.320*MVK + 0.629*HCHO \\ + 0.390*ORA1 + 0.270*HO + 0.070*HO2 \\ + 0.150*ALD + 0.100*ISOPROD \\ + 0.150*ALD + 0.100*ISOPROD \\ + 0.250*MO2 \\ \\ \begin{bmatrix} 162 \\ 1SO \\ + O3P \\ + O3P \\ + O.250*MO2 \\ \\ \hline \\ 164 \\ 1SO_RO2 + NO \\ \hline \\ 166 \\ 1SO_RO2 + HO2 \\ \hline \\ 167 \\ 1SON_RO2 + MO2 \\ \hline \\ \hline \\ 168 \\ MACR + HO \\ \hline \end{bmatrix} $		{156}	TSO	+ 1	HO	>		TSO RO2	+	0 079*X02		
$ \begin{cases} 158 \\ 150_{RO2} + HO2 \\ \{158 \\ 150_{RO2} + HO2 \\ \{159 \\ 150_{RO2} + ACO3 \end{cases} + \begin{array}{c} + 0.362^{*} 1SOPROD \\ + 0.629^{*} HCHO \\ + 0.629^{*} HCHO \\ + 0.500^{*} MO2 \\ + 0.362^{*} 1SOPROD \\ + 0.230^{*} MACR \\ + 0.320^{*} MACR \\ + 0.200^{*} MACR$		{157}	ISO RO2	+ 1	NO	>		0.088*ONIT	+	0.912*NO2	+	0.912*HO2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,	_				+	0.362*ISOPROD	+	0.230*MACR	+	0.320*MVK
$ \begin{cases} 158 \\ 159 \\ 159 \\ 150_{RO2} + ACO3 \\ + ACO3 \\ + 0.500^{+}HO2 + 0.500^{+}MO2 + 0.500^{+}MO2 \\ + 0.629^{+}HCHO \\ + 0.629^{+}HCHO \\ \end{cases} $ $ \begin{cases} 160 \\ 1S0_{RO2} + MO2 \\ + 0.3 \\ + 0.5 \\ $							+	0.629*HCHO	+	0.079*XO2		
$ \begin{cases} 159 \\ ISO_RO2 + ACO3 \\ + O.362*ISOPROD + 0.230*MACR + 0.320*MVK \\ + 0.629*HCHO \\ + 0.629*HCHO \\ + 0.230*MACR + 0.320*MVK + 0.629*HCHO \\ + 0.230*MACR + 0.320*MVK + 0.629*HCHO \\ + 0.230*MACR + 0.320*MVK + 0.629*HCHO \\ + 0.230*MACR + 0.390*MACR + 0.160*MVK \\ + 0.390*ORA1 + 0.270*HO + 0.070*HO2 \\ + 0.070*CO + 0.200*XO2 + 0.200*MCO3 \\ + 0.150*ALD + 0.100*ISOPROD \\ \end{cases} $		{158}	ISO_RO2	+]	HO2	>		OP2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		{159}	ISO_RO2	+ 1	ACO3	>		0.500*HO2	+	0.500*MO2	+	0.500*ORA2
$ \begin{cases} 160 \} ISO_RO2 + MO2 &> & 0.629*HCHO & + 0.500*HO2 & + 0.362*ISOPROD \\ + 0.230*MACR + 0.320*MVK & + 0.629*HCHO \\ + 0.230*MACR + 0.320*MVK & + 0.629*HCHO \\ + 0.390*ORA1 & + 0.270*HO & + 0.160*MVK \\ + 0.390*ORA1 & + 0.270*HO & + 0.070*HO2 \\ + 0.070*CO & + 0.200*XO2 & + 0.200*MCO3 \\ + 0.150*ALD & + 0.100*ISOPROD \\ \end{cases} $							+	0.362*ISOPROD	+	0.230*MACR	+	0.320*MVK
$ \begin{cases} 160 \\ 1S0_RO2 + MO2 \\ (161 \\ 1S0 + O3 \\ (16$		(1.50)					+	0.629*HCHO				
$ \begin{cases} 161 \} ISO + 03 \\ (161 \} ISO + 03 \\ (161 \} ISO + 03 \\ (162 \} ISO + 03P \\ (162 \} ISO + 03P \\ (163 \} ISO + N03 \\ (164 \} ISON_RO2 + NO \\ (164 \} ISON_RO2 + HO2 \\ (164 \} ISON_RO2 + HO2 \\ (166 \} ISON_RO2 + HO2 \\ (166 \} ISON_RO2 + ACO3 \\ (167 \} ISON_RO2 + MO2 \\ (167) ISON$		{160}	ISO_RO2	+ 1	MO2	>		0.500*HCHO	+	0.500*HO2	+	0.362*ISOPROD
$ \begin{cases} 161 \} 150 + 03 &> & 0.500 + RCHO + 0.390 + MACR + 0.180 + MACR + 0.270 + MACR + 0.270 + MACR + 0.180 + MACR + 0.100 + 180 + MACR + 0.180 + MACR + MACR + MACR + MACR + MACR + 0.180 + MACR + 0.180 + MACR + 0.180 + MACR + 0.180 + MACR + MACR + MACR + MACR + MACR + 0.500 + MACR + 0.500 + MAC$		(161)	TCO		03		+	0.230*MACR	+	0.320*MVK	+	0.629*HCHO
<pre>{162} ISO + 03P + 0.200*XC2 + 0.200*MC3 + 0.150*ALD + 0.100*ISOPROD {162} ISO + 03P> 0.750*ISOPROD + 0.250*MC3 + 0.250*MC03 {163} ISO + N03> ISON_RO2 {164} ISON_RO2 + NO> NO2 + 0.800*ALD + 0.800*ONIT {165} ISON_RO2 + HO2> ONIT {166} ISON_RO2 + ACO3> ONIT {167} ISON_RO2 + MO2 + 0.500*HO2 + 0.500*MO2 + 0.500*ALD {167} ISON_RO2 + MO2> 0.500*HC0 + 0.500*MO2 + 0.500*ALD + 0.800*ONIT {168} MACR + HO> 0.500*MC03 + 0.500*MACR_RO2</pre>		ίτοι	150	Τ (03	/	-	0.300*021	-	0.390 MACK	т _	0.100°MVR
{162} ISO + 03P > 0.750*ISOPROD + 0.100*ISOPROD {163} ISO + N03 > ISON_RO2 {164} ISON_RO2 + NO > NO2 + 0.800*ALD + 0.800*ONIT {165} ISON_RO2 + NO > NO2 + 0.200*ISOPROD + 0.200*NO2 {165} ISON_RO2 + NO > ONIT > ONIT {166} ISON_RO2 + ACO3 > 0.500*HO2 + 0.500*MO2 + 0.500*ORA2 {167} ISON_RO2 + MO2 > 0.500*HCHO + 0.500*MO2 + 0.500*ALD {168} MACR + HO > 0.500*MCO3 + 0.500*MACR_RO2							+	0.390 ORAL	+	0.270 110	+	0.070 HOZ
$ \begin{cases} 162 \} ISO + O3P &> 0.750*ISOPROD + 0.250*MCO3 + 0.250*HCHO \\ + 0.250*MO2 \\ 163 \} ISO + NO3 &> ISON_RO2 \\ 164 \} ISON_RO2 + NO &> NO2 + 0.800*ALD + 0.800*ONIT \\ + 0.800*HO2 + 0.200*ISOPROD + 0.200*NO2 \\ 165 \} ISON_RO2 + HO2 &> ONIT \\ 166 \} ISON_RO2 + ACO3 &> 0.500*HO2 + 0.500*MO2 + 0.500*ORA2 \\ + LD + ONIT \\ 167 \} ISON_RO2 + MO2 &> 0.500*HCHO + 0.500*HO2 + 0.500*ALD \\ + 0.500*ONIT \\ 168 \} MACR + HO &> 0.500*MCO3 + 0.500*MACR_RO2 \end{cases} $							+	0.150*ALD	+	0.100*ISOPROD		0.200 11005
{163} ISO + NO3 > ISON_RO2 {164} ISON_RO2 + NO > ISON_RO2 {165} ISON_RO2 + HO > NO2 + 0.800*ALD + 0.800*ONIT {165} ISON_RO2 + HO2 > ONIT + 0.200*ISOPROD + 0.200*NO2 {166} ISON_RO2 + ACO3 > 0.500*HO2 + 0.500*MO2 + 0.500*ORA2 {167} ISON_RO2 + MO2 > 0.500*HCHO + 0.500*HO2 + 0.500*ALD {168} MACR + HO > 0.500*MCO3 + 0.500*MACR_RO2		{162}	TSO	+ (03P	>		0.750*ISOPROD	+	0.250*MCO3	+	0.250*HCHO
$ \begin{cases} 163 \\ 150 \\ 164 \\ 1SON_RO2 \\ + NO \\ \end{cases} \begin{array}{c}> \\ NO2 \\ + \\ 0.800^*HO2 \\ + \\ 0.200^*ISOPROD \\ + \\ 0.200^*ISOPROD \\ + \\ 0.200^*NO2 \\ + \\ 0.500^*NO2 \\ + \\ 0.500^*NO2 \\ + \\ 0.500^*NIT \\ + \\ 0.500^*MCO3 \\ + \\ 0.500^*MACR_RO2 \\ \end{array} $		ر ــــــــــــــــــــــــــــــــــــ				-	+	0.250*MO2	•		•	
<pre>{164} ISON_RO2 + NO> NO2 + 0.800*ALD + 0.800*ONIT + 0.800*HO2 + 0.200*ISOPROD + 0.200*NO2 {165} ISON_RO2 + HO2> ONIT {166} ISON_RO2 + ACO3> 0.500*HO2 + 0.500*MO2 + 0.500*ORA2 + ALD + ONIT {167} ISON_RO2 + MO2> 0.500*HCHO + 0.500*HO2 + 0.500*ALD + 0.500*ONIT {168} MACR + HO> 0.500*MCO3 + 0.500*MACR_RO2</pre>		{163}	ISO	+]	NO3	>		ISON_RO2				
+ 0.800*HO2 + 0.200*ISOPROD + 0.200*NO2 {165} ISON_RO2 + HO2> ONIT {166} ISON_RO2 + ACO3> 0.500*HO2 + 0.500*MO2 + 0.500*ORA2 + ALD + ONIT {167} ISON_RO2 + MO2> 0.500*HCHO + 0.500*HO2 + 0.500*ALD + 0.500*ONIT {168} MACR + HO> 0.500*MCO3 + 0.500*MACR_RO2		(164)	ISON_RO2	+]	NO	>		NO2	+	0.800*ALD	+	0.800*ONIT
<pre>{165} ISON_RO2 + HO2> ONIT {166} ISON_RO2 + ACO3> 0.500*HO2 + 0.500*MO2 + 0.500*ORA2 + ALD + ONIT {167} ISON_RO2 + MO2> 0.500*HCHO + 0.500*MO2 + 0.500*ALD + 0.500*ONIT {168} MACR + HO> 0.500*MCO3 + 0.500*MACR_RO2</pre>							+	0.800*HO2	+	0.200*ISOPROD	+	0.200*NO2
<pre>{166} ISON_RO2 + ACO3> 0.500*HO2 + 0.500*MO2 + 0.500*ORA2 + ALD + ONIT {167} ISON_RO2 + MO2> 0.500*HCHO + 0.500*HO2 + 0.500*ALD + 0.500*ONIT {168} MACR + HO> 0.500*MCO3 + 0.500*MACR_RO2</pre>		{165}	ISON_RO2	+]	HO2	>		ONIT				
{167} ISON_RO2 + MO2 + 0.500*HCHO + 0.500*HO2 + 0.500*ALD + 0.500*ONIT {168} MACR + HO> 0.500*MCO3 + 0.500*MACR_RO2		{166}	ISON_RO2	+ 1	ACO3	>		0.500*HO2	+	0.500*MO2	+	U.500*ORA2
{168} MACR + HO> 0.500 MCO3 + 0.500 MACR_RO2		{167}	TSON RO?	+ 1	MO2	>	+	АЦИ 0.500*НСНО	++	0.500*HO2	+	0.500*AT.D
{168} MACR + HO> 0.500*MCO3 + 0.500*MACR_RO2		(10011_1(02	• •		-	+	0.500*ONIT	'	5.500 1102	•	5.500 ALD
		{168}	MACR	+]	HO	>		0.500*MCO3	+	0.500*MACR_RO2		

Table 8A-11. RADM2_CIS4 and RADM2_CIS4_AQ Mec	hanisms
---	---------

{169} MACR_R02	+ NO	>		NO2	+	HO2	+	0.840*KET
			+	0.840*CO	+	0.150*HCHO	+	0.150*MGLY
{170} MACR_R02	+ HO2	>		OP2				
{171} MACR_R02	+ ACO3	>		0.500*HO2	+	0.500*MO2	+	0.500*ORA2
			+	0.840*KET	+	0.840*CO	+	0.150*HCHO
			+	0.150*MGLY		0. 500 / 500		
{1/2} MACR_RO2	+ MO2	>		0.650*HCHO	+	0.500*HO2	+	0.840*KET
(152) 1000			+	0.840*00	+	0.150*MGLY		0 110+000
{1/3} MACR	+ 03	>		0.630*ORAL	+	0.210*HO	+	0.110*HO2
			+	0.110*00	+	0.200*HCHO	+	0.100*XO2
[174] MACD	. h		+	0.100"ACOS		0 220*M002		0 670*00
{1/4} MACR	+ 11V	>		0.660°HOZ	+	0.330^MCO3	+	0.6/0*00
			+	0.0/0"HCHO	+	0.670"AC03	+	0.340"HO
[175] MACD	NO3		+	0.340"A02				0 500+00
{1/5} MACR	+ NO3	>		0.500*MCO3	+	0.500"HN05	+	0.500*00
	- HO		+	U.SUU"HUZ	+	0.500"0N11	+	0.500"A02
177) MVR	+ HO			MVK_KUZ		0 700*710		0 700***02
(1// MVK_KOZ	+ NO	/		0 700*202	- T	0.700"ALD	- T	0.700"AOZ
			- -	0.700*ACO3	т	0.300~HCHO	т	0.300"MGL1
∫178ไ พนนะ ⊵∩ว	+ 402	>	т	0.300 1102				
1701 MVK_KOZ	+ 102			0 500*102	-	1 200*₩02	-	0 500*0072
[1/9] MVK_KOZ	+ ACOS	/	+	0.700*ALD	+	1.200 MOZ	+	0.300 MCLV
{180} MUK BO2	+ MO2	>		0.800*HCHO	+	0.500 1010	+	0.700*ALD
[100] MVK_KOZ	+ 102	/	+	0.000 HCHO	+	0.300 MGLV	т	0.700 ALD
{181} MVK	+ 03	>		0.670*ORA1	+	0.160*HO	+	0.110*HO2
(101)		-	+	0.110*CO	+	0.950*MGLY	+	0.100*HCHO
			+	0.050*X02	+	0.050*ACO3		
{182} MVK	+ hv	>		0.700*ISOPROD	+	0.700*CO	+	0.300*MO2
()			+	0.300*MCO3				
{183} MPAN		>		MCO3	+	NO2		
{184} MCO3	+ NO	>		NO2	+	HCHO	+	ACO3
(185) MCO3	+ NO2	>		MPAN				
₹186}́ MCO3	+ HO2	>		PAA				
₹187}́ MCO3	+ MO2	>		2.250*HCHO	+	0.500*HO2	+	0.500*MO2
{188} MCO3	+ ACO3	>		2.000*MO2	+	HCHO		
{189} MCO3	+ MCO3	>		2.000*MO2	+	2.000*HCHO		
<pre>{190} ISOPROD</pre>	+ HO	>		0.313*ACO3	+	0.687*IP_RO2		
{191} IP_RO2	+ NO	>		NO2	+	HO2	+	0.610*CO
			+	0.270*ALD	+	0.030*HCHO	+	0.180*GLY
			+	0.210*MGLY	+	0.700*KET		
{192} IP_RO2	+ HO2	>		OP2				
{193} IP_RO2	+ ACO3	>		0.500*HO2	+	0.500*MO2	+	0.500*ORA2
			+	0.500*ALD	+	0.500*KET		
{194} IP_RO2	+ MO2	>		0.500*HCHO	+	0.500*HO2	+	0.500*ALD
			+	0.500*KET				
{195} ISOPROD	+ 03	>		0.476*HO	+	0.072*HO2	+	0.168*MO2
			+	0.237*ACO3	+	0.100*XO2	+	0.243*CO
			+	0.218*HCHO	+	0.062*ALD	+	0.278*KET
			+	0.031*GLY	+	0.653*MGLY	+	U.044*ORA1
{196} ISOPROD	+ hv	>		1.216*CO	+	U.434*ALD	+	U.350*HCHO
(100) 700-07-			+	U.216*KET	+	1.216*HO2	+	U.784*ACO3
{197} ISOPROD	+ NO3	>		U.668*CO	+	0.332*HCHO	+	U.332*ALD
			+	ONT.I.	+	HO2	+	XO2
>								/

Rate Expression

Rate Constant

k(1)	uses	photo	table	NO2_RADM88	,	scaled	by	1.00000E+00	}	0.00000E+00}
k(2)	uses	photo	table	0301D_RADM88	,	scaled	by	1.00000E+00	ł	0.00000E+00}
k(3)	uses	photo	table	O3O3P_RADM88	,	scaled	by	1.00000E+00	ł	0.00000E+00}
k(4)	uses	photo	table	HONO_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(5)	uses	photo	table	HNO3_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(6)	uses	photo	table	HNO4_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(7)	uses	photo	table	NO3NO_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(8)	uses	photo	table	NO3NO2_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(9)	uses	photo	table	H2O2_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(10)	uses	photo	table	HCHOmol_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(11)	uses	photo	table	HCHOrad_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(12)	uses	photo	table	ALD_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(13)	uses	photo	table	MHP_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(14)	uses	photo	table	HOP_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}
k(15)	uses	photo	table	PAA_RADM88	,	scaled	by	1.00000E+00	{	0.00000E+00}

Table 8A-11. RADM2_CIS4 and RADM2_CIS4_AQ Mechanisms

k(k(k(k(k(k(k(k(k(k(k(<pre>16) uses photo table KETONE_RADM88 , scaled by 1.00000E+00 17) uses photo table GLYform_RADM88 , scaled by 1.00000E+00 18) uses photo table GLYmol_RADM88 , scaled by 1.00000E+00 19) uses photo table UDC_RADM88 , scaled by 1.00000E+00 20) uses photo table UDC_RADM88 , scaled by 1.00000E+00 21) uses photo table ORGNIT_RADM88 , scaled by 1.00000E+00 22) = 6.0000E-34 * (T/300)**(-2.30) 23) = 6.5000E-12 * exp(120.0/T) 24) = 1.8000E-11 * exp(110.0/T) 25) = 3.2000E-11 * exp(70.0/T) 26) = 2.2000E-10 27) = 2.0000E-12 * exp(-1400.0/T) 28) = 1.6000E-12 * exp(-940.0/T) 29) = 1.1000E-12 * exp(240.0/T) 30) = 3.7000E-12 * exp(240.0/T) 31) is a falloff expression using: k0 = 1.8000E-31 * (T/300)**(-3.20) kinf = 4.7000E-12 * (T/300)**(-1.40)</pre>	$ \left\{ \begin{array}{l} 0.00000\pm +00 \\ 1.00000\pm +00 \\ 0.00000\pm -10 \\ 1.00000\pm -11 \\ 1.00000\pm -11 \\ 1.00000\pm -11 \\ 1.0000\pm -11 \\ 1.0000\pm -11 \\ 1.000\pm -11 \\ 1.00\pm -10 \\ 1.00\pm -10$
1 (F = 0.60, n = 1.00	
K(と(32) = K(31) / Keq, where Keq = 2.100E-27 $^{\circ}$ exp(10900.0/T)	$\{8.62399E-02\}$
17 (k = k1 + k2[M], where	(5.010546 12)
k(k1 = 2.2000E-13 * exp(620.0/T) k2 = 1.9000E-33 * exp(980.0/T) 34) is a special rate expression of the form: k = k1 + k2[M], where	{6.78905E-30}
	k1 = 3.0800E-34 * exp(2820.0/T)	
1= ($k_2 = 2.6600E - 54 * exp(3180.0/T)$	[1 60671E 10]
K.(と(35) = 3.3000E-12 " exp(-200.0/1)	{1.000/1E-12} // 871//E-12}
V ($k_0 = 7.0000E-31 * (T/300)**(-2.60)$	[4.0/1448-12]
	kinf = $1.5000E - 11 * (T/300) * (-0.50)$	
	F = 0.60, n = 1.00	
k(37) = 3.3000E - 39 * exp(530.0/T)	{1.95397E-38}
k(38) = 1.4000E - 13 * exp(-2500.0/T)	<pre>{3.18213E−17}</pre>
k(39) = 1.7000E - 11 * exp(150.0/T)	<pre>{2.81225E−11}</pre>
k(40) = 2.5000E - 14 * exp(-1230.0/T)	{4.03072E-16}
k(41) = 2.5000E - 12	{2.50000E-12}
k(42) is a falloff expression using:	{1.26440E-12}
	k0 = 2.2000E-30 * (T/300)**(-4.30)	
	kinf = $1.5000E - 12 * (T/300) ** (-0.50)$	
• •	F = 0.60, n = 1.00	(- 45004- 00)
k(43) = k(42) / Keq, where Keq = $1.100E-27$ * exp($11200.0/T$)	{5.47034E-02}
K (44) = 2.0000E-21	$\{2.00000E-2I\}$
К (45) is a falloff expression using: $h_0 = 2.6000 \pm 20.4 (\pi/200) \pm 4(.2.20)$	{1.14885E-11}
	$K_0 = 2.6000E-30$ " $(1/300)$ "" (-3.20)	
	$\mathbf{E} = 0.60 \mathbf{n} = 1.00$	
k (46) is a special rate expression of the form:	{1 47236E-13}
17 ($k = k0 + \{k3[M] / (1 + k3[M]/k2)\}, where$	[1.1/2501 15]
	k0 = 7.2000E - 15 * exp(785.0/T)	
	k2 = 4.1000E - 16 * exp(1440.0/T)	
	k3 = 1.9000E-33 * exp(725.0/T)	
k($47) = 1.3000E - 12 * \exp(380.0/T)$	{4.65309E-12}
k($48) = 4.6000E - 11 * \exp(230.0/T)$	{9.95294E-11}
k(49) is a falloff expression using:	{8.88848E-13}
	k0 = 3.0000E - 31 * (T/300) * (-3.30)	
	kinf = 1.5000E - 12 * (T/300) **(0.00)	
1= (F = 0.60, n = 1.00	[2 40000m 12]
۲. (۲. (50 = 1.5000 ± 13 (1.0 ± 0.0 ± 2.500) ± 2.500 (1.0 ± 0.0 ± 2.500) ± 2.500 (1.0 ± 0.0)	$\begin{bmatrix} 2.40000E-13 \end{bmatrix}$
k (52) = 1.2330E - 12 * (T/300) ** (2.00) * exp(-444.0/T)	$\{2, 74210E - 13\}$
k(53) = 1.5900E - 11 * exp(-540.0/T)	{2.59669E-12}
k(54) = 1.7300E - 11 * exp(-380.0/T)	{4.83334E-12}
k(55) = 3.6400E - 11 * exp(-380.0/T)	{1.01696E-11}
k(56) = 2.1500E - 12 * exp(411.0/T)	{8.53916E-12}
k(57) = 5.3200E - 12 * exp(504.0/T)	{2.88684E-11}
k($58) = 1.0700E - 11 * \exp(549.0/T)$	{6.75269E-11}
k($59) = 2.1000E - 12 * \exp(-322.0/T)$	{6.18715E-12}
K (bU) = 1.8900E - 11 * exp(116.0/T)	{2.78943E-11}
K(レ/	01) = 4.0000E = 11 62) = 0.0000E = 01 + E(.61)	14.00000E-11}
л.(k/	63) = 9.0000E - 12	$\{9,00000E-12\}$
k(64) = 6.8700E - 12 * exp(256.0/T)	{1.62197E-11}
		- ,

Table 8A-11. RADM2_CIS4 and RADM2_CIS4_AQ Mechanisr

					- (
Ir (CE) - 1 0	0000 11 *	o				ſ	0 05000 12)
R(65) = 1.2	5000E-11 "	exp(-/45.0/1)			ł	9.05020E-15}
K(66) = 1.1	500E-11					Į	1.150008-11}
k(67) = 1.7	000E-11					{	1.70000E-11}
k(68) = 2.8	000E-11					{	2.80000E-11}
k(69) = 1.0	000E-11					{	1.00000E-11}
k(70) = 1.0	000E-11					ł	1.00000E-11}
k(71) = 1.0	000E-11					Ì	1.00000E-11
k(72) = 61	650F-13 *	(00)**(2 00)	* evn(-444.0/T	}	1 371058-13
$1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1$	E000 11 *	(1)	E40 0/m)	Chp(111.0/1/	ľ	1.57105E 15)
K(73) = 1.5	500E-11 "	exp(-540.0/1)			Į	2.5515/E-12}
K(74) = 2.8	000E-12 *	exp(181.0/1)			Į	5.139/4E-12}
k(75) = 1.9	500E+16 *	exp(-13543.0/T)			{	3.57235E-04}
k(76) = 4.7	000E-12					{	4.70000E-12}
k(77) = 1.9	500E+16 *	exp(-13543.0/T)			{	3.57235E-04}
k(78) = 4.2	000E-12 *	exp(180.0/T)			ł	7.68378E-12
k(79) = 42	000E-12 *	evn(180 0/T)			Ì	7 68378E-12
k(80) - 42	0005-12 *	evn(180 0/T)			}	7 68378F-12
$l_{r}(00) = 4.2$	0000 12 *	crp(100.0/1)			}	7 602700 12)
K(01) - 4.2	000E-12 *	exp(100.0/1)			ł	7.003/0E-12/
K(82) = 4.2	000E-12 ^	exp(180.0/1)			Į	/.683/8E-12}
k(83) = 4.2	000E-12 *	exp(180.0/T)			{	7.68378E-12}
k(84) = 4.2	:000E-12 *	exp(180.0/T)			{	7.68378E-12}
k(85) = 4.2	000E-12 *	exp(180.0/T)			{	7.68378E-12}
k(86) = 4.2	000E-12 *	exp(180.0/T)			ł	7.68378E-12}
k(87) = 4.2	000E-12 *	exp(180.0/T)			Ì	7.68378E-12
k(88) = 42	000E-12 *	evn(180 0/T)			Ì	7 68378E-12
k(90) = 1.2	0000012	evp(180 0/T)			}	7 68378E-121
k(0) = 4.2	00000-12 *	exp(100.0/1)			}	7 602700 12)
K(90) = 4.2	000E-12 "	exp(100.0/1)			ł	7.003/0E-12}
K(91) = 4.2	000E-12 *	exp(180.0/1)			Į	/.683/8E-12}
k(92) = 6.0	000E-13 *	exp(-2058.0/T)			{	6.01030E-16}
k(93) = 1.4	000E-12 *	exp(-1900.0/T)			{	2.38307E-15}
k(94) = 6.0	000E-13 *	exp(-2058.0/T)			{	6.01030E-16}
k(95) = 1.4	000E-12 *	exp(-1900.0/T)			Ì	2.38307E-15
k(96) = 1.4	000E-12 *	exp(-1900 0/T)			ł	2 38307E - 15
$l_{r}(07) = 2.2$	0000 11	Chp(1900.0/1/			ŀ	2.20000 11)
K(97) = 2.2	000E-II	(0000 0 (m)			}	2.20000E-II;
K(98) = 2.0	000E-12 ^	exp(-2923.0/T)			Į	1.09940E-16}
k(99) = 1.0	000E-II *	exp(-1895.0/1)			{	1.73099E-14}
k(100) = 3.2	300E-11 *	exp(-975.0/T)			{	1.22539E-12}
k(101) = 1.2	000E-14 *	exp(-2633.0/T)			{	1.74559E-18}
k(102) = 1.3	200E-14 *	exp(-2105.0/T)			ł	1.12933E-17
k(103) = 7.2	900E-15 *	exp(-1136.0/T)			Ì	1.61125E-16
k(104) = 7.7	000E-14 *	exp(1300 0/T)			ł	6 04038E - 12
k(105) = 7.7	0000 11 *	evp(1300.0/T)			}	6 0/038E-12)
K(105) = 7.7	000E-14 *	exp(1200.0/1)			ł	C 04030E-12)
K(106) = 7.7	000E-14 ^	exp(1300.0/1)			Į	6.04038E-12}
k(107) = 7.7	000E-14 *	exp(1300.0/1)			{	6.04038E-12}
k(108) = 7.7	000E-14 *	exp(1300.0/T)			{	6.04038E-12}
k(109) = 7.7	'000E-14 *	exp(1300.0/T)			{	6.04038E-12}
k(110) = 7.7	000E-14 *	exp(1300.0/T)			ł	6.04038E-12}
k(111) = 7.7	000E-14 *	exp(1300.0/T)			Ì	6.04038E-12
k(112) = 7.7	000E-14 *	exp(1300.0/T			í .	6.04038E-12
k(113) = 7.7	000E 11	evp(1300.0/T)			}	6 04038F-12
$l_{r}(114) = 7.7$	000E 14 *	crp(1200.0/1)			}	6 04020E 12)
K(114) = 7.7	000E-14 *	exp(1300.0/1)			}	6 04030E-12
R(115) = 7.7	000E-14 "	exp(1300.0/1)			Į	6.04036E-12}
K(110) = 7.7	0005-14 *	exp(1300.0/T)			ţ	0.04038E-12}
k(117) = 7.7	UUUE-14 *	exp(1300.0/T)			{	6.04038E-12}
k(118) = 1.9	000E-13 *	exp(220.0/T)			{	3.97533E-13}
k(119) = 1.4	000E-13 *	exp(220.0/T)			{	2.92919E-13}
k(120) = 4.2	000E-14 *	exp(220.0/T)			ł	8.78758E-14
k(121) = 3.4	000E-14 *	exp(220.0/T)			ł	7.11376E-14
k(122) = 20	0005-14 *	ovn(220.0/亚)			}	6 06762E-14
R(122) = 2.9	00000-13 *	exp(220.0/1)			}	0.00702E-145
R(123) = 1.4	000E-13 "	exp(220.0/1)			Į	2.929196-13}
k(124) = 1.4	000E-13 *	exp(220.0/1)			{	2.92919E-13}
k(125) = 1.7	U00E-14 *	exp(220.0/T)			{	3.55688E-14}
k(126) = 1.7	000E-14 *	exp(220.0/T)			{	3.55688E-14}
k(127) = 9.6	000E-13 *	exp(220.0/T)			ł	2.00859E-12}
k(128) = 1.7	000E-14 *	exp(220.0/T)			Ì	3.55688E-14
k(129) = 1.7	000E-14 *	exp(220.0/T)			ł	3.55688E-14
k(130) = 96	000E-13 *	evn(220 0/m)			ł	2.00859F-121
$l_{r}(121) = 9.0$	0000 14 +	CAP(220.0/1)			} }	2.0000000 14)
K(131) = 1.7	0008-12 *	exp(220.0/T)			ţ	3.33000E-14}
K(132) = 3.4	UUUE-13 *	exp(ZZU.U/T)			ţ	/.II3/0E-I3}
$\kappa(133) = 1.0$	UUUE-13 *	exp(220.0/T)			{	∠.09228E-13}
k(134) = 8.4	000E-14 *	exp(220.0/T)			{	1.75752E-13}
k(135) = 7.2	000E-14 *	exp(220.0/T)			{	1.50644E-13}
k(136) = 3.4	000E-13 *	exp(220.0/T)			Ĩ	7.11376E-13
k(137) = 3.4	000E-13 *	exp(220.0/T)			ł	7.11376E-13
k(138) = 4.2	000E-14 *	exp(220.0/T)			Į	8.78758E-14
		~~r~ (/-/			1	

Table 8A-11. RADM2_CIS4 and RADM2_CIS4_AQ Mechanisms

$ \begin{array}{c} k(140) &= 1.19008-12 & exp(220.0/T) & (2.490018-12) \\ k(141) &= 4.20008-14 & exp(220.0/T) & (8.787588-14) \\ k(143) &= 1.19008-12 & exp(220.0/T) & (2.490018-12) \\ k(144) &= 4.20008-14 & exp(220.0/T) & (2.49018-12) \\ k(145) &= 3.60008-16 & exp(220.0/T) & (3.55688-14) \\ k(145) &= 3.60008-16 & exp(220.0/T) & (3.55688-14) \\ k(146) &= 7.70008-14 & exp(220.0/T) & (3.55688-14) \\ k(148) &= 4.20008-14 & exp(220.0/T) & (3.55688-14) \\ k(148) &= 3.60008-16 & exp(220.0/T) & (3.55688-14) \\ k(148) &= 3.60008-16 & exp(220.0/T) & (7.633788-12) \\ k(151) &= 4.20008-12 & exp(180.0/T) & (7.633788-12) \\ k(151) &= 4.20008-12 & exp(180.0/T) & (7.633788-12) \\ k(152) &= 7.70008-14 & exp(220.0/T) & (3.55688-14) \\ k(153) &= 1.70008-14 & exp(220.0/T) & (3.55688-14) \\ k(155) &= 3.60008-16 & exp(220.0/T) & (3.55688-14) \\ k(155) &= 3.60008-16 & exp(220.0/T) & (3.55688-14) \\ k(155) &= 3.60008-14 & exp(220.0/T) & (3.55688-14) \\ k(155) &= 3.60008-14 & exp(220.0/T) & (3.55688-14) \\ k(155) &= 3.60008-14 & exp(220.0/T) & (3.56688-14) \\ k(155) &= 3.60008-14 & (T'300)*(1.00) & exp(181.2/T) & (7.63338-12) \\ k(156) &= 7.70008-14 & (T'300)*(1.00) & exp(214.4/T) & (7.94028-13) \\ k(166) &= 3.03008-12 & (T'300)*(1.00) & exp(214.4/T) & (7.95698-12) \\ k(166) &= 7.70008-14 & (T'300)*(1.00) & exp(214.4/T) & (7.663388-12) \\ k(166) &= 7.70008-14 & (T'300)*(1.00) & exp(128.3/T) & (5.95598-12) \\ k(166) &= 7.70008-14 & (T'300)*(1.00) & exp(128.3/T) & (5.95598-12) \\ k(166) &= 7.70008-14 & (T'300)*(1.00) & exp(128.3/T) & (5.95598-12) \\ k(166) &= 1.4008-12 & (T'300)*(1.00) & exp(128.3/T) & (5.95598-12) \\ k(166) &= 7.70008-14 & (T'300)*(1.00) & exp(128.3/T) & (5.95598-12) \\ k(171) &= 8.40008-14 & (T'300)*(1.00) & exp(128.3/T) & (5.95598-12) \\ k(173) &= 1.30008-14 & (T'300)*(1.00) & exp(214.4/T) & (7.6338-12) \\ k(166) &= 1.4008-12 & (T'300)*(1.00) & exp(214.4/T) & (7.6338-12) \\ k(173) &= 1.6008-11 & (T'300)*(1.00) & exp(214.4/T) & (7.6338-12) \\ k(173) &= 8.40008-14 & (T'300)*(1.00) & exp(214.4/T) & (7.96588-12) \\ k(173) &= 1.6008-$	1291	_	4 20008-14	*	evn(220	0 / ፹)					<pre>{8 78758₽-14}</pre>
$ \begin{array}{c} h(140) = 1 + 2000 = 1.4 & \exp(-220.0/T) \\ k(142) = 4 + 2000 = 1.4 & \exp(-220.0/T) \\ k(143) = 1 + 1000 = 1.2 & \exp(-220.0/T) \\ k(143) = 1 + 1000 = 1.2 & \exp(-220.0/T) \\ k(144) = 4 + 2000 = 1.4 & \exp(-220.0/T) \\ k(145) = 3 + 000 = 1.4 & \exp(-220.0/T) \\ k(146) = 7 + 7 + 000 = 1.4 & \exp(-220.0/T) \\ k(147) = 1 + 7 + 000 = 1.4 & \exp(-220.0/T) \\ k(148) = 4 + 2000 = 1.4 & \exp(-220.0/T) \\ k(148) = 4 + 2000 = 1.4 & \exp(-220.0/T) \\ k(148) = 4 + 2000 = 1.4 & \exp(-220.0/T) \\ k(148) = 4 + 2000 = 1.2 & \exp(-180.0/T) \\ k(149) = 3 + 000 = 1.4 & \exp(-220.0/T) \\ k(150) = 4 + 2000 = 1.2 & \exp(-180.0/T) \\ k(155) = 4 + 2000 = 1.2 & \exp(-180.0/T) \\ k(155) = 4 + 2000 = 1.2 & \exp(-180.0/T) \\ k(155) = 3 + 000 = 1.4 & \exp(-220.0/T) \\ k(155) = 3 + 000 = 1.4 & \exp(-220.0/T) \\ k(155) = 3 + 000 = 1.4 & \exp(-220.0/T) \\ k(155) = 3 + 000 = 1.4 & \exp(-220.0/T) \\ k(155) = 3 + 000 = 1.4 & \exp(-220.0/T) \\ k(155) = 3 + 000 = 1.4 & \exp(-220.0/T) \\ k(155) = 3 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-407.6/T) \\ k(155) = 3 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-407.6/T) \\ k(155) = 3 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(155) = 3 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(160) = 3 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(160) = 3 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(161) = 3 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(162) = 3 + 000 = 1.2 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(163) = 1 + 800 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(164) = 4 + 200 = 1.2 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(166) = 4 + 000 = 1.2 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(166) = 4 + 000 = 1.2 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(168) = 1 + 800 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(170) = 8 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(170) = 8 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(170) = 1 + 8000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(170) = 1 + 8000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(170) = 1 + 8000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(171) = 8 + 000 = 1.4 & (T/300) * (1 + 00) & \exp(-21.4/T) \\ k(175) = 1 + 000 = 1.4 & (T/300) *$	k(140)	_	1 1900F-12	*	exp(220	0/T)					$\begin{cases} 0.70750E \pm 12 \\ 2 48981E = 12 \end{cases}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(140)		4 2000E 14	*	cxp(220	0/11)					[2.40701E 12] ∫0 707E0E 1/]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	L(141)	_	4.2000E-14	*	exp(220	0/1)					(0.70750E-14) (0.70750E 1/)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	K(142)	_	4.2000E-14	+	exp(220	.0/1)					(0./0/JOE-14)
	K(143)	=	1.19008-12		exp(220	.0/1)					{2.40901E-12}
	K(144)	=	4.2000E-14		exp(220	.0/T)					{8./8/58E-14}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	K(145)	=	3.6000E-16	÷.	exp(220	.0/T)					{/.53221E-16}
	K(146)	=	7.7000E-14	Ť	exp(1300	.0/T)					{6.04038E-12}
	k(147)	=	1.7000E-14	*	exp(220	.0/T)					{3.55688E-14}
	k(148)	=	4.2000E-14	*	exp(220	.0/T)					{8.78758E-14}
	k(149)	=	3.6000E-16	*	exp(220	.0/T)					{7.53221E-16}
	k(150)	=	4.2000E-12	*	exp(180	.0/T)					{7.68378E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(151)	=	4.2000E-12	*	exp(180	.0/T)					{7.68378E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(152)	=	7.7000E-14	*	exp(1300	.0/T)					{6.04038E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(153)	=	1.7000E-14	*	exp(220	.0/T)					<pre>{3.55688E-14}</pre>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(154)	=	4.2000E-14	*	exp(220	.0/T)					<pre>{8.78758E-14}</pre>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(155)	=	3.6000E-16	*	exp(220	.0/T)					{7.53221E-16}
	k(156)	=	2.5400E-11	*	(T/300)**(1.00)	*	exp(407.6/T)		<pre>{9.90719E−11}</pre>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(157)	=	4.2000E-12	*	(T/300)**(1.00)	*	exp(181.2/T)		<pre>{7.66335E−12}</pre>
	k(158)	=	7.7000E-14	*	(T/300)**(1.00)	*	exp(1298.3/T)		{5.96598E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(159)	=	8 4000E-14	*	(T/300)**(1.00)	*	exp(221 4/T)		{1.75402E-13}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(160)	=	3.4000E-14	*	(T/300)**(1.00)	*	exp(221.4/T		$\{7, 09961E - 14\}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(161)	_	7 8600E-15	*	(T/300)**(1 00)	*	evn(-1912 2/T		$\{1, 27569E - 17\}$
	k(162)	_	3 6000E 13		(1)500) (1.00,		Cub (1912.2/1/		13 60000E-11
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	L(163)	_	3 0300E-11	*	(〒/300)**/	1 00)	*	ovn (_117 Q/TT)		∫6 60552 <u></u> -13]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(103)	_	4 2000E-12	*	(T/300)**(1 00)	*	exp(-447.9/1) 181 2/m)		10.09002E-10/ 17 66335E-101
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	L(165)	_	7 7000E-12	*	(T/300) ** (1 00)	*	exp(1208 3/m)		∫5 06508⊑_12)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	L (166)	_	0 4000E-14	*	(1/300) (1 00)	*	exp(221 4/m		[J. 90390E-12]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	K(100)	_	0.4000E-14	÷.	(1/300)**(1.00)	÷.	exp(221.4/1) 221.4/m)		(1./5402E-13) (7.00061m 14)
$ \begin{aligned} & (160) &= 1.8600E-11 * (T/300)^{**}(1.00) * exp(1.0.1/1) \\ & (1.63) &= 1.8600E-11 * (T/300)^{**}(1.00) * exp(1.218.2/T) \\ & (1.70) &= 7.7000E-14 * (T/300)^{**}(1.00) * exp(1.221.4/T) \\ & (1.71) &= 8.4000E-14 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.72) &= 3.4000E-14 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.73) &= 1.3600E-15 * (T/300)^{**}(1.00) * exp(1.21.5/T) \\ & (1.72) &= 1.5000E-12 * (T/300)^{**}(1.00) * exp(1.21.5/T) \\ & (1.75) &= 1.5000E-12 * (T/300)^{**}(1.00) * exp(1.22.9/T) \\ & (1.75) &= 1.5000E-12 * (T/300)^{**}(1.00) * exp(1.22.9/T) \\ & (1.77) &= 4.2000E-12 * (T/300)^{**}(1.00) * exp(1.22.14/T) \\ & (1.77) &= 4.2000E-14 * (T/300)^{**}(1.00) * exp(1.22.14/T) \\ & (1.77) &= 8.4000E-14 * (T/300)^{**}(1.00) * exp(1.22.14/T) \\ & (1.79) &= 8.4000E-14 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.81) &= 7.5100E-16 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.81) &= 7.5100E-16 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.83) &= 1.6000E+16 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.84) &= 4.2000E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.85) &= 2.8000E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 7.7000E-14 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 7.7000E-14 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 1.1900E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 1.1900E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 1.1900E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.88) &= 1.1900E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.89) &= 1.1900E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.89) &= 1.1900E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 7.7000E-14 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 7.7000E-14 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 1.900E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 1.900E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.86) &= 1.900E-12 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.92) &= 7.7000E-14 * (T/300)^{**}(1.00) * exp(1.21.4/T) \\ & (1.92) &= 7.1100E-18 \\ & (1.92) &= 7.1100E-18 \\ & (1.92$	K(10/)	=	3.4000E-14	-	(1/300)**(1.00)	-	exp(221.4/1) 176 1(m)		{/.09901E-14}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	K(168)	=	1.8600E-11	Ĵ	(1/300) **(1.00)	Ĵ	exp(1/6.1/1)		{3.33018E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	R(169)	=	4.2000E-12	÷.	(1/300)**(1.00)	÷	exp(181.2/1)		{/.66335E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(170)	=	7.7000E-14	×	(1/300)**(1.00)	×	exp(1298.3/1)		{5.96598E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(171)	=	8.4000E-14	*	(T/300)**(1.00)	*	exp(221.4/T)		{1.75402E-13}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(172)	=	3.4000E-14	*	(T/300)**(1.00)	*	exp(221.4/T)		{7.09961E-14}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(173)	=	1.3600E-15	*	(T/300)**(1.00)	*	exp(-2113.5/T)		{1.12330E-18}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(174)	us	es photo tak	ole	ACROLEIN		,	scal	ed by 3.60000E	-03	{0.00000E+00}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(175)	=	1.5000E-12	*	(T/300)**(1.00)	*	exp(-1726.0/T)		{4.54753E-15}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(176)	=	4.1400E-12	*	(T/300)**(1.00)	*	exp(452.9/T)		{1.87990E-11}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(177)	=	4.2000E-12	*	(T/300)**(1.00)	*	exp(181.2/T)		{7.66335E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(178)	=	7.7000E-14	*	(T/300)**(1.00)	*	exp(1298.3/T)		<pre>{5.96598E-12}</pre>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(179)	=	8.4000E-14	*	(T/300)**(1.00)	*	exp(221.4/T)		<pre>{1.75402E-13}</pre>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(180)	=	3.4000E-14	*	(T/300)**(1.00)	*	exp(221.4/T)		{7.09961E-14}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(181)	=	7.5100E-16	*	(T/300)**(1.00)	*	exp(-1519.7/T)		{4.54966E-18}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(182)	us	es photo tab	ole	ACROLEIN		,	scal	ed by 1.11000E	-02	{0.00000E+00}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(183)	=	1.6000E+16	*	(T/300)**(1.00)	*	exp(-13486.0/T)		3.52536E-04
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(184)	=	4.2000E-12	*	(T/300)**(1.00)	*	exp(181.2/T)		<pre>{7.66335E−12}</pre>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(185)	=	2.8000E-12	*	(T/300)**(1.00)	*	exp(181.2/T)		{5.10890E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(186)	=	7.7000E-14	*	(T/300)**(1.00)	*	exp(1298.3/T)		{5,96598E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(187)	=	9.6000E-13	*	(T/300)**(1.00)	*	exp(221.4/T)		$\{2, 00460E - 12\}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(188)	=	1.1900E-12	*	(T/300)**(1.00)	*	exp(221.4/T)		{2.48486E-12}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(189)	=	1.1900E-12	*	(T/300)**(1.00)	*	exp(221.4/T)		$\{2, 48486E - 12\}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(190)	=	3.3600E-11		(1,000) (1.00/		C L ({3.36000E-11
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(191)	_	4 2000 E - 12	*	(〒/300)**/	1 00)	*	evn(181 2/亚)		{7 66335E-10
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	k(192)	_	7 70005-12	*	(T/300)**/	1 000	*	eyn(1298 2/11		<pre>{5 96598F-12}</pre>
k(193) = 3.4000E-14 * (T/300)**(1.00) * exp(221.4/T) {1.75402E-13} k(195) = 7.1100E-18 {7.1000E-18} k(196) uses photo table ACROLEIN , scaled by 3.60000E-03 {0.0000E+00} k(197) = 1.0000E-13 {1.0000E-13}	k(102)	_	8 40005-14	*	(T/300)**/	1 001	*	evn/	201 1/m		[3.909908-±2] {1 75400₽-10]
k(194) = 0.1000E-14 w (1/000/ww (1.00) w exp(221.4/1) {1.00901E-14} k(195) = 7.1100E-18 {7.11000E-18} k(196) uses photo table ACROLEIN , scaled by 3.60000E-03 {0.00000E+03} k(197) = 1.0000E-13 {1.0000E-13}	ホ(エララ) レ(10/)	_	3 4000E-14	*	(1/300)**(1 00)	*	exp(221.4/1/ 221 //m)		1 - · · J - U 2 1 3 } 57 00061 - 1 1]
k(195) = 7.11000E-18 {7.11000E-18} k(196) uses photo table ACROLEIN , scaled by 3.60000E-03 {0.00000E+00} k(197) = 1.0000E-13 {1.0000E-13	た(エラ4) レ(10E)	_	7 11000 10		(1/300)**(1.00)		evb(221.4/1)		(/.09901⊡-14) ∫7 11000⊡ 10)
$k(197) = 1.0000E-13$ {0.0000E+03 {0.0000E+03 {0.0000E+03 {0.00000E+03 {0.00000E-03 {0.0000E-03 {0.00000E-03 {0.00000E-03 {0.0000E-03 {0.000E-03 {0.000E-000E-03 {0.000E-03 {0.000E-03 {0.000E-03 {0.000E-000	L(10C)	-	1.11UUE-18	-1-				a ~ ~ 1	ad by 2 concer	0.2	[\.TTOADE-TQ]
K(137) - 1.0000E-13 {1.0000E-13}	L(107)	us _	1 0000 13	JΤE	ACRULEIN		'	SCGI	eu by 3.00000E	-03	1 00000E+00}
	V(TA1)		T.0000F-T3								ι±.υυυυυu±=±3}

Rea	ction List								
{ 1	 } NO2	+ hv		>	03P	+	NO		<
{ 2	} 03	+ hv		>	01D				
<u>}</u> 3) O3	+ hv		>	O3P				
{ 4	} HONO	+ hv		>	HO	+	NO		
{ 5	} HNO3	+ hv		>	HO	+	NO2		
{ 6	} HNO4	+ hv		>	HO2	+	NO2		
{ 7	} NO3	+ hv		>	NO		035		
{ 8 / 9	} NO3 1 1202	+ nv		>	NOZ	+	03P		
{ 10) HCHO	+ hv		>	2.000 110				
{ 11	HCHO	+ hv		>	HO2	+	HO2	+	CO
{ 12	ALD	+ hv		>	MO2	+	HO2	+	CO
{ 13) 0P1	+ hv		>	HCHO	+	HO2	+	HO
{ 14) OP2	+ hv		>	ALD	+	HO2	+	HO
{ 15	} PAA	+ hv		>	MO2	+	HO		
{ 16	} KET	+ hv		>	ACO3	+	ETHP		
{ 17	} GLY	+ hv		>	0.130*HCHO	+	1.870*CO		
{ 18	} GLY	+ hv		>	0.450*HCHO	+	1.550*CO	+	0.800*HO2
{ 19	} MGLY	+ hv		>	ACO3	+	HO2	+	CO
{ 20 [21	} DCB	+ nv		>	0.980°HOZ	+	0.020^ACO3	+	1003
1 21	JONII	+ 11V		/	+ NO2	т	0.000 KEI	т	1102
{ 22	} 03P	+ [M]	+ [02]	>	03				
{ 23	} 03P	+ NO2		>	NO				
{ 24) 01D	+ [N2]		>	O3P				
{ 25	} 01D	+ [02]		>	O3P				
{ 26	} 01D	+ [H2O]		>	2.000*HO				
{ 27	} 03	+ NO		>	NO2				
{ 28	} 03	+ HO		>	HO2				
{ 29	} 03	+ HO2		>	HO		110		
{ 30 / 21	} HOZ	+ NO2		>	INUZ HINO/	+	HO		
{ 32	} 1102 } HNO4	+ NOZ		>	HO2	+	NO2		
{ 33) HO2	+ HO2		>	H2O2	·	1102		
{ 34	} HO2	+ HO2	+ [H2O]	>	H2O2				
{ 35)́ н202	+ HO		>	HO2				
{ 36	NO	+ HO		>	HONO				
{ 37	} NO	+ NO	+ [02]	>	2.000*NO2				
{ 38	} 03	+ NO2		>	NO3				
{ 39	} NO3	+ NO		>	2.000*NO2				
{ 40	} NO3	+ NO2		>	NO INO 2	+	NO2		
∫ 4⊥ ∫ 42		+ NO2		>	N205				
{ 43	N205	+ NOZ		>	NO2	+	NO3		
{ 44	N205	+ [H2O]		>	2.000*HNO3	·	1105		
{ 45	} но	+ NO2		>	HNO3				
À 46	} но	+ HNO3		>	NO3				
{ 47	} но	+ HNO4		>	NO2				
{ 48	} но	+ HO2		>					
{ 49	} HO	+ SO2		>	SULF	+	HO2	+	SULAER
{ 50	} 00	+ HO		>	HO2				
{ D1	} HU] ETU	L 110		>	MOZ				
1 52	L HC3	+ HO		>	0 830*#C3D	+	0 170*#02	+	0 009*4040
(55	j 1105	1 110		-	+ 0.075*ALD	+	0.025*KET		0.000 110110
{ 54	} HC5	+ HO		>	HC5P	+	0.250*XO2		
<pre>{ 55</pre>	} нC8	+ HO		>	HC8P	+	0.750*XO2	+	HC8AER
{ 56) OL2	+ HO		>	OL2P				
{ 57	} OLT	+ HO		>	OLTP				
{ 58	} OLI	+ HO		>	OLIP	+	OLIAER		
{ 59	} TOL	+ HO		>	0.750*TOLP	+	0.250*CSL	+	0.250*HO2
(-	+ TOLAER				0.150.000
{ 60	} XYL	+ HO		>	0.830*XYLP	+	0.170*CSL	+	0.170*HO2
{ 61	} CSL	+ HO		>	+ XYLAER 0.100*HO2	+	0.900*XO2	+	0.900*TCO3
(-	+ CSLAER				
{ 62	} CSL	+ HO		>	CSL		~~		
{ 63	} HCHO	+ HO		>	HO2	+	CO		
[04 [κε) KET	+ HO + HO		>	ACU3 dura				
{ 66) GLY	+ HO		>	HU2	+	2.000*00		
{ 67	} MGLY	+ HO		>	ACO3	+	C0		
							-		

Table 8A-12. RADM2_CIS4_AE and RADM2_CIS4_AE_AQ Mechanisms

Table 8A-12. RADM2_CIS4_AE and RADM2_CIS4_AE_AQ Mechanisms

(() = ==					
{ 68} DCB	+ HO	>	1003		
{ 69} OP1	+ HO	> 0.5	00*MO2 +	0.500*HCHO	+ 0.500*HO
{ 70} OP2	+ HO	> 0.5	00*HC3P +	0.500*ALD	+ 0.500*HO
/ 71 \ DAA	+ HO	>	ACO3		
	1 110		HCUD	202	
{ /2} PAN	+ HO	>	HCHO +	NO3	+ X02
{ 73} ONIT	+ HO	>	HC3P +	· NO2	
{ 74} ACO3	+ NO2	>	PAN		
{ 75} PAN		>	ACO3 +	NO2	
	L NOO		TIDAN .	1101	
{ 76} 1003	+ NO2	>	IPAN		
{ '/'} TPAN		>	TCO3 +	NO2	
{ 78} MO2	+ NO	>	HCHO +	HO2	+ NO2
(79) HC3P	+ NO	> 0.7	50*ALD +	0.250*KET	+ 0.090*HCHO
(, , , , , , , , , , , , , , , , , , ,	110		26*011	0.064*NO2	0 064*102
(+ 0.0	30 ° ONTI +	0.904 NOZ	+ 0.904 HOZ
{ 80} HC5P	+ NO	> 0.3	80*ALD +	0.690*KET	+ 0.080*ONLT
		+ 0.9	20*NO2 +	0.920*HO2	
{ 81} HC8P	+ NO	> 0.3	50*ALD +	1.060*KET	+ 0.040*HCHO
(,		+ 0 2	10*ONTT +	0 760*NO2	+ 0 760*102
(+ 0.2	40 ON11 +	0.700 NO2	+ 0.700 1102
{ 82} OL2P	+ NO	> 1.6	00*HCHO +	HO2	+ NO2
		+ 0.2	00*ALD		
{ 83} OLTP	+ NO	>	ALD +	HCHO	+ HO2
(NO2		
(Ŧ	NO2	1 1501000	0.000
{ 84} OLIP	+ NO	>	HO2 +	1.450*ALD	+ 0.280*HCHO
		+ 0.1	00*KET +	NO2	
{ 85} ACO3	+ NO	>	MO2 +	NO2	
	+ NO	>	NO2 +	0 920*02	+ 0 890*CTV
1 001 1003	T INO		10+MOT V	0.920 002	
		+ 0.1	IU*MGLY +	0.050*AC03	+ 0.950*00
		+ 2.0	00*XO2		
{ 87} TOLP	+ NO	>	NO2 +	HO2	+ 0.170*MGLY
(,		+ 0 1	60*CT.V +	0 700*DCB	
(+ 0.1	00 GLI +	0.700 DCB	0.450.00000000
{ 88} XITb	+ NO	>	NO2 +	HO2	+ 0.450*MGLY
		+ 0.8	06*DCB		
{ 89} ETHP	+ NO	>	ALD +	но2	+ NO2
	L NO		MCTV	NO 2	
(90) KEIP	+ NO	>	MGLI T	NOZ	+ <u>HUZ</u>
{ 91} OLN	+ NO	>	HCHO +	· ALD	+ 2.000*NO2
{ 92} HCHO	+ NO3	>	но2 +	HNO3	+ CO
ζ 93 Δτ.D	+ NO3	>	ACO3 +	HNO3	
	1 103		11003	1103	1 2 000+00
{ 94 } GLY	+ NO3	>	HNO3 +	HOZ	+ 2.000*00
{ 95} MGLY	+ NO3	>	HNO3 +	ACO3	+ CO
{ 96} DCB	+ NO3	>	HNO3 +	TCO3	
ATL CST.	+ NO3	>	HNO3 +	XNO2	+ 0 500*CST
[97] C31	+ 1005	>	11105 +	ANOZ	+ 0.500 CSL
		+ 0.5	00*CSLAER		
{ 98} OL2	+ NO3	>	OLN		
(99) OLT	+ NO3	>	OLN		
	+ NO3	>	OT N +		
	+ 1003	>		OLIALK	0.100100
{101} OL2	+ 03	>	HCHO +	0.400*ORA1	+ 0.420*CO
		+ 0.1	20*HO2		
{102} OLT	+ 03	> 0.5	30*HCHO +	0.500*ALD	+ 0.330*CO
()		. 0.2	0.0*0071	0 200*0772	0 220*002
		+ 0.2	UU ORAL +	0.200 °ORA2	+ 0.230"HOZ
		+ 0.2	20*MO2 +	0.100*HO	
{103} OLI	+ 03		0.0 + 11/0110		
		> 0.1	60"HCHO +	0./20^ALD	+ 0.100*KET
		> 0.1 + 0.2	30*CO +	0.060*ORA1	+ 0.100*KET + 0.290*ORA2
		> 0.1 + 0.2 + 0.2	30*CO + 60*HO2 +	0.060*ORA1	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
		> 0.1 + 0.2 + 0.2	30*CO + 60*HO2 +	0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
		> 0.1 + 0.2 + 0.2 +	30*CO + 60*HO2 + OLIAER	0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
{104} HO2	+ MO2	> 0.1 + 0.2 + 0.2 +	30*CO + 60*HO2 + OLIAER OP1	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
{104} HO2 {105} HO2	+ MO2 + ETHP	> 0.1 + 0.2 + 0.2 + 0.2	00*HCHO + 30*CO + 60*HO2 + OLIAER OP1 OP2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
{104} HO2 {105} HO2 {106} HO2	+ MO2 + ETHP + HC3P	> 0.1 + 0.2 + 0.2 + 0.2	00*HCHO + 30*CO + 60*HO2 + OLIAER OP1 OP2 OP2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {106} HO2 </pre>	+ MO2 + ETHP + HC3P	> 0.1 + 0.2 + 0.2 + > >	00+RCHO + 30*CO + 60*HO2 + OLIAER OP1 OP2 OP2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P	> 0.1 + 0.2 + 0.2 + 0.2 > >	00*HCHO + 30*CO + 60*HO2 + OLIAER OP1 OP2 OP2 OP2 OP2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P	> 0.1 + 0.2 + 0.2 +> >	00*HCHO + 30*CO + 00*HO2 + 0LIAER 0P1 0P2 0P2 0P2 0P2 0P2	0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {108} HO2 {109} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P	> 0.1 + 0.2 + 0.2 + 0.2 + > > >	00*HCHO + 30*CO + 60*HO2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {108} HO2 {109} HO2 {101} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OLTP	> 0.1 + 0.2 + 0.2 + 0.2 > > > >	00*HCHO + 60*HC2 + 0LIAER 0P1 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {110} HO2 {110} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OLTP	> 0.1 + 0.2 + 0.2 + 0.2 + > > > >	00*CO + 00 + HO2 + 0LIAER 0P1 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {110} HO2 {111} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL2P + OL1P + OL1P	> 0.1 + 0.2 + 0.2 + 0.2 + > > > > >	00*HCHO + 60*HC2 + 0LIAER 0P1 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP	> 0.1 + 0.2 + 0.2 + 0.2 > > > > >	00*HCHO + 60*HC2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	0.140*ALD 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP + ACO3	> 0.1 + 0.2 + 0.2 + 0.2 + > > > > > > > >	00*HCHO + 30*CO + 011AER 0P1 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP	> 0.1 + 0.2 + 0.2 + 0.2 + > > > > > > > > > -	00*HCHO + 60*HC2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + HC8P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + YU D	> 0.1 + 0.2 + 0.2 + 0.2 > > > > > > > > >	00*HCHO + 60*HC2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP	> 0.1 + 0.2 + 0.2 + 0.2 + > > > > > > > > > -	00*CO + 00*HO2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3	> 0.1 + 0.2 + 0.2 + 0.2 +> > > > > > > > > >	00*HCHO + 60*HC2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	0.140*ALD 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {117} HO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN	> 0.1 + 0.2 + 0.2 + 0.2 + > > > > > > > > > -	00*hChO + 60*hChO + 01IAER 0P1 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2	0.060*ORA1 0.140*HO	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2	> 0.1 + 0.2 + 0.2 + 0.2 + > > > > > > > > > -	00*HCHO + 60*HCO + 60*HO2 + OP1 0P2	HO2	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {117} HO2 {118} MO2 {118} MO2 {110} WO2 </pre>	<pre>+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + AC03 + TOLP + XYLP + TC03 + OLN + MO2</pre>	> 0.1 + 0.2 + 0.2 + 0.2 > > > > > > > > > 	00*HCHO + 60*HC2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	HO2	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {111} HO2 {111} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {119} MO2</pre>	+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OL1P + OL1P + AC03 + TOLP + XYLP + TCO3 + OLN + MO2 + ETHP	> 0.1 + 0.2 + 0.2 + 0.2 + > > > > > > > > > -	00*HCHO + 30*CO + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	HO2 HO2 HO2	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2 + 0.750*ALD
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {119} MO2 {120} MO2</pre>	<pre>+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + C01P + KETP + AC03 + TO1P + XY1P + TC03 + OLN + MO2 + ETHP + HC3P</pre>	> 0.1 +0.2 +0.2 + 0.2 + > > > > > > > > > -	00*HCHO + 60*HC2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	HO2 HO2 HO2 HO2 HO2 HO2 HO2 HO2	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2 + 0.750*ALD + 0.260*KET
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {119} MO2 {120} MO2</pre>	<pre>+ MO2 + ETHP + HC3P + HC5P + OL2P + OL2P + OL1P + OL1P + KETP + ACO3 + TOLP + XYLP + TCO3 + OLN + MO2 + ETHP + HC3P</pre>	> 0.1 + 0.2 + 0.2 + 0.2 + > > > > > > > > > -	00*HCHO + 60*HC2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	HO2 HO2 HO2 HO2 HO2 HO2	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2 + 0.310*MO2 + 0.750*ALD + 0.260*KET
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {120} MO2</pre>	<pre>+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + AC03 + TOLP + XYLP + TC03 + TOLP + XYLP + TC03 + OLN + MO2 + ETHP + HC3P</pre>	> 0.1 +0.2 +0.2 +0.2 + > > > > > > > > > -	00*HCHO + 60*HC2 + 01LIAER 0P1 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2	HO2 HO2 HO2 HO2 HO2 HO2 HO2 HO2 HO2 HO2	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2 + 0.310*MO2 + 0.260*KET + 0.260*KET
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {119} MO2 {120} MO2 {121} MO2</pre>	<pre>+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + KETP + AC03 + TO1P + XY1P + TC03 + OLN + MO2 + ETHP + HC3P + HC5P</pre>	> 0.1 + 0.2 + 0.2 + 0.2 > > > > > > > > > 	00*HCHO + 00*HCHO + 00LIAER 0P1 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2	HO2 HO2 HO2 HO2 0.770*ALD 0.410*ALD	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2 + 0.310*MO2 + 0.260*KET + 0.260*KET + 0.750*KET
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {111} HO2 {112} HO2 {113} HO2 {114} HO2 {115} HO2 {116} HO2 {117} HO2 {119} MO2 {120} MO2 {121} MO2</pre>	<pre>+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + AC03 + TOLP + XYLP + TC03 + OLN + MO2 + ETHP + HC3P + HC5P</pre>	> 0.1 + 0.2 + 0.2 + 0.2 + > > > > > > > > > -	00*HCHO + 00*HCHO + 60*HCHO + 0P1 0P2 0P2 0P2 0P2 0P2 0P2 0P2 0P2	HO2 HO2 HO2 HO2 0.770*ALD 0.410*ALD	+ 0.100*KET + 0.290*ORA2 + 0.310*MO2 + 0.310*MO2 + 0.260*KET + 0.750*KET
<pre>{104} HO2 {105} HO2 {106} HO2 {107} HO2 {108} HO2 {109} HO2 {110} HO2 {111} HO2 {112} HO2 {112} HO2 {113} HO2 {115} HO2 {116} HO2 {117} HO2 {118} MO2 {119} MO2 {120} MO2 {121} MO2 {122} MO2</pre>	<pre>+ MO2 + ETHP + HC3P + HC5P + OL2P + OL1P + OL1P + KETP + AC03 + TOLP + XYLP + TCO3 + OLN + MO2 + ETHP + HC3P + HC5P + HC5P</pre>	> 0.1 +0.2 +0.2 +0.2 + > > > > > > > > > -	00*HCHO + 00*HCHO + 60*HC2 + OLIAER OP1 OP2 OP2 OP2 OP2 OP2 OP2 OP2 OP2	HO2 HO2 HO2 HO2 HO2 HO2 HO2 HO2 HO2 HO2	<pre>+ 0.100*KET + 0.290*ORA2 + 0.310*MO2 + 0.310*MO2 + 0.260*KET + 0.260*KET + 0.750*KET + 1.390*KET</pre>

Table 8A-12. RADM2_CIS4_AE and RADM2_CIS4_AE_AQ Mechanisms

		+ HO2		
{123} MO2	+ OL2P	> 1.550*HCHO	+ 0.350*ALD	+ HO2
{124} MO2	+ OLTP	> 1.250*HCHO	+ 0.750*ALD	+ HO2
{125} MO2	+ OLIP	> 0.890*HCHO	+ 0.725*ALD	+ HO2
()		+ 0.550*KET		
{126} MO2	+ KETP	> 0.750*HCHO	+ 0.750*MGLY	+ но2
{127} MO2	+ ACO3	> HCHO	+ 0.500*HO2	+ 0.500*MO2
		+ 0.500*ORA2		
{128} MO2	+ TOLP	> HCHO	+ 0.170*MGLY	+ 0.160*GLY
		+ 0.700*DCB	+ 2.000*HO2	
{129} MO2	+ XYLP	> HCHO	+ 0.450*MGLY	+ 0.806*DCB
		+ 2.000*HO2		
{130} MO2	+ TCO3	> 0.500*HCHO	+ 0.445*GLY	+ 0.055*MGLY
		+ 0.500*ORA2	+ 0.025*ACO3	+ 0.460*HO2
		+ 0.475*CO	+ XO2	
{131} MO2	+ OLN	> 1.750*HCHO	+ 0.500*HO2	+ ALD
(_	+ NO2		
{132} ETHP	+ ACO3	> ALD	+ 0.500*HO2	+ 0.500*MO2
(100)		+ 0.500*ORA2	0.000	0.5001-000
{133} HC3D	+ ACO3	> 0.770*ALD	+ 0.260*KET	+ 0.500*HO2
(124)		+ 0.500*MO2	+ 0.500*ORA2	
{134} HC5P	+ ACO3	> 0.410*ALD	+ 0.750*KET	+ 0.500*HO2
(125) 1000		+ 0.500^MOZ	+ 0.500*0RA2	
{135} HC8P	+ ACO3	> 0.460*ALD	+ 1.390*KET	+ 0.500*HO2
	1 1002	+ 0.500^MOZ	+ 0.500^ORA2	
(130) OLZP	+ AC03	> 0.800 HCHO	+ 0.000 ALD	+ 0.500 HOZ
עתידר \ 137	+ 1003	> AID	+ 0.500 OKAZ	± 0 500*¤02
(137) OHIF	+ ACOS	+ 0 500*MO2	+ 0.500 Heno	+ 0.500 1102
{138} OT TP	+ ACO3	> 0.725*ALD	+ 0 550*KFT	+ 0 140*HCHO
[130] 0111	1 ACOS	+ 0 500*HO2	+ 0.500 MM2	+ 0.500 * 0 RA2
{139} KETP	+ ACO3	> MGLY	+ 0 500*H02	$+ 0.500 \times MO2$
(155) 1011	11005	+ 0 500*0842	0.000 1102	0.500 102
{140} ACO3	+ ACO3	> 2.000*MO2		
{141} ACO3	+ TOLP	> MO2	+ 0.170*MGLY	+ 0.160*GLY
(111) 11000	1011	+ 0.700*DCB	+ HO2	
{142} ACO3	+ XYLP	> MO2	+ 0.450*MGLY	+ 0.806*DCB
()		+ HO2		
{143} ACO3	+ TCO3	> MO2	+ 0.920*HO2	+ 0.890*GLY
(-)		+ 0.110*MGLY	+ 0.050*ACO3	+ 0.950*CO
		+ 2.000*XO2		
{144} ACO3	+ OLN	> HCHO	+ ALD	+ 0.500*ORA2
()		+ NO2	+ 0.500*MO2	
{145} OLN	+ OLN	> 2.000*HCHO	+ 2.000*ALD	+ 2.000*NO2
{146} XO2	+ HO2	> OP2		
{147} XO2	+ MO2	> HCHO	+ HO2	
{148} XO2	+ ACO3	> MO2		
{149} XO2	+ XO2	>		
{150} XO2	+ NO	> NO2		
{151} XNO2	+ NO2	> ONIT		
{152} XNO2	+ HO2	> OP2		
{153} XNO2	+ MO2	> HCHO	+ HO2	
{154} XNO2	+ ACO3	> MO2		
{155} XNO2	+ XNO2	>		
{156} TERP	+ HO	> TERPAER	+ HO	
{15/} TERP	+ NO3	> TERPAER	+ NO3	
{158} TERP	+ 03	> TERPAER	+ 03	
{159} ISO	+ HO	> ISU_RUZ	+ 0.079*X02	. 0.012*002
{100} ISO_ROZ	+ NO	> 0.000"ONII	+ 0.912"NO2	+ 0.912"HO2
		+ 0.302*ISOPROD	+ 0.230 MACK	+ 0.320 MVK
[161] TOO DOO	L 1102	+ 0.029"HCHO	+ 0.079"X02	
162 TOD_ROZ	+ 102		± 0 500*MO2	± 0 500*0₽X2
[102] 150_K02	+ ACOS		+ 0.300 MOZ	+ 0.300 OKAZ
		+ 0 620*HCHO	· 0.230 MACK	. 0.320 MVIC
{163} TSO RO?	+ MO2	> 0.500*HCHO	+ 0.500*HO2	+ 0.362*TSOPROD
(100) 100_K02		+ 0 230*MACP	+ 0 320*MV7K	+ 0 629*HCHO
{164} ISO	+ 03	> 0.600*HCHO	+ 0.390*MACR	+ 0.160*MVK
(101) 100		+ 0.390*ORA1	+ 0.270*HO	+ 0.070*HO2
		+ 0.070*00	+ 0.200*X02	+ 0.200*MCO3
		+ 0.150*ALD	+ 0.100*ISOPROD	0.200 4000
{165} ISO	+ 03P	> 0.750*ISOPROD	+ 0.250*MCO3	+ 0.250*HCHO
. ,		+ 0.250*MO2		
{166} ISO	+ NO3	> ISON_RO	2	

Table 8A-12.	RADM2_	_CIS4_	_AE and	RADM2_	_CIS4_	_AE_	_AQ	Mechanisms
--------------	--------	--------	---------	--------	--------	------	-----	------------

(167) TON DO			. 0.000*315	. 0. 000*0170
{16/} ISON_ROZ	2 + NO	> NOZ	+ 0.800^ALD	$+ 0.800^{ON11}$
{168} ISON RO2	2 + HO2	> ONIT	+ 0.200 ISOFROD	+ 0.200 NOZ
{169} ISON RO2	2 + ACO3	> 0.500*HO2	+ 0.500*MO2	+ 0.500*ORA2
(+ ALD	+ ONIT	
{170} ISON_R02	2 + MO2	> 0.500*HCHO	+ 0.500*HO2	+ 0.500*ALD
. , _		+ 0.500*ONIT		
{171} MACR	+ HO	> 0.500*MCO3	+ 0.500*MACR_RO2	
{172} MACR_R02	2 + NO	> NO2	+ HO2	+ 0.840*KET
		+ 0.840*CO	+ 0.150*HCHO	+ 0.150*MGLY
{173} MACR_R02	2 + HO2	> OP2		
{174} MACR_RO2	2 + ACO3	> 0.500*HO2	+ 0.500*MO2	+ 0.500*ORA2
		+ 0.840*KET	+ 0.840*CO	+ 0.150*HCHO
[175] MAGD DO3	N NO2	+ 0.150^MGLY		· 0 040*xpm
{1/5} MACR_ROZ	2 + MO2	> 0.650*HCHO	+ 0.500^HO2	+ 0.840^KET
(176) MACP	+ 03	> 0.630*0PA1	+ 0.150°MGL1	+ 0 110*HO2
(170) MACK	1 05	+ 0 110*00	+ 0.210 110	+ 0.110 mO2
		+ 0.110 co	0.200 110110	0.100 202
{177} MACR	+ hv	> 0.660*H02	+ 0.330*MCO3	+ 0.670*00
(1,7) 111010		+ 0.670*HCHO	+ 0.670 * ACO3	+ 0.340*HO
		$+ 0.340 \times XO2$	0.070 11005	. 0.510 110
{178} MACR	+ NO3	> 0.500*MCO3	+ 0.500*HNO3	+ 0.500*CO
(-) -		+ 0.500*HO2	+ 0.500*ONIT	+ 0.500*XO2
{179} MVK	+ HO	> MVK RO2		
{180} MVK_RO2	+ NO	> NO2	+ 0.700*ALD	+ 0.700*XO2
. , _		+ 0.700*ACO3	+ 0.300*HCHO	+ 0.300*MGLY
		+ 0.300*HO2		
{181} MVK_RO2	+ HO2	> OP2		
{182} MVK_RO2	+ ACO3	> 0.500*HO2	+ 1.200*MO2	+ 0.500*ORA2
		+ 0.700*ALD	+ 0.300*HCHO	+ 0.300*MGLY
{183} MVK_RO2	+ MO2	> 0.800*HCHO	+ 0.500*HO2	+ 0.700*ALD
		+ 0.700*MO2	+ 0.300*MGLY	
{184} MVK	+ 03	> 0.670*ORA1	+ 0.160*HO	+ 0.110*HO2
		+ 0.110*CO	+ 0.950*MGLY	+ 0.100*HCHO
(+ 0.050*XO2	+ 0.050*ACO3	
{185} MVK	+ hv	> 0.700*ISOPROD	+ 0.700*CO	+ 0.300*MO2
(100)		+ 0.300*MCO3		
{186} MPAN		> MCO3	+ NO2	
{18/} MCO3	+ NO	> NU2	+ нсно	+ AC03
{188} MC03	+ NO2	> MPAN		
{109} MCO3	+ HO2	> PAA	- 0 E00*H02	0 E00*M02
1907 MCO3	+ MOZ	> 2.250 HCHO	+ 0.500°HOZ	+ 0.500~MOZ
{192} MCO3	+ MCO3	> 2.000 MO2	+ 2 000*HCHO	
{193} ISOPROD	+ HO	> 0.313*ACO3	+ 0.687*TP RO2	
{194} IP RO2	+ NO	> NO2	+ HO2	+ 0.610*CO
()		+ 0.270*ALD	+ 0.030*HCHO	+ 0.180*GLY
		+ 0.210*MGLY	+ 0.700*KET	
{195} IP_RO2	+ HO2	> OP2		
{196} IP_RO2	+ ACO3	> 0.500*HO2	+ 0.500*MO2	+ 0.500*ORA2
-		+ 0.500*ALD	+ 0.500*KET	
{197} IP_RO2	+ MO2	> 0.500*HCHO	+ 0.500*HO2	+ 0.500*ALD
		+ 0.500*KET		
<pre>{198} ISOPROD</pre>	+ 03	> 0.476*HO	+ 0.072*HO2	+ 0.168*MO2
		+ 0.237*ACO3	+ 0.100*XO2	+ 0.243*CO
		+ 0.218*HCHO	+ 0.062*ALD	+ 0.278*KET
		+ 0.031*GLY	+ 0.653*MGLY	+ 0.044*ORA1
{199} ISOPROD	+ hv	> 1.216*CO	+ U.434*ALD	+ U.35U*HCHO
		+ U.216*KE'l'	+ 1.216*HU2	+ U./84*ACU3
{ZOO} ISOBKOD	+ NU3	> U.668*CU	+ U.33Z*HCHU	+ U.33Z*ALD
>		+ UNIT	т ног	т AUZ
,				

 Rate Expression
 Rate Constant

 k(1) uses photo table NO2_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(2) uses photo table 0301D_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(3) uses photo table 0303P_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(4) uses photo table HONO_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(5) uses photo table HNO3_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(6) uses photo table HNO4_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

 k(7) uses photo table NO3NO_RADM88
 , scaled by 1.0000E+00
 {0.0000E+00}

Table 8A-12. RADM2_CIS4_AE and RADM2_CIS4_AE_AQ Mechanisms

k(k(k(k(k(k(<pre>8) uses photo table NO3NO2_RADM88 , scaled by 1.00000E+00 9) uses photo table H2O2_RADM88 , scaled by 1.00000E+00 10) uses photo table HCHOmol_RADM88 , scaled by 1.00000E+00 12) uses photo table ALD_RADM88 , scaled by 1.00000E+00 13) uses photo table MHP_RADM88 , scaled by 1.00000E+00 14) uses photo table HOP_RADM88 , scaled by 1.00000E+00 15) uses photo table PAA_RADM88 , scaled by 1.00000E+00 16) uses photo table RETONE_RADM88 , scaled by 1.00000E+00 16) uses photo table RETONE_RADM88 , scaled by 1.00000E+00</pre>	$ \left\{ \begin{array}{c} 0.00000\pm00 \\ 0.000000\pm00 \\ 0.00000\pm00 \\ 0.0000\pm00 \\ 0.0000\pm000 \\ 0.0000\pm00 \\ 0.0000\pm000 \\ 0.0000\pm000 \\ 0.000\pm000 \\ 0.000\pm000 \\ 0.000\pm000 \\ 0.000\pm000 \\ 0.000\pm000\pm00 \\ 0.000\pm000\pm000 \\ 0.000\pm000\pm000 \\ 0.000\pm000\pm000 \\ 0.000\pm000\pm000\pm000 \\ 0.000\pm000\pm000\pm000\pm000\pm000\pm000\pm000\pm000\pm0$
к(k(17) uses photo table GLYIOrm_RADM88 , scaled by 1.00000E+00 18) uses photo table GLYmol_RADM88 , scaled by 1.00000E+00	{0.00000E+00} {0.00000E+00}
k(19) uses photo table MGLY_RADM88 , scaled by 1.00000E+00	{0.00000E+00}
k(20) uses photo table UDC_RADM88 , scaled by 1.00000E+00	{0.00000E+00}
k (22) = 6.0000E-34 * (T/300)**(-2.30)	$\{6.09302E-34\}$
k (23) = 6.5000E - 12 * exp(120.0/T)	{9.72293E-12}
k(24) = 1.8000E - 11 * exp(110.0/T)	{2.60365E-11}
K (25) = 3.2000E - 11 * exp(70.0/T) 26) = 2.2000E - 10	$\{4.04/30E-11\}$ $\{2.20000E-10\}$
k(27) = 2.0000E - 12 * exp(-1400.0/T)	{1.82272E-14}
k($28) = 1.6000E - 12 * \exp(-940.0/T)$	{6.82650E-14}
k($29) = 1.1000E - 14 * \exp(-500.0/T)$	{2.05452E-15}
K (30) = 3.7000E -12 ^ exp(240.0/T) 31) is a falloff expression using:	{8.2/883E-12} {1 39058E-12}
	k0 = 1.8000E-31 * (T/300)**(-3.20)	(1.000000 10)
	kinf = $4.7000E-12 * (T/300) ** (-1.40)$	
k (F = 0.60, $n = 1.0032) = k(31) / Keg where Keg = 2 100E-27 * evo(10900 0/T)$	{8 62399E-02}
k(33) is a special rate expression of the form:	{3.01634E-12}
	k = k1 + k2[M], where	
	k1 = 2.2000E - 13 * exp(620.0/T)	
k(34) is a special rate expression of the form:	$\{6, 78905E-30\}$
	k = k1 + k2[M], where	(01/05/052 50)
	k1 = 3.0800E-34 * exp(2820.0/T)	
k ($k^2 = 2.6600E - 54 * exp(3180.0/T)$ 35) = 3.3000E - 12 * exp(-200.0/T)	{1 68671 F −12}
k(36) is a falloff expression using:	{4.87144E-12}
	k0 = 7.0000E-31 * (T/300) ** (-2.60)	
	kinf = $1.5000E - 11 * (T/300) * (-0.50)$	
k(37) = 3.3000E-39 * exp(530.0/T)	{1.95397E-38}
k($38) = 1.4000E - 13 * \exp(-2500.0/T)$	{3.18213E−17}
k($39) = 1.7000E - 11 * \exp(150.0/T)$	{2.81225E-11}
K(k($40) = 2.5000E - 14 * \exp(-1230.0/T)$ 41) = 2.5000E - 12	$\{4.030/2E-16\}$ $\{2.50000E-12\}$
k(42) is a falloff expression using:	{1.26440E-12}
	k0 = 2.2000E-30 * (T/300) ** (-4.30)	
	kinf = 1.5000E - 12 * (T/300) **(-0.50) $E = 0.60 n = 1.00$	
k(43) = k(42) / Keq, where Keq = 1.100E-27 * exp(11200.0/T)	{5.47034E-02}
k(44) = 2.0000E-21	{2.00000E-21}
k(45) is a falloff expression using: $k_0 = 2.6000E_{30} * (\pi/300)**(-3.20)$	{1.14885E-11}
	kinf = $2.4000E-11 * (T/300) * (-1.30)$	
	F = 0.60, n = 1.00	(
k(46) is a special rate expression of the form: $k = k0 \pm \sqrt{k^2 [M]} / (1 \pm k^2 [M]/k^2)$ where	{1.47236E-13}
	$k_0 = 7.2000E - 15 * exp(785.0/T)$	
	k2 = 4.1000E-16 * exp(1440.0/T)	
1- ($k_{3} = 1.9000E - 33 * exp(725.0/T)$	(4 (52000 12)
K(47 = 1.3000E-12 * exp(380.0/T) 48 = 4.6000E-11 * exp(230.0/T)	$\{4.65309E-12\}$ $\{9.95294E-11\}$
k(49) is a falloff expression using:	{8.88848E-13}
	k0 = 3.0000E-31 * (T/300) **(-3.30)	,
	kint = 1.5000E - 12 * (T/300) ** (0.00) $E = 0.60 n = 1.00$	
k(50) = 1.5000E-13 * (1.0 + 0.6*Pressure)	{2.40000E-13}
k(51) = 2.8300E+01 * (T/300)**(2.00) * exp(-1280.0/T)	{3.80672E-01}
k (52) = 1.2330E - 12 * (T/300) ** (2.00) * exp(-444.0/T) $52) = 1.5000E = 11 * exp(-540.0/m)$	$\{2.74210E-13\}$
k(53, -1.3500E-11 = exp(-340.0/1) 54) = 1.7300E-11 * exp(-380.0/T)	{4.83334E-12}
k($55) = 3.6400E - 11 * \exp(-380.0/T)$	<pre> {1.01696E−11} </pre>

Table 8A-12.	RADM2 CIS4	AE and RADM2	CIS4 AE	AO Mechanisms

k(57)) =	5.3200E-12 *	exp(504.0/T)	{2.88684E-11}
k(58)) =	1.0700E-11 *	exp(549.0/T)	$\{6, 75269E-11\}$
1 (50)		0 10000 10 +	(200 0 (T)	
K(59)) =	2.1000E-12 *	exp(322.0/1)	{0.18/15E-12}
k(60)) =	1.8900E-11 *	exp(116.0/T)	{2.78943E-11}
1-(61)		4 0000 11	I (, , ,	14 00000 111
V(OI)		4.0000E-11		14.00000F-TT
k(62)) =	9.0000E-01 *	k(61)	{3.60000E-11}
k(63)	- (9 00008-12		19 00000121
K(05)		9.00006-12		19.0000E-12
k(64)) =	6.8700E-12 *	exp(256.0/T)	{1.62197E-11}
2 65	- 1	1 20005-11 *	-745.0/T	10 850208-121
K(05)		1.20006-11	exp(-745.071)	19.03020E-13
k(66)) =	1.1500E-11		{1.15000E-11}
k(67)	- (1 7000 F - 11		1 70000F-111
K(07)		1./0008-11		jr.,0000m-rri
k(68)) =	2.8000E-11		{2.80000E-11}
1-1 601	-	1 0000 11		1 00000 111
K(09)		1.0000E-11		JT.00000E-II
k(70)) =	1.0000E-11		{1.00000E-11}
1-(71)	\ _	1 0000 11		1 00000 111
K(/I)		1.0000E-11		JT.00000E-II
k(72)) =	6.1650E-13 *	(T/300)**(2.00)*exp(-444.0/T)	{1.37105E-13}
k(73)	- (1 55008-11 *	= 540.0/T	J2 53137F-121
12(7)	-	T.3300E II		[2.3313/8 12]
k(74)) =	2.8000E-12 *	exp(181.0/T)	{5.13974E-12}
2 75	- (1 95000+16 *	-13543 0 (-1)	J3 577350-041
12(75)	-	1.99000110	(15545.0/1)	[3.37233E 04]
k('/6)) =	4.7000E-12		{4.70000E-12}
k(77)) =	1 9500E+16 *	$exp(-13543 \ 0/T)$	{3 57235E-04}
1. (7.7)		1.99001.10	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
k(78)) =	4.2000E-12 *	exp(180.0/T)	{7.68378E-12}
k(79)) =	4.2000E-12 *	-xp(180.0/T)	$\{7, 68378E - 12\}$
1 (00)		1.20002 12		
K(80)) =	4.2000E-12 *	exp(180.0/T)	{7.68378E-12}
k(81)) =	4.2000E-12 *	-xp(180.0/T)	$\{7, 68378E - 12\}$
1-(02)		4 20000 12 *		
K(82)) =	4.20008-12 ^	exp(180.0/1)	{/.083/8E-IZ}
k(83)) =	4.2000E-12 *	exp(180.0/T)	{7.68378E-12}
1-(0.4)		4 2000 12 *		
K(84)) =	4.20008-12 *	exp(180.0/1)	{/.683/8E-12}
k(85)) =	4.2000E-12 *	exp(180.0/T)	{7.68378E-12}
1- (0 ()		4 2000 1 12 *		[7 CO3707 10]
K(86)) =	4.20008-12 ^	exp(180.0/1)	{/.083/8E-IZ}
k(87)) =	4.2000E-12 *	p(180.0/T)	{7.68378E-12}
1-(00)	_	4 2000 12 +		7 602700 121
K(00)		4.2000E-12 "	exp(160.0/1)	{/.003/0E-12}
k(89)) =	4.2000E-12 *	p(180.0/T)	{7.68378E-12}
1-(00)		4 2000 - 12 *	2 m (190.0/m)	17 602700 121
K(90)		4.20008-12 "	exp(180.0/1)	{/.003/0E-IZ}
k(91)) =	4.2000E-12 *	exp(180.0/T)	{7.68378E-12}
1-(0.2)	_	6 0000 12 *		(C 01020E 1C)
K(92)		0.0000E-13 "	exp(-2058.0/1)	{0.01030E-10}
k(93)) =	1.4000E-12 *	exp(-1900.0/T)	{2.38307E-15}
1-1 01		6 0000m 12 *		ic 01020m 1ci
K(94)		0.0000E-13	exp(-2058.0/1)	10.01030E-101
k(95)) =	1.4000E-12 *	exp(-1900.0/T)	{2.38307E-15}
1-1 061		1 4000 - 12 *	ave (1900 0 (TT)	10 202070 161
K(90)		1.4000E-12 "	exp(-1900.0/1)	/z.3030/E-T3/
k(97)) =	2.2000E-11		{2.20000E-11}
2/ 981	- 1	2 00000-12 *	avc (-2923 0/m)	1 000/08-161
K(90)		Z.0000E-12	exp(=2923.0/1)	11.03340E-10
k(99)) =	1.0000E-11 *	exp(-1895.0/T)	{1.73099E-14}
k(100)	- (3 23008-11 *	$= 275 \ 0 \ (T)$	J1 22539F-121
12(100)		5.25000 11		
k(101)) =	1.2000E-14 *	exp(-2633.0/T)	{1.74559E-18}
k(102)	- (1 32008-14 *	= 2105 0/T	J1 12933F-171
1.(102)		1.52000 11	(1105.0/1)	
K(103)) =	7.2900E-15 *	exp(-1136.0/T)	{1.61125E-16}
k(104)) =	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
1-(105)	_	7 70005 14 +		[C 040200 12]
K(105)) =	/./0008-14 ^	exp(1300.0/1)	{0.04038E-12}
k(106)) =	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(107)) –	7 70008-14 *	$- \pi n (1300 0/T)$	16 04038-121
12(107)	_			
ĸ(108)) =	/./UUUE-14 *	exp(1300.0/T)	{0.04038E-12}
k(109)) =	7.7000E-14 *	exp(1300.0/T)	{6.04038E-121
1- / 1 1 0 0	_	7 70000 14		[C 040000 10]
к(тт0)		/./0008-14 *	=Yh(T200.0/T)	ju.U4U38E-12}
k(111)) =	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
1-(110)	-	7 7000 14 +	1200 0/m	(< 04020m 10)
K(112)		/./UUUE-14 *	=xh(T200.0/T)	10.04038E-12}
k(113)) =	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
1-(11/)	- 1	7 7000 14 +		Le 010201 101
K(114)		/./UUUE-14 *	=xh(T200.0/T)	10.04038E-12}
k(115)) =	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
6(116)	- (7 70005-14 *	avn(1300.0/T)	16 040300-101
12(110)	-			
k(117)) =	7.7000E-14 *	exp(1300.0/T)	{6.04038E-12}
k(118)) =	1.9000 - 13 *	220.0/T)	{3,97533E-131
1 (110)	_	1 4000- 10 .		[2.2.2227 72]
к(119)	= 1	1.4000E-13 *	exp(220.0/T)	{Z.9Z9I9E-13}
k(120)) =	4.2000 - 14 *	220.0/T)	{8.78758E-141
1- (101)	_	2 40005 14	(220.0/T)	[0.10,000 II]
к(121)) =	3.4UUUE-14 *	exp(220.0/T)	{/.113/6E-14}
k(122)) =	2.9000E-14 *	exp(220.0/T)	{6.06762E-14)
1-(100)	-	1 40005 12	- <u>-</u> · · · · · · · · · · · · · · · · · · ·	
к(123)) =	1.40008-13 *	exp(220.0/T)	{<.asatar-13}
k(124)) =	1.4000E-13 *	exp(220.0/T)	{2.92919E-13}
1-(100)	-	1 7000 14 +	270 0/m)	12 EEGODE 141
ĸ(⊥∠5)		1./UUUE-14 *	=xb(730.0/1)	ູວ.ວວ©ööE−⊥4}
k(126)) =	1.7000E-14 *	exp(220.0/T)	{3.55688E-14}
1-(107)	-	0 6000 12 4	-1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2	10 000E0m 101
r(12/)	=	J.UUUUE-13 *	ZAP(220.0/1)	12.00009E-12}
k(128)) =	1.7000E-14 *	exp(220.0/T)	{3.55688E-14}
k(120)) –	1 70008-14 *	220.0/T)	(3 55688₽_1/1)
1 (122)	_	T. 1000E-II	(000 0/m)	[3.33000m-14]
) =	9.60008-13 *	exp(220.0/T)	12.00859E-12}

Table 8A-12 RADM2 CIS4 AF and RADM2 CIS4 AI	ΞAO	O Mechanisms
---	-----	--------------

1=(121)	$-1.7000 \pm 14.4 \text{ ord}(-220.0/\pm)$	() EECOOT 1/1
K(131)	= 1.7000E - 14 + exp(220.0/1)	{3.55000E-14}
K(132)	$= 3.4000E - 13^{\circ} \exp(-220.0/T)$	{/.113/6E-13}
K(133)	= 1.0000E - 13 * exp(220.0/T)	{2.09228E-13}
k(134)	= 8.4000E - 14 * exp(220.0/T)	$\{1.75752E-13\}$
k(135)	= 7.2000E - 14 * exp(220.0/T)	{1.50644E-13}
k(136)	= 3.4000E - 13 * exp(220.0/T)	{7.11376E-13}
k(137)	= 3.4000E - 13 * exp(220.0/T)	{7.11376E-13}
k(138)	= 4.2000E - 14 * exp(220.0/T)	{8.78758E-14}
k(139)	= 4.2000E - 14 * exp(220.0/T)	{8.78758E-14}
k(140)	= 1.1900E - 12 * exp(220.0/T)	{2.48981E-12}
k(141)	= 4.2000E - 14 * exp(220.0/T)	{8.78758E-14}
k(142)	-42000F - 14 * exp(220.0/T)	$\begin{cases} 8 & 78758F = 14 \end{bmatrix}$
L(1/2)	$= 1.2000 \pm 12 \exp(-220.0/1)$	$\int 2 / 8081 r - 12$
L (111)	= 1.1900E - 12 exp(220.0/1)	12.10901E-12 10 707E0E 1/1
K(144)	= 4.2000 E - 14 exp(220.0/1)	{0./0/D0E-14}
K(145)	= 3.6000E - 16 * exp(220.0/T)	{/.53221E-16}
K(146)	= 7.7000E - 14 * exp(1300.0/T)	{6.04038E-12}
k(147)	= 1.7000E - 14 * exp(220.0/T)	{3.55688E-14}
k(148)	= 4.2000E - 14 * exp(220.0/T)	{8.78758E-14}
k(149)	= 3.6000E - 16 * exp(220.0/T)	{7.53221E-16}
k(150)	= 4.2000E - 12 * exp(180.0/T)	{7.68378E-12}
k(151)	= 4.2000E-12 * exp(180.0/T)	{7.68378E-12}
k(152)	= 7.7000E - 14 * exp(1300.0/T)	<pre>{6.04038E−12}</pre>
k(153)	= 1.7000E - 14 * exp(220.0/T)	{3.55688E−14}
k(154)	= 4 2000E - 14 * exp(220 0/T)	$\{8, 78758E - 14\}$
L(155)	= 3.6000E = 16 * exp(220.0/T)	$\int 7 53221 r = 16$
L(155)	$= 3.0000E = 10^{\circ} exp(220.0/1)$	(75260E 11)
L(150)	= 1.0000E+00 * E(100)	(0.75209E-II)
K(15/)	$= 1.0000E+00 ^ K(100)$	{1.22539E-12}
K(158)	= 1.0000E+00 * k(103)	{1.61125E-16}
k(159)	= 2.5400E - 11 * (T/300) * (1.00) * exp(407.6/T)	{9.90719E-11}
k(160)	= 4.2000E - 12 * (T/300) * (1.00) * exp(181.2/T)	{7.66335E-12}
k(161)	= 7.7000E-14 * (T/300)**(1.00) * exp(1298.3/T)	{5.96598E-12}
k(162)	= 8.4000E-14 * (T/300)**(1.00) * exp(221.4/T)	{1.75402E-13}
k(163)	= 3.4000E - 14 * (T/300) * (1.00) * exp(221.4/T)	{7.09961E-14}
k(164)	= 7.8600E - 15 * (T/300) * (1.00) * exp(-1912.2/T)	{1.27569E−17}
k(165)	= 3.6000E - 11	(3,60000E-11)
k(166)	= 3.0300E + 12 * (T/300) * * (1.00) * exp(-447.9/T)	$\{6, 69552E = 13\}$
k(167)	-42000E 12 (1/300) **(1.00) * exp(181.2/T)	$\begin{cases} 0.0555211 \pm 5 \\ 7 & 66335 = 12 \end{cases}$
L (160)	$= 7.2000 \text{E}^{-12}$ (1/300) (1.00) $\exp(-120.2/1)$	[7.00555E-12]
L(1CO)	= 7.7000E = 14 + (T/300) + (1.00) + exp(-1290.3/1)	[3.90398E-12]
K(169)	= 8.4000E - 14 * (1/300) **(1.00) * exp(221.4/T)	{1./5402E-13}
K(170)	= 3.4000E - 14 * (T/300) **(1.00) * exp(221.4/T)	{7.09961E-14}
k(171)	= 1.8600E-11 * (T/300)**(1.00) * exp(1/6.1/T)	{3.33618E-11}
k(172)	= 4.2000E - 12 * (T/300) * (1.00) * exp(181.2/T)	{7.66335E-12}
k(173)	= 7.7000E-14 * (T/300)**(1.00) * exp(1298.3/T)	{5.96598E-12}
k(174)	= 8.4000E - 14 * (T/300) **(1.00) * exp(221.4/T)	{1.75402E-13}
k(175)	= 3.4000E-14 * (T/300)**(1.00) * exp(221.4/T)	{7.09961E-14}
k(176)	= 1.3600E-15 * (T/300)**(1.00) * exp(-2113.5/T)	{1.12330E-18}
k(177)	uses photo table ACROLEIN , scaled by 3.60000E-03	{0.00000E+00}
k(178)	= 1.5000E - 12 * (T/300) * (1.00) * exp(-1726.0/T)	$\{4, 54753E - 15\}$
k(179)	$= 4 \ 1400E = 12 * (T/300) **(1 \ 00) * exp(452 \ 9/T)$	$\{1, 87990E - 11\}$
L(190)	$= 4.2000 \Xi_{-}12 * (T/300) **(1.00) * exp(-192.9/T)$	$\int 7 66335 r - 12$
L(100)	$= 7.2000E - 12$ (1/300) (1.00) $\exp(-101.2/1)$	$\int 66508 r - 12$
l= (100)	= 9.4000E - 14 + (E/200) + (1.00) + exp(-221.4/E)	$\begin{bmatrix} 1 & 7E402E & 12 \end{bmatrix}$
K(102)	$= 0.4000E^{-14} + (1/300)^{++}(1.00)^{+} \exp(-221.4/1)$	{1.75402E-13}
K(183)	= 3.4000E - 14 * (T/300) **(1.00) * exp(221.4/T)	{/.09961E-14}
k(184)	= 7.5100E - 16 * (T/300) **(1.00) * exp(-1519.7/T)	{4.54966E-18}
k(185)	uses photo table ACROLEIN , scaled by 1.11000E-02	{0.00000E+00}
k(186)	= 1.6000E+16 * (T/300)**(1.00) * exp(-13486.0/T)	{3.52536E-04}
k(187)	= 4.2000E - 12 * (T/300) * (1.00) * exp(181.2/T)	{7.66335E-12}
k(188)	= 2.8000E-12 * (T/300)**(1.00) * exp(181.2/T)	{5.10890E-12}
k(189)	= 7.7000E - 14 * (T/300) * (1.00) * exp(1298.3/T)	{5.96598E-12}
k(190)	= 9.6000E - 13 * (T/300) * (1.00) * exp(221.4/T)	$\{2,00460E-12\}$
k(191)	= 1.1900E - 12 * (T/300) **(1.00) * exp(221.4/T)	{2.48486E-12}
k(192)	= 1 1900E - 12 * (T/300) **(1 00) * cxp(221.7/1)	{2.48486F-12}
1-(102)	-3.3600 r = 11	{3 36000 <u></u> -12}
L (104)	$= 4.0000 \pm 10 + (\pi/200) + (1.00) + (1.01.0) + (\pi/200) + (1.00) + (\pi/200) + (\pi/$	[J.JUUUUE=IL]
K(194)	$= 4.2000E - 12 = (1/300) = (1.00) = \exp(1.01.2/T)$	1/.00335E-12}
K(195)	= 1.1000E - 14 * (T/300) **(1.00) * exp(1298.3/T)	{5.96598E-12}
к(196)	= 8.4000E - 14 * (T/300) ** (1.00) * exp(221.4/T)	{1.75402E-13}
k(197)	= 3.4000E - 14 * (T/300) **(1.00) * exp(221.4/T)	{7.09961E-14}
k(198)	= 7.1100E - 18	{7.11000E-18}
k(199)	uses photo table ACROLEIN , scaled by 3.60000E-03	{0.00000E+00}
k(200)	= 1.0000E - 13	{1.00000E-13}