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When a specimen surface carrying a high-
frequency line grating is examined under a
scanning electron microscope (SEM),
moiré fringes are observed at several differ-
ent magnifications. The fringes are charac-
terized by their spatial frequency, orienta-
tion, and contrast. These features of the
moiré pattern depend on the spatial fre-
quency mismatch between the specimen
grating and the raster scan lines, the diame-
ter of the electron beam, and the detailed
topography of the lines on the specimen.

A mathematical model of e-beam moire´
is developed that expresses the spatial de-
pendence of the SEM image brightness as a
product of the local intensity of the scan-
ning beam and the local scattering function
from the specimen grating. Equations are

derived that give the spatial frequency of
the moiréfringes as functions of the micro-
scope settings and the spatial frequency of
the specimen grating. The model also de-
scribes the contrast of several different
types of moire´ fringes that are observed at
different magnifications. We analyze the
formation of these different fringe patterns,
and divide them into different categories in-
cluding natural fringes, fringes of multipli-
cation, fringes of division, and fringes of
rotation.
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1. Introduction

When a specimen surface that carries a regular array
of lines is examined under a scanning electron micro-
scope (SEM), moire´ fringes can be observed at several
different magnifications. Some confusion can arise in
the interpretation of the different fringe patterns, be-
cause the spatial frequency of the moire´ fringes changes
with mismatch, rotation, a multiplication phenomena,
and a division phenomena. In this paper we first demon-
strate these different fringe patterns, and then explain
their formation based on a Fourier series representation.

Optical moiréfringes, either geometric or interfero-
metric, are widely employed in experimental mechan-
ics. The classical treatments of geometric moire´ by
Parks [1], Durelli and Parks [2], and Theocaris [3], and

the descriptions of interferometric moire´ by Post [4],
Graham [5], and McKelvie [6] are most helpful in
interpreting fringe pattern formation in e-beam moire´.
However, certain features of the phenomenon of elec-
tron beam moire´ were not anticipated in these classic
treatments of optical moire´. These features result from
the fact that in electron beam moire´, no actual reference
grating exists. Instead, the electron beam raster scan
replaces the reference grating.

The e-beam raster scan is similar in may respects to
the video raster scan employed by Morimoto [7] in
forming moiré fringes using low frequency specimen
gratings. Kishimoto [8] recognized the similarity be-
tween the video and SEM raster scans and was the first
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to report the use of e-beam moire´ fringes for experi-
mental mechanics. However, neither Morimoto or
Kishimoto discussed the many fringe patterns that may
be observed when scanning lines are employed as the
reference grating. With the controls available on a typi-
cal SEM it is possible to vary the e-beam diameter, the
pitch of the raster scan, and the angle between the scan
lines and the grating lines. All affect the fringe pattern.

We develop a mathematical model of e-beam moire´
fringe formation that allows us to reproduce and extend
certain results previously derived for optical moire´. The
model is based on two postulates used in treatments of
optical moiré [5]:

1. The spatial dependence of the pattern of the scan
lines, and the spatial dependence of specimen grating,
can be described using Fourier series.

2. The SEM image can be represented numerically
as a set of intensity values given by the product of the
scattering power of the specimen grating and the inten-
sity of the scanning lines. Spatially extended interac-
tion of the beam with the near-surface region of the
specimen is incorporated as a contribution to the width
of the scanning lines.

Based on these postulates, a model is derived that
concisely describes natural moire´ fringes, fringes of

multiplication, and fringes of division. Experimental
examples are demonstrated. The model is well-suited to
determine the fringe contrast and the fringe shape as
functions of the raster scan pitch, the scan line width,
and specimen grating parameters.

2. Observation of Specimen Gratings and
e-beam Moiré Fringes

Several high-density gratings, with spatial frequen-
ciesf 'g of 2.5 mm–1 to 10mm–1, were written on a brass
specimen using the methods described in [9]. A macro-
scopic view of the small areas written with different
frequencies and different e-beam exposures is presented
in Fig. 1. Examination of a grating withf 'g = 5 mm–1 at
high magnification, Fig. 2, shows the appearance of the
grating lines on the specimen. Depending on the effec-
tiveness of the process used to fabricate such lines, they
may appear in the SEM display as high-contrast stripes
of black and white, as shown in Fig. 2, or as low contrast
stripes represented by intensity modulations in a gray
field. Local imperfections in the specimen surface and
in the grating produce irregularities in the brightness of
the image. Additional imperfections are generated by
the imaging process, even though the SEM image is
recorded at a slow scan rate.

Fig. 1. Several line gratings written with different frequencies and exposures, on a brass specimen.
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Fig. 2a. SEM image of a line grating withpg = 220 nm, at a magnification of 55 000.

When a grating withf 'g = 5 mm–1 is observed, moire´
fringes appear at several different magnifications over
the range 300 to 3000. Typical moire´ patterns are illus-
trated in Figs. 3 to 5. We have divided these fringe
patterns into three categories, based on the relative sizes
of f 'g, the spatial frequency of the specimen grating, and
fb, the spatial frequency of the raster scan. Moire´ fringes
of division, wheref 'g > fb, are presented in Figs. 3a and
3b. Natural moire´ fringes wheref 'g and fb are nearly
equal are shown in Figs. 4a to 4e. Most of these fringe
patterns represent a slight mismatch between the pitch
of the raster scan and the pitch of the grating; however,
Fig. 4c represents nearly a perfect match. Moire´ fringes
of multiplication, first observed optically by Post [8],
are also observed with e-beam moire´ when fb > f 'g.
Multiplication by two and three is illustrated in Figs. 5a
and 5b.

3. Theory of e-beam MoiréFringe Forma-
tion

We introduce a theory to describe the formation of
the several different types of moire´ fringes that are

observed in an SEM. The theory is similar to that intro-
duced to describe the formation of fringes in optical
geometric moire´. Fourier series representations are used
to describe the SEM raster scan, the specimen line grat-
ing, and the moire´ fringes. The results are interpreted to
explain the occurrence of fringes classified as natural,
multiplied, and divided. The description of fringes of
rotation is adapted directly from optical moire´.

3.1 The SEM Raster Scan System

The image observed in an SEM is produced by scan-
ning the specimen grating with an e-beam raster scan.
We locate a point in this image by its coordinates (x, y).
The e-beam is scanned continuously across the imaged
field in the x direction. The e-beam scan lines are
equally spaced, with pitchpb in the y direction. The
magnified image, viewed on the CRT display, has a
nominal size of 90 mm in they direction. This dimen-
sion is related to a common photomicrograph size. The
design of the SEM is such that the raster pattern is
always aligned with the viewing screen and the camera
frame, so in all the SEM images thex-axis is horizontal
and they-axis is vertical.

49



Volume 101, Number 1, January–February 1996
Journal of Research of the National Institute of Standards and Technology

Fig. 2b. As in Fig. 2a, except at a magnification of 15 000.

Fig. 3a. Moiré fringes of division on a 200 nm line grating, at a magnification of 330.
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Fig. 3b. As in Fig. 3a, except at a magnification of 500.

Fig. 4a. Natural moiréfringes withpg = 200 nm, at a magnification of 850.
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Fig. 4b. As in Fig. 4a except at a magnification of 900.

Fig. 4c. As in Fig. 4a, except at a magnification of 950.
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Fig. 4d. As in Fig. 4a, except at a magnification of 1000.

Fig. 4e. As in Fig. 4a, except at a magnification of 1100.
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Fig. 5a. Moiré fringes of multiplication withpg = 200 nm at a magnification of 2000.

Fig. 5b. As in Fig. 5a, except at a magnification of 3000.
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The specimen carries a line grating that consists of an
array of lines extending in the6 x' direction, spaced
equally with pitchp 'g in they'-direction. The reciprocal
of p 'g is f 'g, the spatial frequency of the specimen grating.
The beam and specimen coordinates may be rotated
with respect to one another by a control on the SEM.
The angle between thex andx' axes isu .

The number of scan lines used to form the image can
be set at various values. Typical nominal settings are
500, 1000, or 2000 scans to produce an image. The
images in Figs. 3 to 5 were made with 500 lines. Possi-
ble magnification values range from 10 to 300 000. Be-
cause of the design of our microscope, only certain
discrete values of the magnification are available. As a
consequence, it is very unusual for us to achieve a null-
field moiré fringe pattern.

The pitch of the electron beam raster scan lines,pb ,
depends on the magnification,M , the nominal image
size,S, and the number of raster scans used to make the
image,R , as

pb = S/MR. (1)

For example, with 500 lines per image, a nominal
image height of 90 mm, and a magnification of 1900,
the scan pitchpb is 95 nm.

The effective width of the electron beam scan lines
depends on the actual e-beam diameter and the interac-
tion of the beam with the specimen surface. Beam
diameters of 5 nm to 20 nm are reported in the literature
and in the specifications for our SEM. Attainment of
very small beam diameters (10 nm) requires very low
beam currents, a well-aligned microscope, a small aper-
ture, and extremely sharp focussing. The interaction
zone diameter depends on the specimen material and the
electron beam energy (accelerating voltage). We believe
a value of 15 nm to 30 nm is typical for the effective
width of the raster scan lines used in this study.

The specimen gratings are formed by etching thin
troughs in a polymeric film about 100 nm thick. The
frequencies obtained vary from 2.5mm–1 to 10 mm–1.
The lines (troughs) appear as dark stripes in the image
and the ridges between the troughs appear as light
stripes. In our densest gratings, the width of the troughs
and the ridges is approximately equal. Ay'-direction
trace of the image intensity shows a profile with grad-
ual, rather than abrupt, changes in the image intensity.

3.2 Fourier Representations of the Grating and
Scanning Lines

We follow the approach introduced by Sciamarella
[8] for optical moiré; we assume that the local intensity
(brightness) of the image is proportional to the product

of the local scattering power of the specimen grating
and the local intensity of the e-beam scan line. The
scattering functionG(y') for the specimen grating is
represented by a Fourier series:

G(y') =
g0

2
+ O`

n=1

gn cos (2pnf'gy') (2)

where thegn are Fourier coefficients andf 'g is the spatial
frequency of the grating lines. After deformation, the
specimen grating frequencyf 'g can vary with position
over the specimen. However, in this treatment we sim-
plify the analysis by considering only deformation fields
that produce constant strain over the local region of
interest. The frequencyf 'g represents the current value at
the time of image formation, which is usually different
from the original value.

The intensity of the e-beam scan linesB(y) is also
represented by a Fourier series:

B(y) =
b0

2
+ O`

m=1

bm cos (2pmfby) (3)

where thebm are Fourier coefficients andfb is the spatial
frequency of the raster lines. In both Eqs. (2) and (3), the
cosine representation is sufficiently general because
somewhere in the image an origin can be found such
that the sine terms vanish.

In the simplest case, they andy' axes coincide. But
the raster scan lines can be rotated at an angleu relative
to the grating axes to produce angular misalignment.
Whenu Þ 0 , we will transformG(y') into the coordi-
nates of the raster scan and the image. SinceG(y') is a
periodic functiony' with no dependence onx', the
Fourier representation is valid in the transformed coor-
dinates. However, foru Þ 0 the dependence of the grat-
ing scattering function onx' cannot be ignored, and we
will consider the specimen grating to be represented by
G(x', y'). It is convenient to measure the moire´ fringe
spatial frequencyfi along they-direction, which is verti-
cal in the SEM images. The spatial frequency of the
e-beam raster scan pattern is naturally measured along
the y-direction. It is convenient to have all spatial fre-
quencies referred to the same axis, so for calculations
we transform the value of the grating frequency into a
new value,fg, the effective grating frequency in the
raster scan coordinate system. We takefg = f 'g cos(u ) =
cos(u )/p 'g , wherep 'g is the physical grating pitch, mea-
sured in they' direction. In practice,u is usually
adjusted to be 0 when moire´ fringe patterns are being
recorded, so in such casesfg = f 'g = 1/p 'g .

The moirépattern intensityI (x, y) is represented as
the product of the raster function and the grating func-
tion:
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I (y) = B(y) G(y). (4)

Substituting Eqs. (2) and (3) into Eq. (4) and arranging
the products of the cosine terms into sum and difference
cosine functions gives a relation of the form

I (y) = C + F (y) + S(y) + D (y), (5)

whereC = g0b0/4 is a constant. The function

F (y) = Sb0

2D O
`

n=1

gn cos (2pnfgy)

+ S g0

2 D O`
m=1

bm cos(2pmfby)

exhibits a frequency that is too high to be observed. The
sum function

S(y) = O`
m=1

O`
n=1

Sgnbm

2 D cos 2p (nfg+mfb)y

also exhibits a frequency that is too high to be observed.
The difference function

D (y) = O`
m=1

O`
n=1

Sgnbm

2 D cos 2p (nfg–mfb)y

is the term in the double series expansion that produces
the image observed and identified as the moire´ fringe
pattern.

We simplify Eq. (5) to give

I (y) = C1 + O`
m=1

O`
n=1

Sgnbm

2 D cos 2p (nfg + mfb)y (6)

where C1 = C + F (y) + S(y) is the intensity of the
background.

The result is similar to that obtained in optical moire´.
When the magnification yields moire´ fringes, neither
the grating lines nor the scan lines can be clearly im-
aged.

The coefficientsgn in the specimen grating function
G(y') fall off rapidly with n because of the topography
of the grating. The coefficientsbm of the scanning beam
raster functionB(y) do not decay as rapidly with in-
creasing orderm of the expansion. The reason for the
persistence inbm is described later.

3.3 Natural Moiré Fringes

The simplest condition for fringe formation in optical
moiré is whenfg is approximately equal tofb ; this is the
near-match condition. Similarly in e-beam moire´ we
refer to fringes formed under this near-match condition
as natural fringes. Because only discrete values of mag-
nification are available on our SEM, we have never been
able to achieve a perfect null field, wherefg = fb and the
pitch of the moire´ fringespm becomes infinite.

Considering the first term in the sum in Eq. (6)
(n = m = 1) for the near match condition wherefb ≈ fg

gives the frequencyfi of the moiréfringe intensity func-
tion I (y):

fi = fg – fb. (7)

In Eq. (7), negative values of the moire´ fringe frequency
are allowed, because moire´ fringes are formed both for
fg > fb and forfg < fb. Because the cosine is a symmetric
function of its argument, it is impossible to determine
from Eq. (6) whetherfb or fg is greater. This is important
in measurements, because it represents the difference
between expansion and contraction of the specimen. In
practice this ambiguity is resolved by changing the mag-
nification which in turn changesfb in a known sense.
The result is a change infi that can be observed and
interpreted to determine iffb is higher or lower thanfg.

Consider small uniform longitudinal strains along the
y direction, relative to the ideal null condition where
fg = fb andu = 0. Equation 7 implies that the tensile strain
« is given by

« = –
fi

(fb + fi)
. (8)

The periodic form of Eqs. (2) to (6) makes it possible
to adopt a vast body of previous developments to inter-
pret e-beam moire´ fringes. Some familiar wave phe-
nomena have analogs in SEM images of line gratings.
For example, it is clear from Eq. (7) that the moire´
fringes are analogous to the beat frequency due to two
pure sound tones of slightly different frequencies.
Another example is the Doppler phenomena. We
observed a changing frequency of the moire´ fringe pat-
tern when the specimen was moved under the scanning
electron beam.

The contrast of the natural moire´ fringes is deter-
mined primarily by the amplitude termg1b1/2 , although
higher order terms also affect the contrast. Higher order
harmonics of the fringe frequency occur form = n = 2,
3, . . . etc. These harmonics distort the pure sinusoid of
the fundamental. Other higher order terms that occur
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whenn Þ mproduce signals with a very high frequency
that can be disregarded except for their detrimental
effect on contrast. Post [9] has used specially selected
aspect ratios between bar and space widths in optical
moiré to produce “fringe sharpening” effects. Equation
(6) shows that the effect of bar and space widths on
moiré fringe shape can be calculated by Fourier series
techniques. This phenomenon is qualitatively observable
in e-beam moire´ as a resemblance between the appear-
ances of the grating lines at high magnification and the
moiré fringes at low magnification.

3.4 Fringes of Multiplication

Post [11] showed that fringe multiplication occurred
in optical moiréwhen the spatial frequency of the refer-
ence grating was a near multiple of the spatial frequency
of the specimen grating. The same fringe multiplication
occurs in e-beam moire´. We express the spatial fre-
quency of the scan lines, following the notation intro-
duced by Post [11] as:

fb = b (1 + l ) fg (9)

whereb is a positive integer andl is a small fraction.
Substituting Eq. (9) into Eq. (7) shows that the spatial
frequency of the moire´ fringe pattern intensity is:

fi = [n – mb (1 + l )] fg = [(n – bm) – mlb ] fg.

(10)

Moiré fringes may be observed whenn = b m; then fi
becomes

fi = – mlbfg. (11)

The amplitude of the moire´ fringe terms in Eq. (6) is
given bygnbm/2. Sinceb is typically an integer from 2
to 5,n = bm is always greater than one, while maximum
contrast requiresm be fixed at 1. This fact means that
fringes of multiplication occur when we match the fun-
damental frequency of e-beam raster scan with the
second, third, etc., harmonics of the grating function.
Difficulties in obtaining high contrast fringes of multi-
plication are due to the decreasing Fourier amplitudes of
higher harmonics of the grating function. To illustrate
this important result, letb = 2 and consider a specimen
grating that is represented by a symmetric square wave
(an amplitude grating with bar width equal to space
width). Sinceg2 , the coefficient of the second harmonic
for a square wave, is 0, the contrast goes to zero and
these fringes of multiplication cannot be observed.

These results show the importance of the grating
scattering function for the contrast of fringes of multi-
plication. A grating with narrow lines and wide spaces
exhibits stronger even harmonics than a balanced grat-
ing with equally wide lines and spaces. However, for all
shapes, except the periodic delta function, the general
rule is that the coefficientsgn decrease rapidly with
increasing order of the harmonic. Unfortunately, we
have not been able to produce high-density specimen
lines that scatter like delta functions by e-beam lithogra-
phy. Our highest-density gratings scatter much like
sinusoids.

Our experience with fringes of multiplication is that
they are difficult if not impossible to observe, as is
consistent with the preceding development. Examples of
fringe multiplication by two and three, Fig. 5, show
fringes with lower contrast than those in Figs. 3 and 4.

3.5 Fringes of Division

Moiré fringes of division also occur, but in this case
the specimen grating frequency is a multiple of the scan
line frequency. Fringes of division are commonly ob-
served at low magnification settings on the SEM, where
pb is larger thanpg. The formation of the fringes of
division and their contrast can be explained by using the
Fourier representation. Consider an observation in the
SEM with a frequency relation given by

fg = a (1 + g ) fb (12)

where a is an integer andg is a small fraction. The
frequency of the resulting moire´ fringe intensity is
obtained from Eq. (7) as:

fi = [ (an – m) + agn] fb. (13)

The moirépattern can be observed whenan = m and
Eq. (13) reduces to:

fi = agnfb (14)

Sincea is an integer typically from 2 to 5,m = an is
always greater than one. This shows that moire´ fringes
of division are formed by combining the fundamental
frequency component of the specimen grating with
higher harmonics of the e-beam raster pattern. The e-
beam scan lines that are produced at low magnification
have relatively high coefficientsbn for n as large as 10.

To show the strength of the higher order harmonics
associated with the e-beam scan lines, consider a mag-
nification M = 500. With the number of raster
lines R= 500, this setting on the SEM gives a pitch
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pb = 360 nm by Eq. (1). This value ofpb is about 20
times larger than the effective width of the scan line (18
nm). Since the raster scan is only sampling about 5 % of
the specimen surface, it behaves like a periodic series of
delta functions iny. We show the relative magnitude of
the Fourier coefficients for a scan line widthwb = 0.05
pb in Fig. 6. It is evident that the coefficientsbm decrease
slowly with increasingm. For this reason fringes of
division may be observed at many low magnifications
with excellent contrast as illustrated by Fig. 3.

As the magnification is increased,pb decreases and
the portion of the field sampled by the scan lines in-
creases. When the ratiowb/pb increases, the coefficients
of the higher harmonics ofB(y) decrease more rapidly
with order m. This phenomenon is illustrated in Fig. 6
where the coefficients are shown forM = 2500 and
wb/pb = 0.25.

Fig. 6. Estimated relative amplitudes of terms in the Fourier expan-
sion of the electron beam raster scan functionB(y), for magnifications
of 500 and 2500.

3.6 Fringes of Rotation

Fringes of rotation occur in optical moire´ when the
pitch of the specimen and reference gratings are closely
matched and one grating is rotated relative to the other
[1]. Similar fringes of rotation also occur in e-beam
moiré. We restate the relevant equation here because the
phenomenon is quite commonly observed in e-beam
moiré, and is useful. We consider the specimen grating
lines to be along thex' axis and the scan lines along
thex axis. The angle measured from thex axis to thex'
axis isu , which can be of either sign. When the rotation
knob on the SEM is turned clockwise, the specimen’s
image also appears to rotate clockwise. Of course, the
specimen is not actually rotating. The raster scan lines
are rotating in the opposite sense. From alignment at

u = 0, counterclockwise rotation of the SEM rotation
control produces a clockwise rotation of the raster scan
pattern, and thus a positive angleu . We measure the
fringe anglef from the x axis. The moire´ fringes of
rotation make an angle off with thex axis, as shown in
Fig. 7.

tanf =
sinu

cosu –
pg

pb

. (15)

At match conditions wherepg = pb, Eq. (15) reduces to:

f =
p
2

+
u
2

. (16)

Equation (16) indicates that at match for smallu , the
moiré fringes are nearly perpendicular to both the
grating lines and the raster scan lines. For typical mis-
match but small misalignment where sinu ≈ u , Eq. (15)
reduces to:

f ≈ u Sfg

fi
D . (17)

Equation (17) shows that small misalignments produce
much larger fringe angles, becausefg/fi is a large quan-
tity whenever moire´ fringes are visible. In Eq. (17),f,
u , and fi can be positive or negative, butfg is always
positive. The value ofu can easily be adjusted in the
SEM by a control which rotates the direction of the
raster scan pattern. This is helpful because Eq. (17)
shows that the sense of the change off with u gives the
sign of fi.

Fig. 7. Definition of geometry and signs of angles when the speci-
men grating and the electron beam raster scan are not aligned.
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4. Magnification, Field Size, and Mis-
match

We showed in Eq. (1) that the magnificationM and
the numberR of lines in the SEM raster scan determine
the pitchpb of the scanning lines. As the settings on the
SEM are changed, both the size of the field and the
e-beam moire´ fringe pattern change. A schematic illus-
tration of the field size, the specimen grating, the scan
line raster, and the moire´ fringe pattern is presented in
Fig. 8.

Fig. 8. Illustrations of raster scan lines, grating lines and moire´
fringes when the grating area exceeds the field of view.

The field size or observation heightH is given by:

H =
S
M

. (18)

The pitch of the specimen grating is fixed atpg for a
given experiment. Here we assume that the specimen
grating and the raster scan lines are perfectly aligned, so
we do not need to differentiate between primed and
unprimed coordinates. As long as the height of the grat-
ing, h exceeds the field sizeH , he number of grating
lines in the field of observation,k, changes withM as:

k =
S

M pg
. (19)

The numberN of moiré fringes across the field of view
is:

N = R – k (20)

and the pitch of the moire´ fringespi is:

pi =
H
N

=
S

MN
. (21)

We have defined the fringe orderN as positive when the
number of specimen grating lines in the field of view
exceeds the number of scan lines [(Eq. 7)]. With this

definition, we admit both positive and negative fringe
orders. By combining these equations, we can show the
relation between the moire´ fringe frequency and the
SEM settings (R andM ) as

fi =
1
pi

=
1
pg

–
RM
S

. (22)

Equation (22) derives from Eq. (7), which wasfi = fg – fb. At
high magnifications, the spatial frequency of the elec-
tron beam raster scan is higher than that of the specimen
grating, so the frequency of the moire´ fringe pattern fi
is negative. The conventional usage [2] is thatfi, pi, and
N are all positive by definition. However, this choice
gives rise to the6 in many equations. To avoid this
awkward notation, we allowfi, pi, and N to be either
positive or negative so that the relevant equations are
single-valued.

The number of fringesN observed in the field of view
is:

N = Hfi = H (fg – fb) = HSfg –
MR
S D (23)

when the grating heighth > H , the field size. Otherwise

N = hSfg –
MR
S D (24)

when the grating heighth < H .
The match condition, which gives the null field,

fi = 0, is the same in both cases:

M =
S
R

1
pg

=
S
R

fg. (25)

For example, a specimen grating withfg = 5 mm–1

observed in an SEM withS = 90 mm andR set at 500
will yield a null field associated with the natural match
condition whenM = 900. Match conditions for fringes
of division and multiplication will occur at magnifica-
tions of 900/a or at 900b , for a andb integers.

An experiment was conducted using a specimen
grating with fg = 5 mm–1. The grating area was small
(h = 63 mm) so thath < H for all choices ofM used in
the experiment. The SEM was operated with nominal
values ofR = 500 andS = 90 mm. The magnification
was changed so we observed mismatch conditions with
both positive and negative fringes. The results forN as
a function of M , presented in Fig. 9, show a linear
relation as expected from Eq. (24). The slope of theN
vs M relation is [from Eq. (24)]
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dN
dM

=
–hR

S
. (26)

The slope was determined from the least squares fit of
the data as –0.325 . We also noted that the match condi-
tion occurred atM = 977. From the match condition we
could determine thatS/R = 195.4mm. ForS = 90 mm
we find thatR = 478 lines. This result forR agrees with
the nominal value supplied by the manufacturer of the
SEM.

Fig. 9. Fringe countN over specimen grating at different magnifica-
tions.

5. Magnification Calibration

The interpretation of moire´ fringe patterns depends
on precise knowledge of the magnification at any setting
M employed toproduce a pattern. To check the accuracy
of the magnification of the SEM, we measured the
length of a distinctive feature on the surface of a speci-
men atM = 1000 . We then measured the length of this
same feature at other magnifications as indicated on the
SEM character display. We found that the actual magni-
fications were different from the indicated magnifica-
tions, as shown in Fig. 10. In preparing Fig. 10 we
assumed that the microscope was absolutely correct at
M = 1000. An improved calibration technique should
employ a calibration standard so that the accuracy of all
magnification settings could be established.

Examination of Fig. 10 shows that the magnification
errors are less than 5 %. Nevertheless the errors are
significant in the present analysis as accurate magnifica-
tion values must be employed in Eq.(23) to properly
characterize the scanning line function produced by the
SEM. Similarly, the micrometer bar, which also appears
in the image display of many microscopes, must also be
accurately calibrated if it is to be useful in the quantita-
tive interpretation of e-beam moire´ fringes.

The actual magnifications given in Fig. 10 were em-
ployed inpreparing the data presented in Fig. 9.

Fig. 10. Actual versus indicated magnification showing relative
errors in the SEM magnification calibration. Data normalized to a
magnification of 1000.

6. Conclusions

The formation of e-beam moire´ fringes in a SEM can
be described with a model based on a Fourier series
representation of the specimen grating line function
G(y') and the raster scan line functionB(y). The moiré
fringe intensity functionI (y) is the product of these two
functions. The model describes the variation in the spa-
tial frequencyfi of the moiréfringes with the magnifica-
tion used in producing the image. It also provides a
means for estimating the contrast of different moire´
fringe patterns that are observed in the SEM. The spatial
frequencyfi of the moiréfringes can be used to measure
the spatial frequencyfg of the specimen grating to deter-
mine local displacements and strains.

The sensitivity and resolution of measurements made
with e-beam moire´ are limited by the frequency of the
specimen grating. Fringes of multiplication offer en-
hanced displacement sensitivity per fringe, but require
that the specimen grating be fabricated with a trough-
ridge ratio that produces substantial higher order Fourier
components. Fringes of division are observed as easily
as natural moire´ fringes because the raster scan lines at
low magnifications exhibit significant Fourier coeffi-
cients for the higher order terms in the expansion.
Fringes of division are useful because they permit a
larger field of observation while maintaining the same
displacement sensitivity per fringe as is achieved with
the natural moire´ patterns.

Fringes of rotation are easy to observe by operating
the SEM control for the e-beam scan line direction. This
control is useful for alignment and for establishing the
sign of the moire´ fringe frequencyfi.
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A method was described for characterizing the SEM
based on determining mismatch fringes at different
magnifications. The method is dependent on the use of
accurate magnification values. We found that calibration
of the SEM at each discrete magnification setting was
essential.
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