# SEISMIC SOURCES AND RECURRENCE RATES AS ADOPTED BY USGS STAFF <br> FOR THE PRODUCTION OF THE 1982 AND 1990 <br> PROBABILISTIC GROUND MOTION MAPS FOR ALASKA AND THE CONTERMINOUS UNITED STATES 

by

Stanley L. Hanson ${ }^{1}$ and David M. Perkins ${ }^{1}$

Open-File Report 95-257

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey.

## Table of Contents

INTRODUCTION .....  1
AREA SOURCE ZONES .....  2
LINE SOURCES .....  5
RATES OF OCCURRENCE .....  8
SEISRISK-III INPUT SOURCES .....  8
ANNUAL RECURRENCE RATES .....  9
APPENDIX A ..... 14
APPENDIX B ..... 21
APPENDIX C ..... 32
REFERENCES ..... 39

## List of Figures

FIGURE - 1 SCHEMATIC OF GENERAL SOURCE AREA .....  2
FIGURE - 2 GENERAL SOURCE AREA. ..... 4
FIGURE - 3 SAMPLE INPUT SOURCE AREA .....  4
FIGURE - 4 GENERAL LINE SOURCE .....  6
FIGURE - 5 SAMPLE INPUT LINE SOURCE .....  6
FIGURE - 6 PACIFIC NORTHWEST \& ROCKY MOUNTAIN SOURCE ZONES ..... 10
FIGURE - 7 CALIFORNIA SOURCE ZONES ..... 11
FIGURE - 8 CENTRAL \& EASTERN SOURCE ZONES ..... 12
FIGURE - 9 ALASKA SOURCE ZONES ..... 13

## List of Tables

TABLE - 1 FORMAT \& DESCRIPTION OF SOURCE AREA ................................................................................... 3
TABLE - 2 FORMAT \& DESCRIPTION OF LINE SOURCE.
.7

## Introduction

The construction of a probabilistic ground-motion hazard map for a region follows a sequence of analyses beginning with the selection of an earthquake catalog and ending with the mapping of calculated probabilistic ground-motion values (Hanson and others, 1992). An integral part of this process is the creation of sources used for the calculation of earthquake recurrence rates and ground motions. These sources consist of areas and lines that are representative of geologic or tectonic features and faults.

After the design of the sources, it is necessary to arrange the coordinate points in a particular order compatible with the input format for the SEISRISK-III program (Bender and Perkins, 1987). Source zones are usually modeled as a point-rupture source. Where applicable, linear rupture sources are modeled with articulated lines, representing known faults, or a field of parallel lines, representing a generalized distribution of hypothetical faults. Based on the distribution of earthquakes throughout the individual source zones (or a collection of several sources), earthquake recurrence rates are computed for each of the sources, and a minimum and maximum magnitude is assigned.

Over a period of time from 1978 to 1980 several conferences were held by the USGS to solicit information on regions of the United States for the purpose of creating source zones for computation of probabilistic ground motions (Thenhaus, 1983). As a result of these regional meetings and previous work in the Pacific Northwest, (Perkins and others, 1980), California continental shelf, (Thenhaus and others, 1980), and the Eastern outer continental shelf, (Perkins and others, 1979) a consensus set of source zones was agreed upon and subsequently used to produce a national ground motion hazard map for the United States (Algermissen and others, 1982).

In this report and on the accompanying disk we provide a complete list of source areas and line sources as used for the 1982 and later 1990 seismic hazard maps for the conterminous U.S. and Alaska. These source zones are represented in the input form required for the hazard program SEISRISK-III, and they include the attenuation table and several other input parameter lines normally found at the beginning of an input data set for SEISRISK-III.

## Area Source Zones

Areal source zones are used to model earthquakes which can be represented by point ruptures usually corresponding to low-magnitude earthquakes whose rupture lengths are short. Highermagnitude earthquakes can be modeled with point ruptures if their recurrence rate is long compared to the return period of the ground motion map being produced. These areal source zones are in what we refer to as quadrilateral form. (See Fig. 1)

## Approximation of a Source Zone with Quadrilaterals



Figure 1 A brief description of the procedure for defining source zone quadriaterals. A) A general source area drawn on a map describing geologic, tectonic, or seismic features. B) Lower right portion of the area, outlined by three adjacent quadrilaterals whose corner points are paired left to right and bottom to top. C) Upper left portion of the area, outlined by a single quadriateral whose corner points are paired left to right and bottom to top. D) The completed source zone which approximates the original source area in A).

Each source zone has a four-character identifying name along with several other input parameters in the first line associated with each source zone. The line following the source zone name contains the number of lines of pairs of points, the $i$-th part, of $j$ parts, of the source zone. The succeeding lines are the coordinate corner points of the quadrilaterals defining the source area. The last two lines associated with each source area contain the recurrence rates for each of the magnitude intervals from the minimum to the maximum magnitude, and the central magnitudes of the interval over the range from a minimum magnitude to a maximum magnitude for a given source.

A more specific description of each of the variables and their FORTRAN format for source area input data sets can be found in Table 1.

When building an input data set using a computer text editor these format specifications must be followed, including the design and ordering for the coordinate points (See Fig.-1).

Table 1
Description of input variables for input source areas


[^0]Figure 2 shows a general source area with the coordinates in the proper sequence of ordered pairs. In this case, $j$ seg $=4$, indicates there are 4 pairs of coordinate points which describe the source area ( 3 quadrilaterals). The coordinate points follow in the input stream one pair of points per line for 4 lines in a longitude, latitude order for each point.


Figure-2 jseg $=4$ in this example: quadrilateral end-point pairs are, (x1,y1)---(x2,y2), (x3,y3)---(x4,y4), (x5,y5)---(x6,y6), (x7,y7)---(x8,y8). Sub regions of a set are defined as shown.

The next line in the input sequence contains the recurrence rates, the numbers of events expected in yrnoc years in each magnitude interval, stored in the variable, $\operatorname{noc}(l)$, for each magnitude interval from the minimum to the maximum magnitude. There can be from 1 to 12 recurrence rates for a given source area.

The last line in the input sequence associated with a source area contains the central magnitude of each magnitude interval and is stored in the variable, $f m(l)$. There can be from 1 to 12 magnitude intervals, one for each corresponding recurrence rate in the previous line.

Figure 3 shows an example of a single input source area for a region located in the Pacific Northwest. For source shapes such as figure 6, where P002 surrounds P001, zone P002 has been drawn in two parts to avoid dealing with superimposed source zones. (This would require removing a


Figure-3 A typical source area for use in the SEISRISK-III hazard program. This particular input source area is described in two parts. The second and eleventh lines are read as 'eight pairs of coordinate points in the first of two parts', and 'four coordinate pairs in the second of two parts'.
portion of the areal rate of the underlying source zone, P 002 , from the areal rate of the overlaying source zone, P001.) This source zone illustrates the use of two sets of quadrilaterals to define a single source area and the required input FORTRAN format.

## Line Sources

Line sources are used to model earthquakes which should be modeled by linear ruptures - higher magnitude earthquakes whose recurrences are no more than a few times longer than return periods of the probabilistic ground motions to be mapped. The function of the line rupture is to provide stretched-out isoseismals approximating the location of the higher ground motions expected to occur close to a fault. (The actual modeled shape of the isoseismal is the locus of points equidistant from the line representing the fault rupture. This shape has been described as "cylindrical with circular caps," or less formally, the "hot dog" model.)

A single fault is described by one or more straight-line segments - if more than one segment, the fault is said to be articulated. A line source is made up of one or more faults. We have usually modeled a known fault by two sources - the fault itself as an articulated line source, and an areal source whose boundaries are drawn 10 km to either side of the fault. This areal source is used to collect the catalog earthquakes when analyzing the seismicity for the fault and is also used to place smaller magnitude earthquakes which may be produced near the fault or on short splays of the main fault. The higher magnitude earthquakes are placed on the fault itself. SEISRISK-III permits "magnitude smoothing" for the highest magnitude category - that is, the rates in the highest magnitude category.

There are also source areas for which frequent large magnitude earthquakes are expected and hence require line ruptures to produce extended isoseismals for the higher-level ground motions, but for which actual future locations are either unknown or for which it would be inaccurate to model only the known surface faulting. Such source areas we have modeled by fields of parallel articulated faults, some fixed distance apart, usually 20 or 30 km . SEISRISK-III performs spatial smoothing of the larger magnitudes on these faults, permitting an approximation to infinitesimal spacing. As with individual faults, we have placed the smaller magnitudes into an areal zone, and the higher magnitudes are allocated to the constituent faults in proportion to their lengths.

A line source may contain up to a maximum of 26 articulated faults and each of these faults may have up to 24 segments. Figure 4 shows a typical line source, consisting of an articulated fault having two segments defined by three coordinate points. The input format is similar to that of the source areas: the first line contains the usual information including the source name. The next line is a header line giving the number of coordinates for the first fault in the source, the number of the fault, and the total number of faults in the source. The next one-to-several lines of input contain the coordinate points in a (8f10.2) FORTRAN format. (There is room for four longitude latitude pairs on each line.) Each succeeding fault in this source has a header line followed by lines containing the
corresponding coordinates. As with areal sources, the last two line entries associated with each line source contains on one line, the central magnitudes in each magnitude range, in our case 0.6 magnitude units wide, between minimum and maximum magnitudes and their associated recurrence rates.


## Point 1

Point 3
Figure-4 Articulated line source showing a fault trace defined by three points..

Next in the input stream are the longitude, latitude end points of each segment of each fault. There can be a maximum of 24 segments for a given articulated fault, and
there can be a maximum of 26 articulated faults in a single source.
The next two lines in the input stream are $n o c(l)$ and $f m(l)$ respectively, and are the same as described for source areas.

A general description of the variables and FORTRAN format for line source inputs can be found in Table 2. Again these input parameter descriptions must be followed to insure reliable results.

Figure 5 is an illustration of a set of generalized hypothetical faults modeled in a region.


Figure-5 This set of input sources is for three hypothetical or generalized line sources or faults found in the Pacific Northwest. The first two line sources are described by three coordinate points and the third line source is described by only two points.

Table 2
Description of input variables for input line sources


Rates of Occurrence The expected seismicity for each source zone was developed from an analysis of the historical seismicity either of the source zone itself or from "back-allocation" of an analysis of the seismicity of the region in which the individual source lies. In general, the seismicity analysis was performed by fitting the relationship

$$
\begin{equation*}
\log N_{c}=a+b M_{c}, \tag{1}
\end{equation*}
$$

where $M_{c}$ is the center magnitude of a magnitude range, 0.6 magnitude units wide, and $N_{c}$ is the annual rate of earthquakes in that range. Values of $M_{c}$ were obtained from the regression equation

$$
\begin{equation*}
M_{c}=1.3+0.6 I_{0}, \tag{2}
\end{equation*}
$$

where $I_{0}$ is epicentral intensity (Modified Mercalli scale). If an observed magnitude falls between $M_{c}-0.3$ and $M_{c}+0.3$, the earthquake is placed in the corresponding $M_{c}$ category.

The fits to equation (1) were generally done by a minimum chi-square regression, although in the western portion of California a weighted least squares technique was used. In the eastern U.S., regional fits were done using Wiechert's maximum-likelihood method (Wiechert, 1980) to take into account magnitude-dependent completeness times. In both east and west, regionally-fixed $b$-values and weighted $a$-values were used to allocate regional rates to zonal rates in those cases in which individual zones did not have 40 or more historical earthquakes of magnitude larger than 4.0.

Regression equation (2) had been defined in previous studies, (Gutenberg and Richter, 1942), principally using $M_{L}$ for shocks with $M_{L}$ of about 6.75 or less and $M_{S}$ for larger earthquakes. Since instrumental magnitudes were not available for many important earthquakes, extensive use was made of equation (2). In fact, at the time of the analysis for the eastern U.S. (1979 to 1981), eastern U.S. magnitudes were poorly determined and inconsistent, so the analysis was done entirely by using modified Mercalli epicentral intensities. The same $M_{c}$ vs $I_{0}$ relationship was used in the eastern U.S. as in the western U.S., in order to guarantee that the same epicentral intensities would produce the same near-field peak acceleration and peak velocity values in the east as in the west (Algermissen and others, 1982).

The pseudo-magnitudes used for the eastern U.S. now appear to average 0.5 to 0.7 units larger than felt-area magnitudes determined for historical events, for magnitudes in the range 3 to 5.5 . Users are cautioned that modern felt-area magnitudes used with modified western attenuation functions would likely under-estimate ground motion hazard in the eastern U.S. Similarly our eastern pseudo-magnitudes should not be used with modern eastern-U.S. attenuation functions for modern magnitudes scales.
SEISRISK-III Input Sources The accompanying disk contains the input sources used in the computation of the 1982 and 1990 ground motion maps (Algermissen and others, 1982); (Algermissen and others, 1990). The disk contains nine input files complete with attenuation tables. Appendices A and B are brief examples of the input data sets showing area sources and line sources
for the Puget Sound area and Alaska respectively. Each of these areas was modeled with sources at depth and required the use of separate input data sets using modified attenuation tables, adjusted for depth. Figures $6,7,8$, and 9 are illustrated views of the source zones. Figure 6 is the Pacific northwest and the Rocky Mountain region source zones to the central plains of the U.S. Figure 7 is of the coastal California source zones. Figure 8 is an illustration of the source zones for the central plains region to the eastern seaboard. Because of the complication of modeling a subduction zone in Alaska, two underlying source areas with two sets of hypothetical generalized articulated line sources where used to model earthquakes at depth (Thenhaus and others, 1985), similar to that used in the Puget Sound region (Perkins and others, 1980). Figure 9-A shows the shallow sources and for clarity, figure 9-B shows the source areas modeling the deeper earthquakes.

The only 2 significant changes in the input files between 1982 and 1990 was, 1) the change in the input attenuation tables to accommodate attenuation variability, and 2) the removal of 2 line sources from the set of eastern sources. Line sources F004 and F015 from EASTCAOST. 015 were removed and their associated rates and magnitudes were redistributed to sources areas I004 and I015 respectively in the same input file.

## Annual Recurrence Rates

To compare the relative hazard between sources the annual recurrence rates must be area normalized. It is not appropriate to compare a relatively large area that has a relatively low set of annual recurrence rates to a source with the same annual recurrence rates but has a much smaller area by the annual recurrence rates only. To make this comparison, Appendix C has been included showing six tables that include the annual recurrence rates for each magnitude interval and the computed area for each of the input sources. Each table represents a set of input sources as previously discussed, the Pacific Northwest, California sources, Rocky Mountain sources, etc. Within each table each source is listed by name, its computed area, and a range of annual recurrence rates from a minimum to a maximum magnitude. The comparison can be made from source to source by individual magnitude intervals or a cumulative set of magnitude intervals.


Figure-6 Pacific Northwest and Rocky Mountain region source zones with those areas that were also modeled using line sources, shown as shaded areas.


Figure-7 California source zones, with those areas that were also modeled using line sources shown as shaded areas.


Figure-8 Central and Eastern U.S. source zones, with those areas that were also modeled using line sources shown as shaded areas.


Figure-9 Surface and subsurface sources for Alaska. Figure 9A shows the sources, modeling shallow earthquakes from 0 to 50 km deep, at the surface of the earth including parallel line sources shown in the shaded areas. Figure 9B illustrates subsurface sources, modeling the subduction zone in the region. The source areas A015 and A016 are used to model earthquakes for deep sources, greater than 100 km , and intermediate sources, 50 to 100 km deep, respectively.

## Appendix A

Area sources and line sources in their SEISRISK-III input format for the Pacific Northwest. For each source area with embedded fault sources, only the larger magnitudes were allowed to occur on the line sources. Source areas Pd01 and Pd02 are coincident sources with P001 and P002 and model only large magnitude earthquakes at depth (Perkins, and others 1980). The attenuation for this portion of the input is the (Schnabel and Seed, 1973) acceleration attenuation function for the western U.S. and has been adjusted to a depth of 75 km .
Deep sources in the Pacific Northwest


## Shallow sources in the Pacific Northwest

Puget Sound region surface sources with attenuation 020.
.9031050250

1. 0.50

| 130.00 | 45.00 | 117.00 | 25.00 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 122.00 | 42.00 | 117.00 | 30.00 | .150 |  |

    25254040
    0
612

| watashh79 |  |  | 7.6 | 6.6 | 5.6 | 5.2 | 4.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.22 | . 74 | . 73 | . 67 | . 45 | . 195 | . 072 |  |
| 6.43 | . 64 | . 62 | . 53 | . 36 | . 135 | . 047 |  |
| 16.09 | . 49 | . 43 | . 32 | . 19 | . 052 | . 02 |  |
| 32.18 | . 36 | . 28 | . 17 | . 09 | . 02 | . 0052 |  |
| 64.3 | . 21 | . 14 | . 06 | . 035 | . 0051 | . 0013 |  |
| 96.5 | . 12 | . 07 | . 03 | . 0138 | . 0023 | . 00042 |  |
| 160.9 | . 045 | . 025 | . 015 | . 005 | . 00083 | . 0001 |  |
| 321.8 | . 013 | . 0076 | . 0026 | . 0012 | . 00021 | . 00003 |  |
| 643.0 | . 0034 | . 0019 | . 00065 | . 0003 | . 00005 | . 00001 |  |
| 1288.0 | . 00085 | . 00047 | . 00016 | . 00007 | . 00001 | . 00001 |  |
| 2570.0 | . 00021 | . 00012 | . 00004 | . 00002 | . 00001 | . 00001 |  |
| 5140.0 | . 0001 | .00006 | . 00002 | . 00001 | . 00001 | . 00001 |  |
| 0071.52 | -1 | P 0 |  |  |  |  |  |

0071.52 -1 P001
311
$122.68 \quad 47.63 \quad 122.35 \quad 47.62$
122.9747 .30122 .2547 .37
122.7846 .98122 .3547 .03
3.1641 .2700 .511 . 0515 . 0207
$\begin{array}{lllll}4.9 & 5.5 & 6.1 & 6.7 & 7.3\end{array}$
0071.52 -1 0002
812
$123.4749 .00 \quad 122.38 \quad 49.03$
$123.60 \quad 48.40 \quad 122.13 \quad 48.70$
122.6847 .63121 .8848 .33
122.3547 .62121 .7048 .08
122.3047 .50121 .6247 .68
$122.25 \quad 47.37 \quad 121.43 \quad 47.52$
122.3547 .03121 .5547 .05
122.2046 .75121 .7046 .63
422
$123.03 \quad 47.92 \quad 122.68 \quad 47.63$
$123.2547 .27122 .97 \quad 47.30$
122.9246 .80122 .7846 .98
122.2046 .75122 .3547 .03
12.515 .0202 .019 .2035 .0817
$\begin{array}{lllll}4.9 & 5.5 & 6.1 & 6.7 & 7.3\end{array}$

| 0050.9 | 93 | -1 | P003 |
| :---: | :---: | :---: | :---: |
| 81 | 3 |  |  |
| 125.77 | 48.15 | 126.25 | 549.03 |
| 124.72 | 48.22 | 125.38 | 849.22 |
| 123.47 | 49.00 | 123.78 | 849.57 |
| 122.93 | 49.02 | 122.52 | 249.82 |
| 122.38 | 49.03 | 122.07 | 749.28 |
| 121.88 | 48.33 | 121.33 | 348.50 |
| 121.70 | 48.13 | 121.33 | 348.08 |
| 121.62 | 47.68 | 121.43 | 347.52 |
| 82 | 3 |  |  |
| 124.72 | 48.22 | 123.47 | 749.00 |
| 124.05 | 48.08 | 123.60 | 048.40 |
| 123.25 | 47.88 | 123.03 | 347.92 |
| 123.27 | 47.70 | 123.10 | 047.67 |
| 123.58 | 47.60 | 123.25 | 547.27 |
| 124.12 | 47.60 | 123.40 | 047.07 |
| 124.40 | 47.33 | 123.53 | 346.92 |
| 124.17 | 46.58 | 123.95 | 546.50 |
| 63 | 3 |  |  |
| 123.53 | 46.92 | 123.25 | 547.27 |
| 123.25 | 46.92 | 123.07 | 747.00 |
| 123.08 | 46.75 | 122.92 | 246.80 |
| 123.08 | 46.42 | 122.20 | 046.75 |
| 123.20 | 46.15 | 121.70 | 046.63 |
| 123.37 | 45.83 | 121.72 | 246.43 |
| 1.827 | 0.528 | 0.1510 | 0.0420 .014 |
| 4.9 | 5.5 | 6.16 | $6.7 \quad 7.3$ |
| 0053.3 | 33 | -1 | P004 |
| 41 | 1 |  |  |
| 122.52 | 49.82 | 119.87 | 750.03 |
| 121.33 | 48.50 | 118.81 | 148.25 |
| 121.43 | 47.52 | 119.07 | 747.33 |
| 121.70 | 46.63 | 121.52 | 246.53 |
| 4.416 | 1.053 | 0.2480 | 0.0620 .017 |
| 4.9 | 5.5 | 6.16 | 6.77 .3 |
| 0053.3 | 33 | -1 | P005 |
| 41 | 1 |  |  |
| 121.52 | 46.53 | 119.07 | 747.33 |
| 120.82 | 46.15 | 119.03 | 346.93 |
| 117.48 | 44.17 | 116.38 | 845.34 |
| 116.55 | 44.74 | 116.43 | 344.95 |
| 1.57 | 0.375 | 0.0880 | 0.0220 .006 |
| 4.9 | 5.5 | 6.16 | 6.77 .3 |
| 0053.3 | 33 | -1 | P006 |
| 61 | 1 |  |  |
| 121.30 | 45.80 | 120.82 | 246.15 |
| 121.37 | 45.37 | 120.18 | 845.78 |
| 121.00 | 44.68 | 119.23 | 345.23 |
| 119.78 | 43.96 | 117.48 | 844.17 |
| 119.21 | 43.73 | 117.48 | 843.48 |
| 117.78 | 43.37 | 117.55 | 543.42 |
| 0.359 | 0.086 | 0.0200 | 0.0050 .001 |
| 4.9 | 5.5 | 6.16 | 6.77 .3 |

```
00 23.08 -1 P008
    4 1
123.27 43.53 122.93 43.61
124.80 42.73 122.75 43.00
123.87 41.97 122.42 41.97
122.83 40.97 122.04 41.04
0.144 0.055 0.021 0.008 0.003
4.9 5.5 6.1 6.7 7.3
00 28.34 -1 P009
    5 1 1
125.82 42.22 125.57 43.13
125.45 41.95 124.80 42.73
124.95 41.17 123.87 41.97
124.22 40.52 122.83 40.97
124.00 39.97 122.05 40.00
3.086 1.612 0.842
4.9 5.5 6.1
00 28.34 -1 P010
    3 1 1
125.82 42.22 125.45 41.95
126.32 41.35 124.95 41.17
126.55 40.90 124.22 40.52
6.690 3.495 1.826
4.9 5.5 6.1
00 28.34 -1 P011
    3 1 1
128.00 40.87 126.55 40.90
128.00 40.55 124.22 40.52
128.00 39.98 124.00 39.97
14.26 7.452 3.894
4.9 5.5 6.1
00 28.34 -1 P012
    2 1 1
126.75 42.75 125.82 42.22
127.85 40.90 126.55 40.90
5.492 2.869 1.499
4.9 5.5 6.1
00 28.34 -1 P013
    2 1
130.43 44.63 129.78 45.37
125.82 42.22 125.57 43.13
10.22 5.338 2.789
4.9 5.5 6.1
```

```
00 23.08 -1 P014
    12 1 2
123.25 47.88 123.27 47.70
124.08 48.08 123.58 47.60
124.72 48.22 124.12 47.60
126.92 48.05 124.25 47.47
126.80 47.28 124.40 47.33
126.08 46.88 124.28 46.95
125.95 46.17 124.17 46.58
126.02 45.55 123.20 46.15
125.55 45.08 123.53 45.47
125.43 44.48 123.55 44.75
125.57 43.13 123.75 44.03
124.80 42.73 123.27 43.53
    3 2 2
123.25 46.92 123.08 46.75
123.53 46.92 123.08 46.42
123.95 46.50 123.20 46.15
0.962 0.366 0.139 0.053 0.019
4.9 5.5 6.1 6.7 7.3
00 23.08 -1 P015
    9 1 1
126.45 49.40 125.77 48.15
129.08 48.53 126.92 48.05
129.30 47.48 126.80 47.28
129.43 47.00 126.08 46.88
129.53 46.52 125.95 46.17
129.65 46.00 126.02 45.55
129.70 45.77 125.55 45.08
129.75 45.57 125.43 44.48
129.78 45.37 125.57 43.13
3.031 1.154 0.438 0.166 0.060
4.9 5.5 6.1 6.7 7.3
00 23.08 -1 P016
    2 1 1
128.23 49.40 125.33 50.27
127.77 48.98 125.10 49.82
0.433 0.165 0.063
4.9 5.5 6.1
00 28.34 -1 P017
    5 1 1
131.28 51.87 130.58 51.90
131.22 50.92 129.98 57.37
129.87 50.25 129.00 50.48
130.85 49.13 128.83 49.97
129.08 48.53 127.77 48.98
13.01 6.795 3.550
4.9 5.5 6.1
00 50.93 -1 P018
    3 1 1
123.37 45.83 121.72 46.43
123.53 45.47 121.82 45.92
123.55 44.75 122.08 45.32
2.763 0.799 0.229 0.064 0.021
4.9 5.5 6.1 6.7 7.3
```

| 0050.93 | $93-1$ | P0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | 1 |  |  |  |  |  |  |
| 123.55 | 44.75122 .08 | 0845.32 |  |  |  |  |  |
| 123.75 | 44.03122. | 4244.27 |  |  |  |  |  |
| 123.47 | 43.72122. | . 6243.88 |  |  |  |  |  |
| 123.27 | 43.53122. | 93 43.61 |  |  |  |  |  |
| 0.6010 | 0.1740 .050 | 0.0140. |  |  |  |  |  |
| 4.95 | 5.56 .1 | 6.77. |  |  |  |  |  |
| 9928.3 | $34-1$ | P0 |  |  |  |  |  |
| 41 | 2 |  |  |  |  |  |  |
| 125.65 | 42.90 | 125.00 | 42.50 | 124.20 | 41.57 | 123.42 | 39.92 |
| 52 | 2 |  |  |  |  |  |  |
| 125.75 | 42.47 | 125.45 | 42.30 | 124.55 | 41.00 | 124.27 | 40.45 |
| 123.75 | 40.00 |  |  |  |  |  |  |
| 0.4400 | 0.2300 .120 |  |  |  |  |  |  |
| 6.77 | 7.37 .9 |  |  |  |  |  |  |
| 0028.3 | $34-1$ | P0 |  |  |  |  |  |
| 31 | 2 |  |  |  |  |  |  |
| 124.70 | 40.70 | 125.35 | 41.10 | 125.82 | 41.95 |  |  |
| 32 | 2 |  |  |  |  |  |  |
| 125.58 | 40.80 | 126.05 | 41.13 | 126.08 | 41.67 |  |  |
| 0.9540 | $0.498 \quad 0.260$ |  |  |  |  |  |  |
| 6.77 | 7.37 .9 |  |  |  |  |  |  |
| 0028.3 | $34-1$ | PO |  |  |  |  |  |
| 21 | 3 |  |  |  |  |  |  |
| 124.38 | 40.15 | 127.87 | 40.23 |  |  |  |  |
| 22 | 3 |  |  |  |  |  |  |
| 124.58 | 40.37 | 127.88 | 40.47 |  |  |  |  |
| 23 | 3 |  |  |  |  |  |  |
| 125.22 | 40.67 | 127.85 | 40.73 |  |  |  |  |
| 2.0331 | 1.0630 .554 |  |  |  |  |  |  |
| 6.77 | 7.37 .9 |  |  |  |  |  |  |
| 0028.3 | $34-1$ | P0 |  |  |  |  |  |
| 21 | 3 |  |  |  |  |  |  |
| 126.50 | 42.58 | 127.45 | 41.65 |  |  |  |  |
| 22 | 3 |  |  |  |  |  |  |
| 126.27 | 42.40 | 127.55 | 41.03 |  |  |  |  |
| 23 | 3 |  |  |  |  |  |  |
| 126.00 | 42.23 | 127.18 | 41.03 |  |  |  |  |
| 0.7830 | 0.4090 .213 |  |  |  |  |  |  |
| 6.77 | 7.37 .9 |  |  |  |  |  |  |
| 0028.3 | $34-1$ | P0 |  |  |  |  |  |
| 31 | 3 |  |  |  |  |  |  |
| 129.83 | 45.17 | 125.90 | 43.18 | 126.08 | 42.35 |  |  |
| 32 | 3 |  |  |  |  |  |  |
| 130.03 | 44.92 | 126.33 | 43.13 | 126.42 | 42.60 |  |  |
| 23 | 3 |  |  |  |  |  |  |
| 130.25 | 44.72 | 126.75 | 43.00 |  |  |  |  |
| 1.4560 | $0.761 \quad 0.397$ |  |  |  |  |  |  |
| 6.77 | 7.37 .9 |  |  |  |  |  |  |
| 0023.0 | 08 -1 | P0 |  |  |  |  |  |
| 21 | 1 |  |  |  |  |  |  |
| 125.17 | 49.17 | 127.92 | 49.90 |  |  |  |  |
| 0.0240 | 0.009 |  |  |  |  |  |  |
| 6.77 | 7.3 |  |  |  |  |  |  |


| 00 | 28.34 | +3 | P 017 |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 4 |  |  |
| 128.00 |  | 48.92 | 130.70 | 51.78 |
| 2 | 2 | 4 |  |  |
| 128.42 |  | 48.77 | 131.25 | 51.67 |
| 2 | 3 | 4 |  |  |
| 128.83 |  | 48.63 | 130.08 | 49.92 |
| 2 | 4 | 4 |  |  |
| 129.50 | 48.72 | 130.42 | 49.58 |  |
| 1.854 | 0.969 | 0.505 |  |  |
| 6.7 | 7.3 | 7.9 |  |  |
| 99 |  |  |  |  |

## Appendix B

## Shallow Sources used in Alaska

all shallow Alaska zones
030.
.9031050250
10.620

| 155.00 | 65.00 | 130.00 | 55.00 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 150.00 | 65.00 | 140.00 | 55.00 | .200 | .200 |

$0 \quad 0 \quad 0 \quad 0$
1
40
$155.062 .0 \quad 145.0 \quad 58.0$
612

| watashh 79 |  | 8.5 | 7.6 | 6.6 | 5.6 | 5.2 | 4.2 |
| :--- | :--- | ---: | :--- | :---: | :---: | :---: | :---: |
| 3.22 | .74 | .73 | .67 | .45 | .195 | .072 |  |
| 6.43 | .64 | .62 | .53 | .36 | .135 | .047 |  |
| 16.09 | .49 | .43 | .32 | .19 | .052 | .02 |  |
| 32.18 | .36 | .28 | .17 | .09 | .02 | .0052 |  |
| 64.3 | .21 | .14 | .06 | .035 | .0051 | .0013 |  |
| 96.5 | .12 | .07 | .03 | .0138 | .0023 | .00042 |  |
| 160.9 | .045 | .025 | .015 | .005 | .00083 | .0001 |  |
| 321.8 | .013 | .0076 | .0026 | .0012 | .00021 | .00003 |  |
| 643.0 | .0034 | .0019 | .00065 | .0003 | .00005 | .00001 |  |
| 1288.0 | .00085 | .00047 | .00016 | .00007 | .00001 | .00001 |  |
| 2570.0 | .00021 | .00012 | .00004 | .00002 | .00001 | .00001 |  |
| 5140.0 | .0001 | .00006 | .00002 | .00001 | .00001 | .00001 |  |
| $00 \quad 10$. | -1 | A004 |  |  |  |  |  |

```
    7 1 2
134.50 59.90 135.10 58.90
135.00 60.50 135.90 59.60
137.00 61.40 137.80 60.90
139.40 62.40 140.90 61.50
140.00 62.60 141.60 61.80
141.10 63.10 142.40 62.40
142.80 62.80 143.00 62.70
    2 2 2
141.10 63.10 142.80 62.80
143.30 64.30 145.50 63.50
2.4000.69200.19960.05750.01660.00480
    4.3 4.9 5.5 6.1 6.7 7.3
00 28.25 -1 A005
    7 1 1
134.90 54.70 135.10 55.00
134.50 56.20 134.90 56.20
134.40 57.00 134.90 57.00
134.70 58.10 135.10 58.10
135.10 58.90 135.50 58.90
135.90 59.60 136.30 59.50
137.80 60.90 138.10 60.60
2.0960.91400.39850.17380
            4.3 4.9 5.5 6.1
00 10.0 -1 A006
    2 1 1
137.80 60.90 138.10 60.60
140.90 61.50 141.10 61.30
.24030.1049004540.02000
    4.3 4.9 5.5 6.1
```

```
00 10.0 -1 A007
    4 1
140.90 61.50 141.10 61.30
141.60 61.80 141.80 61.60
142.40 62.40 142.70 62.30
143.20 62.80 143.40 62.70
.24030.10490.04540.02000
    4.3 4.9 5.5 6.1
00 28.25 -1 A008
    7 1 2
154.20 62.50 154.30 62.20
150.70 63.30 150.20 63.10
147.90 63.60 148.70 63.30
145.50 63.50 145.70 63.20
144.60 63.30 144.90 63.10
143.40 63.10 143.60 62.80
143.20 62.80 143.30 62.80
    2 2 2
143.40 63.10 143.20 62.80
142.80 62.80 143.00 62.70
.89200.38900.17000.07400
        4.3 4.9 5.5 6.1
00 1.0 -1 A009
    12 1 2
170.20 67.60 170.80 65.00
165.20 67.20 166.90 64.10
163.20 67.10 164.00 63.80
160.50 67.00 160.60 63.80
158.40 67.30 157.30 64.40
155.60 67.10 154.60 64.80
152.30 67.10 151.50 65.50
149.80 67.20 148.40 66.10
147.20 67.10 146.60 66.10
145.00 67.20 145.20 65.80
140.30 68.00 140.00 66.80
137.10 68.10 137.10 67.40
        2 2 
140.00 66.80 145.20 65.80
140.80 65.60 141.70 65.10
.18830.06240.02070.00680.00230.00080
    4.3 4.9 5.5 6.1 6.7 7.3
00 28.25 -1 A010
    2 1 1
133.50 53.60 133.90 53.40
134.80 55.10 134.90 54.70
4.30701.8800.82000.35800
            4.3 4.9 5.5 6.1
00 10. -1 A011
    5 1 1
134.90 56.20 135.00 55.70
134.90 57.00 135.70 57.10
135.10 58.10 136.40 57.90
135.50 58.90 136.70 58.40
136.70 59.80 138.10 59.40
4.51601.1340.28470.07150.01800.00450
    4.3 4.9 5.5 6.1 6.7 7.3
```

```
00 28.25 -1
A012
    7 1
135.00 55.70 135.10 55.10
135.70 57.10 136.20 57.00
136.40 57.90 136.70 57.80
136.70 58.40 137.20 58.20
138.10 59.40 138.40 59.30
139.40 60.20 139.70 60.10
140.40 60.40 140.10 60.30
8.17803.57001.5580.68000
    4.3 4.9 5.5 6.1
00 28.25 -1 A013
    5 1 1
136.70 57.80 137.50 57.80
137.50 58.50 138.70 58.10
138.40 59.30 140.10 58.60
139.70 60.10 141.70 59.00
141.60 59.90 143.10 59.20
11.3704.96302.1660.94500
    4.3 4.9 5.5 6.1
00 1.0 -1 A014
    3 1 5
160.20 53.40 161.50 55.10
158.00 54.00 159.10 55.70
155.00 54.70 156.10 55.50
    9 2 5
156.10 55.50 159.10 55.70
155.00 56.40 156.10 57.30
152.80 57.60 154.60 58.70
150.70 58.60 154.00 60.10
149.80 59.20 154.10 60.20
148.40 59.80 149.40 61.70
146.60 60.60 146.90 61.90
144.80 60.80 145.10 61.80
143.10 60.80 143.80 61.30
    3 5
145.10 61.80 146.90 61.90
146.00 62.20 147.00 62.20
148.70 63.30 149.10 63.20
    24 5
146.00 62.20 148.70 63.30
144.90 63.10 145.70 63.20
    3 5 5
149.10 63.20 147.00 62.20
150.20 63.10 150.30 61.80
154.30 62.20 154.10 60.60
7.03602.6380.98930.37100
    4.3 4.9 5.5 6.1
```

```
00 1.0 -1 A018
    3 1 3
138.10 59.40 136.70 59.80
139.40 60.20 138.10 60.60
139.80 60.40 139.80 61.00
    7 2 3
140.10 60.30 139.80 60.40
140.70 60.40 139.80 61.00
142.00 60.60 140.90 61.50
143.10 60.80 141.80 61.60
143.80 61.30 142.70 62.30
145.10 61.80 143.40 62.70
146.00 62.20 145.30 62.70
    2 3 3
145.30 62.70 143.40 62.70
144.90 63.10 143.30 62.80
.26140.09810.03680.013800
        4.3 4.9 5.5 6.1
00 1.0 -1 A021
    4 1 2
153.90 64.80 154.20 62.50
149.90 64.80 150.70 63.30
146.70 64.60 147.90 63.60
143.30 64.30 145.50 63.50
    3 2 2
141.70 65.10 143.30 64.30
143.70 65.40 146.70 64.60
145.20 65.80 149.90 64.80
1.0850.39590.14440.05270.01920.00700
    4.3 4.9 5.5 6.1 6.7 7.3
00 1.0 -1 A022
    3 1 1
154.60 64.80 149.90 64.80
148.40 66.10 146.90 65.40
146.60 66.10 145.20 65.80
.44070.16080.05860.02140.00780.00280
    4.3 4.9 5.5 6.1 6.7 7.3
00 1.0 -1 A023
    7 1 3
155.00 54.70 156.10 55.50
153.70 55.10 155.00 56.40
151.20 56.10 152.80 57.60
149.10 57.10 150.70 58.60
146.50 58.30 148.40 59.80
145.00 59.10 146.60 60.60
143.10 59.20 141.60 59.90
    2 2 3
141.60 59.90 146.60 60.60
143.10 60.80 144.80 60.80
        3 3 3
141.60 59.90 143.10 60.80
140.70 60.00 140.70 60.40
139.70 60.10 140.10 60.30
7.07403.08801.3480.58840
    4.3 4.9 5.5 6.1
```

```
00 28.25 -1 A025
    3 1 1
154.10 60.20 154.10 60.60
149.40 61.70 150.30 61.80
146.90 61.90 147.00 62.20
.20600.09000.03900.01700
    4.3 4.9 5.5 6.1
00 10.0 -1 A017
    12 1 2
173.80 67.00 177.60 64.00
172.80 66.30 177.00 65.00
171.50 65.50 175.30 60.90
170.80 65.00 173.20 58.90
170.00 64.80 171.40 57.90
168.60 64.50 169.80 57.50
167.70 64.30 167.20 56.80
166.90 64.10 163.70 56.30
164.00 63.80 160.20 58.90
160.60 63.80 157.90 60.30
157.30 64.40 154.30 62.20
154.60 64.80 153.90 64.80
    6 2 2
154.30 62.20 154.00 60.10
157.90 60.30 154.60 58.70
160.20 58.90 156.10 57.30
163.70 56.30 159.10 55.70
164.10 56.10 161.50 55.10
167.60 54.90 164.20 54.40
6.53801.8860.54400.15680.04520.01300.00370
    4.3 4.9 5.5 6.1 6.7 7.3 7.9
00 33.80 -1 A020
    6 1 2
131.50 61.10 134.50 59.90
131.60 62.80 135.00 60.50
131.70 64.90 136.40 61.20
134.60 65.00 137.80 61.80
136.30 66.30 141.10 63.10
140.80 65.60 143.30 64.30
    2 2 2
136.30 66.30 140.80 65.60
137.10 67.40 140.00 66.80
10.2802.9650.85610.24710.06830.02030
    4.3 4.9 5.5 6.1 6.7 7.3
99 28.25 -1 AF05
        7 1 1
        135.00 54.85 134.70 56.20 134.65 5% 57.00 134.90 58.10
        135.30 58.90 136.10 59.55 137.95 60.75
    .07570.03300.01440.00630
        6.7 7.3 7.9 8.5
00 10.0 -1 AF06
        2 1 1
            137.95 60.75 141.00 61.40
.00870.00380.00170.00080
            6.7 7.3 7.9 8.5
00 10.0 -1 AF07
        4 1 1
        141.00 61.40 141.70 61.70 142.55 62.35 143.30 62.75
    .00870.00380.00170.00080
        6.7 7.3 7.9 8.5
```

| $00 \quad 1.0 \quad-1$ |  | AFO 8 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $7 \begin{array}{lll}7 & 1 & 1\end{array}$ |  |  |  |  |  |  |  |
| 154.25 | 62.35 | 150.45 | 63.20 | 148.30 | 63.45 | 145.60 | 63.35 |
| 144.75 | 63.20 | 143.50 | 62.95 | 143.20 | 63.80 |  |  |
| . 03200.01400 .00 | 0600.003 | 300 |  |  |  |  |  |
| $6.7 \quad 7.3$ | 7.9 | 8.5 |  |  |  |  |  |
| $00 \quad 28.25-1$ |  | AF10 |  |  |  |  |  |
| 211 |  |  |  |  |  |  |  |
| 133.70 | 53.50 | 134.85 | 54.90 |  |  |  |  |
| . 15600.06800 .03 | 3000.01 | 300 |  |  |  |  |  |
| $6.7 \quad 7.3$ | 7.9 | 8.5 |  |  |  |  |  |
| $00 \quad 28.25-1$ |  | AF12 |  |  |  |  |  |
| $7 \quad 1 \begin{array}{ll}7 & 1\end{array}$ |  |  |  |  |  |  |  |
| 135.05 | 55.40 | 135.95 | 57.05 | 136.55 | 57.85 | 136.95 | 58.30 |
| 138.25 | 59.35 | 139.55 | 60.15 | 139.95 | 60.35 |  |  |
| . 29700.13000 .0 | 5700.02 | 500 |  |  |  |  |  |
| $6.7 \quad 7.3$ | 7.9 | 8.5 |  |  |  |  |  |
| $00 \quad 28.25-1$ |  | AF13 |  |  |  |  |  |
| 216 |  |  |  |  |  |  |  |
| 137.00 | 57.80 | 140.10 | 60.20 |  |  |  |  |
| 226 |  |  |  |  |  |  |  |
| 137.50 | 57.80 | 140.70 | 60.00 |  |  |  |  |
| 236 |  |  |  |  |  |  |  |
| 138.60 | 58.00 | 141.30 | 60.00 |  |  |  |  |
| 246 |  |  |  |  |  |  |  |
| 139.70 | 58.40 | 141.90 | 59.90 |  |  |  |  |
| 256 |  |  |  |  |  |  |  |
| 140.80 | 58.70 | 142.20 | 59.70 |  |  |  |  |
| 266 |  |  |  |  |  |  |  |
| 141.70 | 59.00 | 142.70 | 59.50 |  |  |  |  |
| . 41300.18000 .0 | 7900.035 | 500 |  |  |  |  |  |
| 6.77 .3 | 7.9 | 8.5 |  |  |  |  |  |
| $001.0-1$ |  | AF25 |  |  |  |  |  |
| 311 |  |  |  |  |  |  |  |
| 154.10 | 60.40 | 149.85 | 61.75 | 146.95 | 62.05 |  |  |
| . 00750.00330 .0 | 0140.00 | 060 |  |  |  |  |  |
| $6.7 \quad 7.3$ | 7.9 | 8.5 |  |  |  |  |  |


| $00 \quad 1.0 \quad-1$ |  | AF14 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3113 |  |  |  |  |  |  |  |
| 153.90 | 60.22 | 151.16 | 61.08 | 149.00 | 61.58 |  |  |
| 2213 |  |  |  |  |  |  |  |
| 154.12 | 59.65 | 150.93 | 60.95 |  |  |  |  |
| $3 \quad 313$ |  |  |  |  |  |  |  |
| 154.34 | 59.07 | 150.71 | 60.83 | 149.00 | 61.58 |  |  |
| 3413 |  |  |  |  |  |  |  |
| 154.56 | 58.50 | 150.48 | 60.70 | 149.00 | 61.58 |  |  |
| $5 \quad 513$ |  |  |  |  |  |  |  |
| 161.46 | 55.10 | 158.90 | 55.70 | 156.12 | 57.30 | 148.24 | 61.65 |
| 145.44 | 61.85 |  |  |  |  |  |  |
| 5613 |  |  |  |  |  |  |  |
| 161.30 | 54.91 | 158.45 | 55.56 | 155.83 | 57.06 | 147.87 | 61.38 |
| 144.91 | 61.59 |  |  |  |  |  |  |
| $5 \quad 713$ |  |  |  |  |  |  |  |
| 161.15 | 54.71 | 158.00 | 55.43 | 155.54 | 56.83 | 147.50 | 61.11 |
| 147.37 | 61.34 |  |  |  |  |  |  |
| 5813 |  |  |  |  |  |  |  |
| 160.99 | 54.52 | 157.55 | 55.29 | 155.25 | 56.59 | 147.13 | 60.83 |
| 143.84 | 61.08 |  |  |  |  |  |  |
| 5913 |  |  |  |  |  |  |  |
| 160.83 | 54.32 | 157.10 | 55.15 | 154.96 | 56.35 | 146.76 | 60.56 |
| 143.30 | 60.82 |  |  |  |  |  |  |
| 21013 |  |  |  |  |  |  |  |
| 160.67 | 54.13 | 156.60 | 55.08 |  |  |  |  |
| 21113 |  |  |  |  |  |  |  |
| 160.52 | 53.93 | 156.43 | 54.87 |  |  |  |  |
| 21213 |  |  |  |  |  |  |  |
| 160.36 | 53.74 | 156.25 | 54.67 |  |  |  |  |
| 21313 |  |  |  |  |  |  |  |
| 160.20 | 53.54 | 156.08 | 54.46 |  |  |  |  |
| . 13910.05220 .0 | 1960.00 | 30 |  |  |  |  |  |
| $6.7 \quad 7.3$ | 7.9 | . 5 |  |  |  |  |  |
| 001.0 -1 |  | AF21 |  |  |  |  |  |
| $4 \quad 16$ |  |  |  |  |  |  |  |
| 154.10 | 62.04 | 150.00 | 63.26 | 147.20 | 63.38 | 144.90 | 63.18 |
| 426 |  |  |  |  |  |  |  |
| 154.08 | 61.74 | 150.00 | 62.97 | 146.92 | 63.15 | 145.08 | 62.99 |
| 436 |  |  |  |  |  |  |  |
| 154.06 | 61.44 | 150.00 | 62.68 | 146.64 | 62.92 | 145.26 | 62.80 |
| $4 \quad 46$ |  |  |  |  |  |  |  |
| 154.04 | 61.15 | 150.00 | 62.38 | 146.36 | 62.70 | 145.44 | 62.62 |
| 456 |  |  |  |  |  |  |  |
| 154.02 | 60.85 | 150.00 | 62.09 | 146.08 | 62.47 | 145.62 | 62.43 |
| 366 |  |  |  |  |  |  |  |
| 154.00 | 60.55 | 150.00 | 61.80 | 145.80 | 62.24 |  |  |
| . 00256.00093 |  |  |  |  |  |  |  |
| 7.98 .5 |  |  |  |  |  |  |  |



## Deep Sources used in Alaska



## Intermediate Depth Sources used in Alaska

all deep layer Alaska zones
030.
$.90310 \quad 50250$
10.620
$155.00 \quad 65.00 \quad 130.00 \quad 55.00$
$150.00 \quad 65.00 \quad 140.00 \quad 55.00$. 200 . 200
0000

1
40
155.062 .0145 .058 .0

612

| inter | 79 |  | 8.5 | 7.6 | 6.6 | 5.6 | 5.2 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.22 | .3 | .133 | .051 | .024 | .00365 | .001 | 4.2 |
| 6.43 | .295 | .131 | .0495 | .0238 | .00362 | .00099 |  |
| 16.09 | .285 | .129 | .0475 | .0226 | .00355 | .00098 |  |
| 32.18 | .247 | .125 | .044 | .0214 | .0034 | .0009 |  |
| 64.3 | .172 | .088 | .0285 | .0137 | .0025 | .00058 |  |
| 96.5 | .166 | .055 | .0184 | .0089 | .00147 | .00036 |  |
| 160.9 | .042 | .0248 | .009 | .00425 | .00072 | .0001 |  |
| 321.8 | .013 | .0076 | .0026 | .0012 | .00021 | .00003 |  |
| 643.0 | .0034 | .0019 | .00065 | .0003 | .00005 | .00001 |  |
| 1288.0 | .00085 | .00047 | .00016 | .00007 | .00001 | .00001 |  |
| 2570.0 | .00021 | .00012 | .00004 | .00002 | .00001 | .00001 |  |
| 5140.0 | .0001 | .00006 | .00002 | .00001 | .00001 | .00001 |  |
| 34.00 | 9.00 | 17.00 | 0.00 | .20 | .20 |  |  |
| 001.0 | -1 | A016 |  |  |  |  |  |

511
$160.00 \quad 54.40 \quad 164.80 \quad 54.90$
$156.10 \quad 55.70 \quad 160.60 \quad 56.60$
$151.6058 .10 \quad 155.90 \quad 58.90$
$144.9061 .40154 .00 \quad 60.00$
$146.20 \quad 65.30 \quad 150.80 \quad 65.30$
7.22102 .5970
4.95 .5

| 99 | 1.0 | +2 | AF16-1 | . 389 | 52 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 117 |  |  |  |  |  |  |  |
|  | 164.80 | 54.90 | 160.60 | 56.60 | 155.90 | 58.90 | 154.00 | 60.00 |
|  | 152.50 | 62.80 | 150.80 | 65.30 |  |  |  |  |
| $2 \quad 217$ |  |  |  |  |  |  |  |  |
|  | 153.43 | 60.09 | 152.06 | 62.83 |  |  |  |  |
|  | 317 |  |  |  |  |  |  |  |
|  | 164.20 | 54.84 | 160.04 | 56.49 | 155.36 | 55.80 | 152.86 | 60.18 |
|  | 151.63 | 62.86 | 150.23 | 65.30 |  |  |  |  |
|  | 417 |  |  |  |  |  |  |  |
|  | 152.29 | 60.26 | 151.19 | 62.89 |  |  |  |  |
|  | 517 |  |  |  |  |  |  |  |
|  | 163.60 | 54.78 | 159.48 | 56.38 | 154.83 | 58.70 | 151.73 | 60.35 |
|  | 150.75 | 62.93 | 149.65 | 65.30 |  |  |  |  |
| 2617 |  |  |  |  |  |  |  |  |
|  | 151.16 | 60.44 | 150.31 | 62.96 |  |  |  |  |
| $6 \quad 717$ |  |  |  |  |  |  |  |  |
|  | 163.00 | 54.71 | 158.91 | 56.26 | 154.29 | 58.60 | 150.59 | 60.53 |
|  | 149.88 | 62.99 | 149.08 | 65.30 |  |  |  |  |
| 2817 |  |  |  |  |  |  |  |  |
|  | 150.02 | 60.61 | 149.44 | 63.02 |  |  |  |  |
| $6 \quad 917$ |  |  |  |  |  |  |  |  |
|  | 162.40 | 54.65 | 158.35 | 56.15 | 153.75 | 58.50 | 149.45 | 60.70 |
|  | 149.00 | 63.05 | 148.50 | 65.30 |  |  |  |  |
| 21017 |  |  |  |  |  |  |  |  |
|  | 148.88 | 60.79 | 148.56 | 63.08 |  |  |  |  |
| 61117 |  |  |  |  |  |  |  |  |
|  | 161.80 | 54.59 | 157.79 | 56.04 | 153.21 | 58.40 | 148.31 | 60.88 |
|  | 148.13 | 63.11 | 147.93 | 65.30 |  |  |  |  |
| 21217 l 210 |  |  |  |  |  |  |  |  |
|  | 147.74 | 60.96 | 147.69 | 63.14 |  |  |  |  |
| 61317 |  |  |  |  |  |  |  |  |
|  | 161.20 | 54.53 | 157.23 | 55.93 | 152.68 | 58.30 | 147.18 | 61.05 |
|  | 147.25 | 63.18 | 147.35 | 65.30 |  |  |  |  |
| 21417 |  |  |  |  |  |  |  |  |
|  | 146.61 | 61.14 | 146.81 | 63.21 |  |  |  |  |
| 61517 |  |  |  |  |  |  |  |  |
|  | 160.60 | 54.46 | 156.66 | 55.81 | 152.14 | 58.20 | 146.04 | 61.23 |
|  | 146.38 | 63.24 | 146.78 | 65.30 |  |  |  |  |
| 21617 |  |  |  |  |  |  |  |  |
|  | 145.47 | 61.31 | 145.94 | 63.27 |  |  |  |  |
| 61717 |  |  |  |  |  |  |  |  |
|  | 160.00 | 54.40 | 156.10 | 55.70 | 151.60 | 58.10 | 144.90 | 61.40 |
|  | 145.50 | 63.30 | 146.20 | 65.30 |  |  |  |  |
| . 93460.33620 .12100 .04350 .01560 |  |  |  |  |  |  |  |  |
|  | 6.16 | $7 \quad 7.3$ | 9.5 |  |  |  |  |  |
| 99 |  |  |  |  |  |  |  |  |
| 99 |  |  |  |  |  |  |  |  |

## Appendix C <br> Annual Rates and Areas

For each source zone the following six tables list the source name, the area, in $\mathrm{Km}^{2}$, of the source, and a range of annual recurrence rates for each magnitude. The recurrence rate entries in the tables indicate the minimum magnitude and maximum magnitude used for a given source zone. To properly compare the relative hazard between source zones the recurrence rates must be normalized by area, to an annual rate per unit area.

|  | Pacific Northwest Source Zones |  |  |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Zone ID | Area | 4.9 | 5.5 | 6.1 | 6.7 | 7.3 | 7.9 | 8.5 |
|  |  |  |  |  |  |  |  |  |
| P001 | 2914.05 | .04424 | .01776 | .00714 | .00072 | .00029 |  |  |
| P002 | 26170.54 | .17492 | .07019 | .02823 | .00285 | .00114 |  |  |
| P003 | 56311.03 | .03587 | .01037 | .00296 | .00082 | .00027 |  |  |
| P004 | 60328.50 | .08281 | .01974 | .00465 | .00116 | .00032 |  |  |
| P005 | 61071.00 | .02944 | .00703 | .00165 | .00041 | .00011 |  |  |
| P006 | 50042.80 | .00673 | .00161 | .00038 | .00009 | .00002 |  |  |
| P008 | 29264.38 | .00624 | .00238 | .00091 | .00035 | .00013 |  |  |
| P009 | 43220.02 | .10889 | .05688 | .02971 | .01553 | .00812 | .00423 |  |
| P010 | 15491.67 | .23606 | .12332 | .06443 | .03366 | .01757 | .00917 |  |
| P011 | 28921.93 | .50318 | .26295 | .13740 | .07174 | .03751 | .01955 |  |
| P012 | 18770.43 | .19379 | .10124 | .05289 | .02763 | .01443 | .00752 |  |
| P013 | 42059.29 | .36062 | .18836 | .09841 | .05138 | .02685 | .01401 |  |
| P014 | 105866.97 | .04168 | .01586 | .00602 | .00230 | .00082 |  |  |
| P015 | 140359.02 | .13133 | .05000 | .01898 | .00719 | .00260 |  |  |
| P016 | 12453.60 | .01876 | .00715 | .00273 | .00104 | .00004 |  |  |
| P017 | 104771.82 | .45907 | .23977 | .12526 | .06542 | .03419 | .01782 |  |
| P018 | 14507.83 | .05425 | .01569 | .00450 | .00126 | .00041 |  |  |
| P019 | 15012.53 | .01180 | .00342 | .00098 | .00027 | .00010 |  |  |
|  |  |  |  |  |  |  |  |  |
| Pd01 | 2914.05 |  |  |  |  | .00216 | .00087 |  |

California Source Zones

| Zone ID | Area | 4.9 | 5.5 | 6.1 | 6.7 | 7.3 | 7.9 | 8.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C001 | 3757.26 | . 23877 | . 09076 | . 03444 | . 01323 | . 00502 |  |  |
| C002 | 2375.59 | . 05969 | . 02269 | . 00861 | . 00331 | . 00125 |  |  |
| C003 | 4101.90 | . 11938 | . 04538 | . 01722 | . 00661 | . 00251 |  |  |
| C004 | 14943.18 | . 11938 | . 04538 | . 01722 | . 00661 | . 00251 |  |  |
| C005 | 4561.84 | . 01846 | . 00699 | . 00265 |  |  |  |  |
| C006 | 2220.18 | . 05969 | . 02269 | . 00861 | . 00331 | . 00125 |  |  |
| C007 | 2670.73 | . 05969 | . 02269 | . 00861 | . 00331 | . 00125 |  |  |
| C008 | 2771.01 | . 01846 | . 00699 | . 00265 |  |  |  |  |
| C009 | 3162.62 | . 01846 | . 00699 | . 00265 |  |  |  |  |
| C010 | 67122.00 | . 06918 | . 02630 | . 01000 |  |  |  |  |
| C011 | 5374.98 | . 29272 | . 11130 | . 04234 | . 01611 | . 00614 |  |  |
| C012 | 2766.69 | . 07245 | . 02753 | . 01046 | . 00399 | . 00152 |  |  |
| C013 | 2662.03 | . 13621 | . 05178 | . 01970 | . 00751 | . 00284 |  |  |
| C014 | 7902.48 | . 20120 | . 04401 | . 00962 | . 00210 | . 00046 | . 00010 |  |
| C015 | 6747.03 | . 52960 | . 18790 | . 06670 | . 02370 | . 00840 | . 00290 |  |
| C016 | 6070.77 | . 06970 | . 02153 | . 00665 | . 00206 | . 00064 | . 00020 |  |
| C017 | 2052.01 | . 00914 | . 00303 | . 00100 | . 00033 | . 00011 |  |  |
| C018 | 8096.49 | . 35670 | . 11650 | . 03810 | . 01240 | . 00410 |  |  |
| C019 | 10946.51 | . 12162 | . 04625 | . 01756 | . 00668 |  |  |  |
| C020 | 6599.38 | . 07329 | . 02787 | . 01059 |  |  |  |  |
| C021 | 1879.98 | . 04136 | . 01573 | . 00596 |  |  |  |  |
| C022 | 895.01 | . 00920 | . 00350 | . 00134 |  |  |  |  |
| C023 | 4145.33 | . 04950 | . 02101 | . 00893 | . 00379 | . 00161 | . 00069 |  |
| C024 | 17459.64 | . 74000 | . 28100 | . 10600 | . 04000 | . 01500 | . 00570 | . 00210 |
| C025 | 1757.91 | . 01447 | . 00411 | . 00118 | . 00032 | . 00011 |  |  |
| C026 | 1151.91 | . 02603 | . 00739 | . 00212 | . 00058 | . 00019 |  |  |
| C027 | 2471.53 | . 01460 | . 00619 | . 00263 | . 00112 | . 00047 |  |  |
| C028 | 2203.00 | . 05525 | . 02346 | . 00997 | . 00424 | . 00179 |  |  |
| C029 | 1419.87 | . 00998 | . 00424 | . 00180 | . 00076 | . 00033 |  |  |
| C030 | 5246.44 | . 01380 | . 00524 | . 00199 | . 00076 |  |  |  |
| C031 | 10033.18 | . 14704 | . 04546 | . 01407 | . 00435 |  |  |  |
| C032 | 8665.55 | . 19580 | . 06950 | . 02470 | . 00870 | . 00310 | . 00110 |  |
| C033 | 6183.49 | . 09800 | . 04160 | . 01769 | . 00751 | . 00318 | . 00136 |  |
| C034 | 10083.13 | . 20740 | . 06410 | . 01980 | . 00610 | . 00190 | . 00060 |  |
| C035 | 3705.48 | . 00586 | . 00146 | . 00036 | . 00009 | . 00002 |  |  |
| C036 | 3512.60 | . 09090 | . 02350 | . 00610 | . 00160 |  |  |  |
| C037 | 34209.95 | . 25333 | . 07824 | . 02417 |  |  |  |  |
| C038 | 7874.12 | . 23840 | . 06880 | . 01980 | . 00571 | . 00165 | . 00048 |  |
| C039 | 19829.92 | . 12710 | . 04510 | . 01600 | . 00570 | . 00200 | . 00072 |  |
| C040 | 2796.62 | . 06015 | . 02288 | . 00869 |  |  |  |  |
| C041 | 1789.39 | . 03589 | . 01523 | . 00648 | . 00275 | . 00116 | . 00049 |  |

## Rocky mountain Region Source Zones

| Zone ID | Area | 4.9 | 5.5 | 6.1 | 6.7 | 7.3 | 7.9 | 8.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I001 | 39602.81 | . 04200 | . 00777 | . 00144 | . 00027 | . 00005 |  |  |
| I002 | 16883.62 | . 00700 | . 00136 | . 00026 | . 00005 | . 00001 |  |  |
| I003 | 102469.40 | . 01600 | . 00291 | . 00053 | . 00010 | . 00002 |  |  |
| I004 | 24235.61 | . 06500 | . 01861 | . 00533 | . 00153 | . 00044 |  |  |
| I005 | 72939.83 | . 01700 | . 00318 | . 00059 | . 00011 | . 00002 |  |  |
| I006 | 40203.11 | . 02500 | . 00463 | . 00086 | . 00016 | . 00003 |  |  |
| I007 | 9210.72 | . 07800 | . 01452 | . 00270 | . 00050 | . 00009 |  |  |
| I008 | 58402.99 | . 03900 | . 00721 | . 00133 |  |  |  |  |
| I009 | 64002.98 | . 05600 | . 01616 | . 00467 |  |  |  |  |
| I010 | 95079.61 | . 06000 | . 01731 | . 00499 | . 00144 | . 00042 |  |  |
| I011 | 8704.28 | . 12500 | . 02836 | . 00643 | . 00146 | . 00033 |  |  |
| I012 | 32047.16 | . 07900 | . 01788 | . 00405 | . 00092 | . 00021 |  |  |
| I013 | 5177.09 | . 01300 | . 00307 | . 00073 | . 00017 | . 00004 |  |  |
| I014 | 49462.80 | . 09100 | . 01690 | . 00314 | . 00058 | . 00011 |  |  |
| I015 | 27373.38 | . 00300 | . 00050 | . 00008 | . 00001 |  |  |  |
| I016 | 136002.23 | . 02700 | . 00499 | . 00092 |  |  |  |  |
| I017 | 60109.51 | . 18000 | . 04675 | . 01214 | . 00315 | . 00082 |  |  |
| I018 | 47086.29 | . 07500 | . 02155 | . 00619 | . 00178 | . 00051 |  |  |
| I019 | 18828.12 | . 03367 | . 00968 | . 00278 | . 00080 | . 00023 |  |  |
| I020 | 35365.91 | . 42000 | . 09560 | . 02174 | . 00495 | . 00112 |  |  |
| I022 | 3750.30 | . 04500 | . 01013 | . 00230 |  |  |  |  |
| I023 | 12205.83 | . 04400 | . 01261 | . 00362 | . 00104 | . 00030 |  |  |
| I024 | 13357.89 | . 06200 | . 01403 | . 00317 | . 00072 | . 00016 |  |  |
| I025 | 24079.81 | . 03800 | . 00860 | . 00194 |  |  |  |  |
| I026 | 37771.16 | . 10800 | . 02445 | . 00554 |  |  |  |  |
| I027 | 19661.46 | . 02500 | . 00563 |  |  |  |  |  |
| I029 | 18312.95 | . 30000 | . 06823 | . 01552 | . 00353 | . 00080 |  |  |
| I030 | 22957.73 | . 13400 | . 03054 | . 00696 | . 00159 | . 00036 |  |  |
| I031 | 47073.06 | . 52465 | . 15068 | . 04327 | . 01627 | . 00467 |  |  |
| I032 | 12357.63 | . 13817 | . 03968 | . 01139 |  |  |  |  |
| I033 | 2200.17 | . 02458 | . 00706 | . 00203 |  |  |  |  |
| I034 | 100029.41 | . 17914 | . 05145 | . 01478 | . 00424 | . 00122 |  |  |
| I035 | 146190.84 | . 05763 | . 01655 | . 00475 | . 00137 | . 00039 |  |  |
| I036 | 18725.96 | . 00500 | . 00139 | . 00039 |  |  |  |  |
| I037 | 24865.38 | . 01300 | . 00331 | . 00084 | . 00022 | . 00005 |  |  |
| I038 | 55974.55 | . 20900 | . 05419 | . 01405 | . 00364 | . 00094 |  |  |
| I039 | 8721.16 | . 03100 | . 00801 | . 00207 | . 00053 | . 00014 |  |  |
| I040 | 7975.40 | . 07500 | . 01933 | . 00498 | . 00128 | . 00033 |  |  |
| I041 | 60119.61 | . 04500 | . 00830 | . 00153 | . 00028 | . 00005 |  |  |
| I042 | 9675.30 | . 00300 | . 00050 | . 00008 |  |  |  |  |
| I043 | 11489.48 | . 00900 | . 00176 | . 00034 | . 00007 | . 00001 |  |  |
| I044 | 23695.65 | . 02100 | . 00390 | . 00073 |  |  |  |  |
| I045 | 230779.66 | . 08500 | . 01584 | . 00295 |  |  |  |  |
| I046 | 15398.94 | . 00268 | . 00058 | . 00013 |  |  |  |  |
| I047 | 5179.92 | . 00090 | . 00019 | . 00004 |  |  |  |  |
| I048 | 4005.95 | . 00069 | . 00015 | . 00003 |  |  |  |  |
| I049 | 20202.18 | . 00350 | . 00075 | . 00017 |  |  |  |  |
| I050 | 77750.43 | . 03200 | . 00602 | . 00113 |  |  |  |  |
| I051 | 20665.31 | . 00359 | . 00077 | . 00017 |  |  |  |  |
| I052 | 23317.65 | . 04900 | . 01264 | . 00326 | . 00084 | . 00022 |  |  |


| I053 | 8179.81 | .00900 | .00225 | .00056 | .00014 | .00004 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| I054 | 26591.16 | .00500 | .00139 | .00039 |  |  |
| I055 | 7752.59 | .17400 | .04499 | .01163 | .00301 | .00080 |
| I056 | 3215.12 | .04600 | .01195 | .00311 |  |  |
| I057 | 37763.48 | .17200 | .04469 | .01161 | .00302 | .00078 |
| I058 | 81512.45 | .05100 | .01314 | .00338 | .00087 | .00022 |
| I059 | 9875.88 | .05000 | .01302 | .00339 |  |  |
| I060 | 38171.20 | .00900 | .00225 | .00056 |  |  |
| I061 | 31012.90 | .02300 | .00594 | .00154 | .00040 | .00010 |
| I062 | 48460.92 | .00900 | .00225 | .00056 |  |  |
| I063 | 78832.88 | .03300 | .00844 | .00216 |  |  |
| I064 | 26354.06 | .08700 | .02266 | .00590 | .00154 | .00400 |
| I065 | 38011.53 | .03900 | .01001 | .00257 |  |  |
| I066 | 134834.31 | .00300 | .00050 | .00008 |  |  |

## Central U.S. Source Zones

| Zone ID | Area | 4.9 | 5.5 | 6.1 | 6.7 | 7.3 | 7.9 | 8.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I067 | 143225.53 | . 02691 | . 00939 | . 00328 |  |  |  |  |
| I068 | 94353.27 | . 01010 | . 00352 | . 00123 |  |  |  |  |
| I069 | 356275.34 | . 00205 | . 00072 | . 00025 |  |  |  |  |
| I070 | 102670.86 | . 01239 | . 00432 | . 00151 |  |  |  |  |
| I071 | 196788.94 | . 00410 | . 00143 | . 00050 |  |  |  |  |
| I072 | 89344.20 | . 00707 | . 00247 | . 00086 |  |  |  |  |
| I073 | 47563.01 | . 00821 | . 00286 | . 00100 |  |  |  |  |
| I074 | 31668.12 | . 00094 | . 00033 | . 00011 |  |  |  |  |
| I075 | 46081.76 | . 02271 | . 00792 | . 00276 |  |  |  |  |
| I076 | 216712.13 | . 05143 | . 01794 | . 00626 |  |  |  |  |
| I077 | 490786.63 | . 01210 | . 00422 | . 00147 |  |  |  |  |
| I078 | 376470.16 | . 01531 | . 00534 | . 00186 |  |  |  |  |
| I079 | 66513.58 | . 01075 | . 00375 | . 00131 |  |  |  |  |
| I080 | 31078.84 | . 01042 | . 00364 | . 00127 |  |  |  |  |
| I081 | 60636.30 | . 00713 | . 00249 | . 00087 |  |  |  |  |
| I082 | 37541.93 | . 01239 | . 00432 | . 00151 |  |  |  |  |
| I083 | 105164.28 | . 00347 | . 00121 | . 00042 |  |  |  |  |
| I084 | 122187.16 | . 01436 | . 00501 | . 00175 |  |  |  |  |
| I085 | 15145.82 | . 01327 | . 00463 | . 00161 |  |  |  |  |
| I086 | 16321.06 | . 01614 | . 00563 | . 00196 |  |  |  |  |
| I087 | 23448.63 | . 10419 | . 03635 | . 01268 | . 00442 | . 00154 | . 00054 | . 00019 |
| I088 | 19461.96 | . 03385 | . 01181 | . 00412 |  |  |  |  |
| I089 | 72338.66 | . 05473 | . 01909 | . 00666 |  |  |  |  |
| I090 | 160099.42 | . 02129 | . 00743 | . 00259 |  |  |  |  |
| I091 | 75713.31 | . 00225 | . 00078 | . 00027 |  |  |  |  |
| I092 | 74902.89 | . 00928 | . 00324 | . 00113 |  |  |  |  |
| I093 | 314051.81 | . 00935 | . 00326 | . 00114 |  |  |  |  |
| I094 | 76774.98 | . 03780 | . 01319 | . 00460 |  |  |  |  |
| I095 | 32753.41 | . 02059 | . 00718 | . 00251 |  |  |  |  |
| I096 | 55619.61 | . 00933 | . 00326 | . 00114 |  |  |  |  |
| I097 | 572327.94 | . 00403 | . 00141 | . 00049 |  |  |  |  |
| I098 | 138963.63 | . 00424 | . 00148 | . 00052 |  |  |  |  |


|  | Alaska Source Zones |  |  |  |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Zone ID | Area |  |  |  |  |  |  |  | 4.9 |
|  |  | 5.5 | 6.1 | 6.7 | 7.3 | 7.9 | 8.5 |  |  |
| A004 | 72143.00 | .06920 | .01996 | .00575 | .00166 | .00048 |  |  |  |
| A005 | 17767.00 | .03235 | .01411 | .00615 | .00268 | .00117 | .00051 | .00022 |  |
| A006 | 5545.00 | .01049 | .00454 | .00200 | .00087 | .00038 | .00017 | .00008 |  |
| A007 | 3862.00 | .01049 | .00454 | .00200 | .00087 | .00038 | .00017 | .00008 |  |
| A008 | 18088.00 | .01377 | .00602 | .00262 | .00113 | .00050 | .00021 | .00011 |  |
| A009 | 381391.00 | .06240 | .02070 | .00680 | .00230 | .00080 |  |  |  |
| A010 | 5090.00 | .06655 | .02903 | .01267 | .00552 | .00241 | .00106 | .00046 |  |
| A011 | 28243.00 | .11340 | .02847 | .00715 | .00180 | .00045 |  |  |  |
| A012 | 16419.00 | .12637 | .05515 | .02407 | .01051 | .00460 | .00202 | .00088 |  |
| A013 | 39421.00 | .17568 | .07667 | .03345 | .01462 | .00637 | .00280 | .00124 |  |
| A014 | 310086.00 | 2.6380 | .98930 | .37100 | .13910 | .05220 | .01960 | .00730 |  |
| A015 | 213797.00 | 1.4030 | .51170 | .18660 | .06810 | .02480 | .00910 | .00330 |  |
| A016 | 425656.00 | 7.2210 | 2.5970 | .93460 | .33620 | .12100 | .04350 | .01560 |  |
| A017 | 1038810.00 | .18860 | .05440 | .01568 | .00452 | .00130 | .00037 |  |  |
| A018 | 57471.00 | .09810 | .03680 | .01380 |  |  |  |  |  |
| A020 | 257229.00 | .08772 | .02533 | .00731 | .00202 | .00060 |  |  |  |
| A021 | 106067.00 | .39590 | .14440 | .05270 | .01920 | .00700 | .00256 | .00093 |  |
| A022 | 30107.00 | .16080 | .05860 | .02140 | .00780 | .00280 |  |  |  |
| A023 | 184730.00 | 3.0880 | 1.3480 | .58840 | .25690 | .11210 | .04890 | .02140 |  |
| A025 | 14016.00 | .00319 | .00138 | .00060 | .00027 | .00012 | .00005 | .00002 |  |

## References

Algermissen, S.T., Perkins, D.M., Thenhaus, P.C., Hanson, S.L., and Bender, B.L., 1982, Probabilistic estimates of maximum acceleration and velocity in rock in the contiguous United States., U.S. Geological Survey Open-File Report 82-1033, 99 p. (plus appendix).

Algermissen, S.T., Perkins, D.M., Thenhaus, P.C., Hanson, S.L., and Bender, B.L., 1990, Probabilistic earthquake acceleration and velocity maps for the United States and Puerto Rico., U.S. Geological Survey Miscellaneous Field Studies Map MF-2120 (4) maps with text.

Bender, B.L., and Perkins, D.M., 1987, SEISRISK-III— A computer program for seismic hazard estimation: U.S., U.S. Geological Survey Bulletin 1772, 48 p.

Gutenberg, B., Richter, C.F., 1942, Earthquake magnitude intensity, energy and acceleration.: Seismological society of America Bulletin, v. 32, p. 163-191.

Hanson, S.L., Thenhaus, P.C., Chapman-Wilbert, M., and Perkins, D.M., 1992, Analyst's manual for USGS seismic hazard programs adapted to the Macintosh computer system: U.S. Geological Survey Open-File Report 92-529, 64 p.

Perkins, D.M., Thenhaus, P.C., Wharton, M.K., Diment, W.K., Hanson, S.L., and Algermissen, S.T., 1979, Probabilistic estimates of maximum seismic horizontal ground motion in rock on the East Coast and the adjacent outer continental shelf: U.S. Geological Survey Interagency Report to the Bureau of Land Management, 18 p., 7 plates, scale 1:2,500,000.

Perkins, D.M., Thenhaus, P.C., Hanson, S.L., Ziony, J.I., and Algermissen, S.T., 1980, Probabilistic estimates of maximum seismic horizontal ground motion on rock in the Pacific Northwest and adjacent outer continental shelf: U.S. Geological Survey Open-File Report 80-471, 39 p. (plus appendix).

Thenhaus, P.C., Perkins, D.M., Ziony, J.I., and Algermissen, S.T., 1980, Probabilistic estimates of maximum seismic horizontal ground motion on rock in coastal California and the adjacent outer continental shelf.: U.S. Geological Survey Open-File Report 80-924, 69 p., 7 plates, scale 1:5,000,000

Thenhaus, P.C., 1983, Summary of workshops concerning regional seismic source zones of parts of the conterminous United States, convened by U.S. Geological 1979-1980, Golden, Colorado: U.S. Geological Survey Circular 898, 36 pp.

Thenhaus, P.C., Ziony, J.I., Diment, W.H., Hopper, M.G., Perkins, D.M., Hanson, S.L., and Algermissen, S.T., 1985, Probabilistic estimates of maximum seismic acceleration on rock in Alaska and the adjacent continental shelf: Earthquake Spectra, The Professional Journal of the Earthquake Engineering Research Institute, v. 1, no. 2, p. 285 - 306.

Schnabel, P., and Seed, H.B., 1973, Acceleration in rocks for earthquakes in the western United States.: Bulletin of Seismological Society of American, v. 63, p. 501-516.

Wiechert, D.H., 1980, Estimation of earthquake recurrence parameters for unequal observation periods for different magnitudes: Seismological society of America Bulletin, v. 70, p. 1337 1346.


[^0]:    ${ }^{2}$ Source boundary uncertainty is not used in this data set.
    ${ }^{3}$ The SEISRISK-III program will output three output files that have the same first name as the input filename. That is if the input filename is "AREA-1.015", then the three output files will be named "AREA-1.016", "AREA1.002", and "AREA-1.003".

