
Susceptibility to Tobacco Carcinogenesis: Genotypes Versus Phenotypes

> Peter G. Shields, M.D. Xifeng Wu, Ph.D. Stephen Marcus, Ph.D. and The Phenotypic Volunteers

The Fast Track to Truth

What Are Phenotypes? I

How someone looks – molecular, microscopic, organ or whole body level (a.k.a. intermediate or early detection markers)

<u>Examples</u>

(We can argue what is the appropriate classification but not whether the marker is a phenotype)

(Not all inclusive)

- Behavior patterns of smokers, choice of cigarettes
- Exposure markers (macro and micro levels)
 - Metabolites and metabolic profiles
 - Expression profiles
- Biologically effective dose
 - Adducts

What Are Phenotypes? – More Examples

- Markers of harm (integrated susceptibility and exposure)
 - Mutations in cells that are morphologically normal or premalignant cells
 - -Tissue activities
 - -Cytogenetic studies
 - Methylation profiles in blood, epithelial cells
 - Imaging spiral CT
- Markers of susceptibility
 - DNA repair capacity and other functional studies from groups of people

What Are Phenotypes? – Yet More Examples

- Markers of susceptibility
 - DNA repair capacity, teleromerase and other functional studies from groups of people
- Tumor phenotypes
- Clinical outcome cancer prognosis
- Other tobacco-related disease or markers COPD, lipids, white blood cells
 - Symptoms cough or shortness of breath at early age
- Comorbid traits drinking, depression

Genotyping and Phenotyping For Cancer Risk

<u>Genotypes</u>

- SNPs are predictive of how the host responds over a lifetime
- Inexpensive
- Useful in field and clinic
- Statistical power low for low penetrance, GE and gene-gene interactions
- Nonreplication issues population, laboratory error, millions of SNPs

<u>Phenotypes</u>

- Represent complex genotypes
- Conceptually better predictive ability
- Less useful in field and clinic; the laboratory can be a challenge
- Nonreplication issues population, laboratory error

Why Phenotypes? - I

- Complex genotypic trait
 - Includes unknown genes without a priori knowledge
 - Look at all genes in a pathway v. a priori rationale, because we can't get to all the genes – almost impossible task
 - Easier to understand which pathway and why
 - Increased odds of finding a moderately penetrant gene
 - Value added we get risk factor data and provide mechanistic information
- Identify and validate genotypes
 - Helps identify which SNPS might be higher penetrant in the context of the pathway
 - Learn from extreme phenotypes who gets sick from their first cigarette for adverse effects

Why Phenotypes? - II

- There is very good statistical power in these studies
 - There are several phenotypic markers that show consistent results with small numbers of cases in cohorts and case-control studies (e.g., DNA adducts, mutagen sensitivity)
- Provides information about the host's response to exposure in context of ongoing exposures
 - Enhance exposure assessment (low dose exposures in low risk populations)
 - Identify risks for single agents within complex exposures
 - Estimate total exposure for multiple sources
- Can quantitate response (genotypes only approximate quantitative response, but may be for different disease)
- Can study target tissue (sputum, urine)

Mutagen Sensitivity Assay

Organ	Cases/Controls	OR (95% CI)	Reference
Liver	28/110	5.6 (2.3, 13.8)	Wu, 1998
Secondary Oral and lung cancers	28/250	2.7 (1.2, 5.8)	Spitz 1994
Lung – Afr. Amer.	90/119	3.7 (1.4, 9.4)	Spitz, 1997
Familial Oral Ca.	17/14	P<0.001	Ankathal, 1996
Triple primary Ca.	18/18	P=0.44 (NQO p=0.07)	Miller, 1998
Oral Cavity	60/112	2.4 (1.2, 4.8)	Wang, 1998
Upper aerodig.	67/81	4.8 (3.4, 9.8)	Wu, 1998
Head and neck	313/224 (pooled)	P trend <0.01 up to 19.2	Cloos, 1996
Lung	33/96	6.5 (3.7, 11.4)	Wei, 1996
Glioma	219/238	2.1 (1.4, 3.1)	Bondy, 2001

Why study susceptibilities in the context of smoking?

- We need more people to stop smoking
- We need to understand risks in former smokers and those exposed to ETS
- We need to understand risks for new tobacco company products
- Guide chemoprevention and early detection
- Provides mechanistic understanding (prevention trials in lung cancer have failed [except for smoking cessation!])
- Predictor for treatment response, cure, and survival

Priorities - I

1. Definitively identify the most susceptible

- Behavior to clinical outcome paradigm
- Lung and other smoking-related cancers
- Provide information useful to tobacco control efforts

- 2. Identify and validate better phenotypic markers for lung and other cancers
 - Validate reproducibility, reliability, sensitivity, and specificity
 - Validate in context of pathways and measures
 - High throughput
 - Inexpensive
 - Less tissue
 - Less time
 - Accessible tissues, or reduce morbidity for tissue collection
 - Useful in cohorts
 - Markers for morphologically normal and abnormal cells
 - Early markers of disease that lead to theurapuetic intervention
 - Develop prioritization scheme

- 3. Identify and validate targeted phenotypic markers for not only lung, but other cancers
 - Exposure
 - Harm
 - Clinical outcome
- 4. Potential reduction exposure products (PREPs)
 - Canary in the mine
 - Recognize that there have been a lot of recent recommendations

- 6. Develop risk assessment model
 - Develop quantitative phenotypes
 - Use of multiple phenotypes
 - Include covariates and comorbidities
- 7. Studies to identify the SNPs behind the phenotypes
 - Use of extreme phenotypes
 - Prioritization scheme for studying SNPs
 - Sequencing of genes within pathways for phenotypes – multiple gene approaches (Not amenable to genome-wide scans yet)

- 8. Validate surrogate tissue use for target tissues (lung and non-lung cancers)
- 9. Studies that understand tobacco smoke exposure, in addition to constituent analysis
 - Complex mixture studies
 - Inflammatory, irritant, and immune response
 - Studies that consider carcinogens other than TSNs and PAHs
 - What enzymes get induced by tobacco smoke or other product exposure

- 10. Studies of tobacco products other than cigarettes
 - Smokeless tobacco
- 11. Family studies for lung cancer
 - Better analysis about tracking the smoking patterns
 - Better understanding of risk by histology
 - Identify key genes
- 12. Understand importance and usefulness of lesions that regress
 - Better predictive phenotypes
- 13. Studies that apply and validate phenotypic markers in smoking cessation trials and for former smokers

- 14. Studies focusing on specific histologies and smoking behaviors
 - Why is histology incidence changing?
 - Bronchial alveolar cancer
 - Impact of regulation and changes in workplace smoking
- 15. Studies of former smokers
 - 40+ million of them; remain at high risk
 - Studies that lead to chemoprevention or other prevention strategies
 - Regressing lesions better predictive phenotypes
 - Effect modification

16. Risks for cancers other than lung

- Phenotypes for easily accessible tissue
 - Bladder and oral cavity
- Second primaries

17. Environmental tobacco smoke

- Studies that show functional outcomes
- Study markers of harm
- Broad carcinogen exposure
 - other than PAH and TSNs
- Focus on lung
- Expression profiles
- Recognize that these individuals are the most susceptible

Resource Needs (Needs Work!)

- 1. Develop phenotype panels for scanning genotypes
 - Phenotypes that represent different pathways
 - Validated
 - Well-characterized population
 - (How many people in set?)
- 2. Mechanism for following controls to become cohorts
 - Phenotype studies do not need to be large
- 3. More cohort studies to use repeated measures over time
- 4. Same interview measures for smoking across studies
- 5. Studies that allow for better communication of results
 - What are best ways to explain phenotypes and smoking?

Resource Needs (Needs Work!)

- 6. Better ETS exposure assessment methodology
- 7. Partnerships with health care providers (i.e., dentists, community docs, nonacademic hospitals)
- 8. Cohorts need to anticipate the role of phenotype studies

Thank you!