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Abstract

In this study, high-spatial, low-temporal scale visible remote sensing data were used to calibrate an ecosystem model (EM) for semiarid

perennial grasslands. The model was driven by daily meteorological data and simulated plant growth and water budget on the same time step.

The model was coupled with a canopy reflectance model to yield the time course of shortwave radiometric profiles. Landsat Thematic

Mapper (TM) and Enhanced TM Plus (ETM+) images from 10 consecutive years were used to refine the model on a spatially distributed

basis. A calibration procedure, which minimized the difference between the normalized difference vegetation index (NDVI) simulated from

the coupled model and measured by the TM and ETM+ sensors, yielded the spatial distribution of an unknown parameter and initial

condition. Accuracy of model products, such as daily aboveground biomass, leaf area index (LAI) and soil water content, was assessed by

comparing them with field measurements. The promising results suggest that this approach could provide spatially distributed information

about both vegetation and soil conditions for day-to-day grassland management. D 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

Ecosystem models (EM) have the ability to represent

important processes and variables such as plant growth, crop

yield, and soil water fluxes. Although their performance and

accuracy have continuously improved over the past few

years, there are still few operational applications in agricul-

ture, forestry, and rangeland management. In most cases,

operational applications have been hampered by the inab-

ility to provide a spatial distribution of the complete set of

required model parameters and initial conditions (e.g.,

Boote, Jones, & Pickering, 1996; Franks & Beven, 1999;

Inoue, Moran, & Horie, 1997).

At the same time, satellite and airborne sensors offer an

increasing amount of information about the space–time

behavior of land surfaces, with measurements over most

of the electromagnetic spectrum, at different view angles,

and under a large range of spatial and temporal resolutions.

This explains the growing interest in developing methods to

use remotely sensed information in EM (e.g., Delécolle,

Maas, Gueril, & Baret, 1992; Fisher, Kergoat, & Dedieu,

1997; Maas, 1988a,b; Moran, Maas, & Pinter, 1995; Ram-

bal, Lacaze, Mazurek, & Debussche, 1985; Running et al.,

1989, 1999). One of the most effective methods is to derive

fields of calibration parameters by minimizing the difference

between the space–time behavior of the surface measured

by the sensor and simulated by the EM combined with a

radiative transfer model (RTM) (e.g., Bouman, 1992; Mou-

lin, Bondeau, & Delécolle, 1998).

The feasibility of using remotely sensed data for model

calibration has been demonstrated with reflectance (e.g.,

Clevers, Büker, Van Leeuwen, & Bouman, 1994; Nouvel-

lon, 1999), infrared brightness temperature (Olioso, Taco-

net, & Ben Mehrez, 1996; Taconet, Olioso, Ben Mehrez, &

Brisson, 1995), active or passive microwave (Burke, Gur-

ney, Simmonds, & Jackson, 1997; Camillo, O’Neil, &

Gurney, 1986), or a combination (e.g., radar and visible
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(Bouman, 1992); visible and thermal (Cayrol, Moulin,

Kergoat, Dedieu, & Chehbouni, 1999)). In most cases,

feasibility studies have been carried-out using mostly

ground-based sensor measurements, and in some cases

point-based satellite measurements. Feasibility studies and

operational applications using satellite-based images are

much fewer, due to three main reasons:

� mismatch between the scales of ground sampling,

management needs, and satellite images;
� unavailable spatially distributed input parameters

such as meteorological inputs and data for atmos-

pheric characterization;
� current satellite-based sensors do not provide data

with both a high spatial resolution and a high temporal

resolution. Sensors with high temporal resolution

(e.g., NOAA-AVHRR, VEGETATION) have coarse

spatial resolution, resulting in cumbersome and still

unsolved problems of mixed pixels.

Plant and soil processes operate at short time scale,

implying that remotely sensed data should be acquired

frequently enough to capture their dynamics. At the same

time, for most applications (e.g., rangeland management),

processes and state variables have to be described at fine

spatial resolution. For instance, range managers are interested

in the spatial and temporal variations of plant biomass and

soil moisture over their ranch (Tueller, 1989). This spatially

distributed information about soil and vegetation condition is

useful for predicting and managing livestock distribution and

erosion risk (Hanson, Skiles, & Parton, 1988).

For semiarid perennial grasslands such as shortgrass

ecosystems that cover large areas in the southwest United

States, EM have been developed that allow multiyear simu-

lations of plant growth patterns by accounting for carbohyd-

rate storage in the root system and further translocation to

aboveground regrowth (e.g., Bachelet, Hunt, & Detling,

1989; Detling, Parton, & Hunt, 1979; Hanson et al., 1988;

Nouvellon, Rambal, et al., 2000). With multiyear simula-

tions, high-spatial, low-temporal scale remotely sensed data

collected over several consecutive years may provide suf-

ficient information for calibrating an EM with a spatial

resolution that matches range managers’ requirements.

The objective of this paper was to show the feasibility of

this approach. An EM consisting of a plant growth and a

soil water budget submodel and combined with a RTM was

applied over a semiarid grassland watershed in southeastern

Arizona using soil maps and measured daily input meteoro-

logical data. Simulations were performed over a 10-year

period. Landsat Thematic Mapper (TM) and Enhanced TM

Plus (ETM+) images obtained during these 10 consecutive

years were used to refine the model to work on a spatially

distributed basis through a calibration procedure, which

minimized the difference between the surface reflectances

simulated by the model and those measured by the TM and

ETM+ sensors.

2. Study area and data description

The study was conducted on the Walnut Gulch Experi-

mental Watershed (WGEW; 31�430N 110�W) within the San

Pedro Basin, southeastern Arizona. This relatively small

watershed (150 km2) has been intensively monitored and

studied by the USDA-ARS Southwest Watershed Research

Center since 1954 (Renard et al., 1993). Topography is

typified as gently rolling hills and elevation ranges from

1225 to 1950 m above sea level. The annual precipitation

ranges from 250 to 500 mm with approximately two-thirds

falling during the ‘‘monsoon season’’ from July to Septem-

ber (Osborn, Lane, & Hundley, 1972). Summer precipitation

is characterized by convective thunderstorms of limited

extent resulting from moist unstable air masses coming

from the Gulf of Mexico, whereas winter precipitation

results from frontal storms characterized by long duration,

low intensity, and large area coverage (Sellers & Hill, 1974).

Over the year, daily global radiation and photosynthetically

active radiation (PAR) are 19.1 and 9.0 MJ, respectively.

Maximum global radiation occurs in June (26.8 MJ day � 1)

and the minimum in December (10.0 MJ day � 1). The mean

annual temperature is about 16.7�C and the mean monthly

temperature ranges from 8�C to 27�C. Relative air humidity

is low throughout the year (average value = 39.5%). The

mean annual wind is about 3.6 m s� 1.

The lower two-thirds of the watershed is mostly domi-

nated by shrubby vegetation representative of the Chihua-

huan desert. The upper third of the watershed is mostly

dominated by C4 perennial grasses whose dominant spe-

cies are black grama (Bouteloua eriopoda (Torr.) Torr.),

curly mesquite (Hilaria belangeri (Steud.) Nash), hairy

grama (Bouteloua hirsuta (Lag.)), blue grama (Bouteloua

gracilis (H.B.K.) Lag. ex Steud.), sideoats grama (Boute-

loua curtipendula (Michx.) A. Gray), and three-awn (Aris-

tida hamulosa (Henr.)) (Goff, 1985; Weltz, Ritchie, & Fox,

1994). A vegetation map (20-m resolution) was available

for selecting the areas covered by grasslands, as well as a

soil map, that describes the repartition of 24 soil classes

with 20-m spatial resolution, with percent sand, clay and

loam given at different layers (Breckenfeld, Svetlik, &

McGuire, 1995).

Since 1990, the Kendall site, central to the grassland

area, has been instrumented by the ARS to provide con-

tinuous measurement of local meteorological conditions.

Rainfall was monitored using automated weighing rain

gauges (Renard et al., 1993). Other ancillary meteorological

data included wind speed, measured at 2 m aboveground

level (AGL) using a R.M. Young photochopper cup anen-

ometer, global incoming solar radiation, measured at 3.5 m

AGL using a LiCor silicon pyranometer model LI-200SZ,

and relative air humidity and air temperature, measured at 2

m AGL using a Campbell Scientific (CSI) temperature and

relative humidity sensor model 207 contained in a Gill

radiation shield (Kustas et al., 1994; Kustas & Goodrich,

1994). Net radiation was also measured, at 3.3 m AGL with
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a REBS Q * 6 net radiometer (Kustas et al., 1994; Stannard

et al., 1994), as well as soil water content from time domain

reflectometry (TDR) probes spaced every 10 cm down to a

depth of 60 cm (Amer, Keefer, Weltz, Goodrich, & Bach,

1994). Aboveground biomass and LAI were estimated at

the Kendall site at 2-week to 1-month intervals during the

growing seasons of 1990, 1991, 1992, and 1999, and at

approximately 1.5-month intervals between summer growth

periods in 1990, 1991, and 1992 (Tiscareno-Lopez, 1994).

In 1999, aboveground biomass was also estimated at several

other sites, scattered over the WGEW, and georeferenced

with a global positioning system (GPS). Each estimation of

live and dead standing biomass resulted from clipping

plants within eight 0.5� 1.0 m quadrats (1.0� 1.0 m

quadrats in 1999), and weighing them after a 24-h drying

period at 70�C.
Landsat TM and ETM+ images were acquired during

summer growing seasons (approximately 3 months)

between 1990 and 1999. Due to infrequent TM and

ETM+ overpasses and frequent cloudy conditions, there

were between two and four clear images available for each

growing season (29 images for the 10-year period). Addi-

tional images were obtained during the dry season in May

and June for soil optical properties assessment. At the

Kendall site, prior to the growing season in June 1990,

ground-based soil bidirectional reflectances were obtained

with an Exotech radiometer (with spectral filters covering

0.45–0.52 mm (blue), 0.53–0.61 mm (green), 0.62–0.69 mm
(red), and 0.78–0.90 mm (NIR), similar to visible bands of

TM sensor) using a BRDF apparatus designed by the USDA

Water Conservation Lab in Phoenix, Arizona (Jackson et al.,

1990). During 1990 and 1992 growing seasons, coincident

to TM overpasses, nadir reflectance measurements along

transects were also made at the Kendall site, from a height

of approximately two meters, using a yoke-based Exotech

(Moran et al., 1994).

3. Ecosystem model

The EM used in this study (Nouvellon, 1999; Nouvellon,

Lo Seen, et al., 2000; Nouvellon, Rambal, et al., 2000) is

schematically described in Fig. 1. The model is driven by

standard daily meteorological data and simulates on a daily

basis the biomass dynamics of green shoots, dead shoots

and living roots. Plant transpiration, evaporation from bare

Fig. 1. Schematic representation of the plant growth and water budget models.
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soil, and soil water fluxes are also simulated in a water

budget submodel. The plant growth and water budget

submodels were coupled with a RTM. The main features

of the three submodels are presented here.

3.1. Plant growth

The main processes simulated in the plant growth sub-

model are photosynthesis, photosynthate partitioning

between aerial and belowground compartments, transloca-

tion of carbohydrates from roots to shoots during the

regrowth period, autotrophic respiration and senescence.

The time course of biomass in the three carbon compart-

ments is described by a set of three differential equations

with respect to time t (Eq. (1)):

dBag

dt
¼ aaPg þ Tra � Rat � Sa

dBr

dt
¼ arPg � Tra � Rrt � Sr

dBad

dt
¼ Sa � L

;

8>>>><
>>>>:

ð1Þ

where Bag, Br, and Bad are living aboveground biomass,

living root biomass, and standing dead biomass (ex-

pressed in g DM m� 2), respectively; Pg is the daily gross

photosynthesis; aa and ar are the photosynthate allocation

partition coefficients to shoot and root compartments

(aa + ar = 1); Tra represents the translocation of carbohy-

drates from the roots to the living aboveground compart-

ment at the regrowth period; Rat and Rrt are total daily

amounts of respiration (the sum of growth and main-

tenance respirations) from aboveground and root compart-

ments; Sa and Sr represent the losses of biomass of the

living shoots and roots due to senescence, and L

represents the litter fall. A detailed description of the

equations (and coefficients) used to compute aa, ar, Tra,

Pg, Rat, Rrt, Sa, Sr, and L can be found in Nouvellon

(1999) and Nouvellon, Rambal, et al. (2000). However, to

introduce a parameter that will be important further in this

study, it is necessary here to describe how the gross daily

canopy photosynthesis, Pg, is computed. It is expressed as

(Eq. (2)):

Pg ¼ egðPARfAPARÞ; ð2Þ

Fig. 2. Synoptic view of the approach used to refine the plant growth/soil water budget model to work on a spatially distributed basis using time series of

Landsat TM and ETM+ images.
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where PAR is the daily incoming PAR (MJ m � 2), fAPAR
represents the fraction of PAR that is absorbed by green

leaves (Goward & Huemmrich, 1992), and eg is the

canopy energy conversion efficiency (or g assimilated dry

matter (DM) per unit of absorbed PAR (APAR)). The

complete set of equations used to compute fAPAR as a

function of green leaf area index (GLAI), canopy

structure, soil albedo, and leaf optical properties can be

found in Nouvellon, Bégué, et al. (2000). For gross

photosynthesis, the canopy energy conversion efficiency,

eg, is expressed as:

eg ¼ egmax f1ðTÞf2ðC1Þf3ðageÞ; ð3Þ

where f1(T), f2(C1), and f3(age) represent the effects of

suboptimal temperatures, water stress, and leaf aging

(Nouvellon, 1999; Nouvellon, Lo Seen, et al., 2000;

Nouvellon, Rambal, et al., 2000); eg max is the potential

energy conversion efficiency, for young mature tissues, with

optimal temperatures, and in the absence of water stress. The

water stress function, f2(C1), is computed from mesophyll

resistance to CO2 diffusion, the minimum and actual canopy

stomatal resistance to water vapor (rsc min and rsc), the canopy

boundary layer aerodynamic resistance of water vapor (ra),

and the ratio of diffusivities of CO2 and water vapor in the air

(Mougin, Lo Seen, Rambal, Gaston, & Hiernaux, 1995;

Nouvellon, Rambal, et al., 2000; Rambal & Cornet, 1982).

These latter resistances (rsc and ra) are computed in the water

budget submodel.

From model simulations, gross, net, and aboveground net

primary productivities (GPP, NPP, and ANPP, respectively)

can be computed over different time periods. NPP is

obtained from the GPP (the time integral of gross photosyn-

thesis) by subtracting maintenance and growth respiration.

ANPP is computed as the amount of carbohydrates allocated

to aboveground parts of the vegetation (both through gross

photosynthesis and translocation from roots to shoots)

minus respiration from aboveground parts (Nouvellon, Lo

Seen, et al., 2000).

3.2. Water budget

The water balance submodel uses a simplified two layer

canopy evaportranspiration model where the soil profile is

divided into three layers: a thin superficial layer (0–2 cm)

which is supposed to participate only in the soil evaporation

Fig. 3. Simulation results obtained using two a-priori sets of reasonable values of egmax and BRini (continuous lines). In the top graph, solid circles with error

bars show aboveground biomass measurements. In the bottom graph, the horizontal broken line show the value of root biomass measured by Cox et al. (1986)

in August 1983. The RMSE associated to each set of parameters are indicated on the graphs.
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process ES, and two deeper layers (2–15 and 15–60 cm)

corresponding to the root zone, which participate both in the

evaporation and transpiration processes. Each soil layer is

characterized by its water content and water potential. These

two variables are related by a widely used power-function

model for the retention curve (Brooks & Corey, 1964;

Campbell, 1974; Saxton, Rawls, Romberger, & Papendick,

1986) whose coefficients are computed as a function of soil

particle size distribution in each soil layer using the broad-

based regression equations proposed by Saxton et al.

(1986). Changes in soil water content in each layer are

simulated by a multilayered bucket model with a daily time

step (Nouvellon, 1999; Nouvellon, Rambal, et al., 2000;

Rambal & Cornet, 1982).

The total evaporation from the sparse grass canopy is

calculated as the sum of bare soil evaporation ES and of

canopy evapotranspiration EC. EC and ES are calculated

empirically from the evapotranspiration of a continuous

canopy, and evaporation of a bare soil, following Pen-

man–Monteith equations (Monteith, 1965) and taking into

account the proportion of the surface which is covered by

green vegetation and bare soil. The mean leaf water poten-

tial needed to calculate the canopy stomatal resistance rsc
(used in the Penman–Monteith equations) is obtained

iteratively assuming that the total water uptake (the sum

of water uptakes in each soil layer, computed from leaf and

soil water potentials using Ohm’s law analogies (e.g.,

Lhomme, 1998)) equals transpiration (Nouvellon, 1999;

Nouvellon, Rambal, et al., 2000; Rambal & Cornet,

1982). Water extraction in each layer depends on root

density, computed from total living root biomass and the

root distribution functions from Jackson et al. (1996), whose

coefficient has been fitted to measurements obtained at the

Kendall site (Cox, Frasier, & Renard, 1986) and nearby sites

(Nouvellon, 1999).

The plant growth and water budget submodels have been

validated with soil water, biomass and LAI measurements

acquired on several short-grass ecosystem sites in southeast

Arizona and northeast Sonora (Nouvellon, 1999; Nouvellon,

Rambal, et al., 2000).

3.3. Canopy reflectance

In the case of sparse shortgrass canopies, accuracy of

RTM is improved if the model accounts for canopy clump-

ing (e.g., Bégué, Luquet, Dauzat, & Nouvellon, 2001;

Luquet, Bégué, Dauzat, Nouvellon & Rey, 2001; Nouvel-

lon, Bégué, et al., 2000). Model accuracy also depends on

its ability to account for soil nonlambertian properties due to

large gap fractions in the canopy.

Based on these considerations, the Markov Chain of

Canopy Reflectance (MCCR) model (Kuusk, 1995a) was

selected. The MCCR model accounts for the nonrandom

pattern of leaf distribution through the incorporation of a

Markov model for gap fractions computation (Eq. (4)):

TðqÞ ¼ exp½�lðqÞkðqÞLAI
; ð4Þ

Fig. 4. Comparison of the NDVI simulated with two a-priori sets of reasonable values of egmax and BRini and the NDVI measured by TM and ETM+ sensor.

Table 1

RMSE computed for simulations obtained with different sets of eg max and

BRini values

Parameter/initial condition RMSE

egmax

(g DM MJ� 1)

BRini

(g DM m� 2)

Bag

(g DM m� 2) NDVI

5.3 300 29.8 0.112

5.3 600 23.4 0.098

5.3 900 23.1 0.094

6.3 300 20.4 0.069

6.3 600 14.0 0.058

6.3 900 17.3 0.058

7.3 300 12.4 0.039

7.3 600 9.5 0.041

7.3 900 18.9 0.053

8.3 300 19.2 0.068

8.3 600 21.8 0.076

8.3 900 30.5 0.089
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where T(q) is the gap fraction in the direction q, l(q) is the
Markov parameter (or leaf dispersion parameter; Nilson,

1971), and k(q) is the extinction coefficient (for a canopy

characterized by a random leaf dispersion). The Markov

parameter, l(q), equals 1 if leaves are randomly dispersed,

but is less than 1 for clumped canopies (e.g., Baldocchi &

Collineau, 1994; Kucharick, Norman, & Gower, 1999;

Nilson, 1971). For sparse, clumped canopies, l(q), is

expressed as (Kuusk, 1995a) (Eq. (5)):

lðqÞ ¼ 1� ð1� lzÞ
1� exp½�atanðqÞ


atanðqÞ ; ð5Þ

where lz is the dispersion parameter in the vertical direction

(lz= l(0)) and a is a canopy structure dependent parameter

(Kuusk, 1995a).

Once the gap fractions are simulated, diffuse fluxes of

shortwave radiation are computed in the MCCR model

using a four-stream approximation (similar to the SAIL

model (Verhoef, 1984)), while the single scattering is

computed following the Nilson–Kuusk model (Kuusk,

1995b; Nilson & Kuusk, 1989), which accounts for specular

reflection by leaves and canopy hot-spot. The leaf angle

distribution (LAD) is described by an elliptical distribution

and leaf optical properties from 400 to 2500 nm are

computed from leaf biochemistry and structure using the

PROSPECT model (Jacquemoud & Baret, 1990; Jacque-

moud et al., 1996). In this study, the functions from Price

(1990) used in the original version of the MCCR model to

describe soil spectral and bidirectional properties have been

replaced by the SOILSPECT model (Jacquemoud, Baret, &

Hanocq, 1992).

Fig. 5. Maps of maximum light use efficiency (egmax) and initial living root biomass (BRini) obtained by model calibration (std is the standard deviation).
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The MCCR model was linked with the plant growth

model through the simulated green LAI. The parameters

used to compute the angular course of the Markov para-

meter and the LAD were derived from extensive measure-

ments of canopy structure and gap fractions on various sites

in northern Mexico and southeast Arizona (Nouvellon,

Bégué, et al., 2000). PROSPECT’s parameters were esti-

mated from model inversion against published data of leaf

reflectance and transmittance (Asner, Wessman, Schimel, &

Archer, 1998). SOILSPECT’s parameters were obtained by

model inversion using bidirectional reflectances measured

over bare soils at the Kendall site, and were assumed

constant for the whole TM images except the simple

scattering albedos that were inverted for each TM band

(in the visible) from pixel reflectances of images obtained

during the dry season, corrected from atmospheric effects

(as described below).

For canopy reflectance simulations, geometric config-

urations (sun/view zenith angles) were identical to

corresponding satellite measurements. Reflectances in

red and NIR TM and ETM+ bands were calculated

from the simulated spectral reflectances (from 400 to

2500 nm with a 4-nm spectral resolution) using the

spectral response function of the TM and ETM+ sen-

sors (Eq. (6)):

rcðqs; qv;ysvÞ ¼
R
l rðl; qs; qv;ysvÞScðlÞR

l ScðlÞ
; ð6Þ

where r(l, qs, qv, ysv) is the canopy reflectance at

wavelength l; rc(qs, qv, ysv) is the canopy reflectance for

channel c (red or NIR); qv, qs, and ysv are the sensor view

zenith angle, solar zenith angle, and the relative azimuth

angle at the time of the measurements; and Sc(l) is the

sensor spectral response function for wavelength l in the

channel c.

From reflectances simulated in the red and NIR TM and

ETM+ bands, normalized difference vegetation index

Fig. 6. Simulation results obtained at the Kendall site after model calibration using TM and ETM+ images (continuous lines). The retrieved values of egmax and

BRini are indicated on the figure. In the top graph, solid circles with error bars show aboveground biomass measurements. In the bottom graph, the horizontal

broken line show the value of root biomass measured by Cox et al. (1986) in August 1983.
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(NDVI) were computed based on the well-known equation

(Eq. (7)):

NDVIsimðqs; qv;ysvÞ

¼ rNIRðqs; qv;ysvÞ � rRedðqs; qv;ysvÞ
rNIRðqs; qv;ysvÞ þ rRedðqs; qv;ysvÞ

; ð7Þ

where NDVIsim(qs, qv, Csv) is the NDVI simulated by the

combined EM-RTM at the time of the satellite overpass.

4. Model application and calibration

The model was applied on the grassland areas of the

WGEW (selected from the vegetation map) using soil

texture parameters provided by the soil map, and daily

meteorological data (rainfall, solar radiation, maximum and

minimum air temperature and relative humidity, wind

speed) measured at the Kendall site from June 1990

through August 1999 (Fig. 2). The maximum distance

between grassland pixels and the Kendall meteorological

station was about 18 km, and the mean distance was about

5 km. This is typically the scale where the surface can be

characterized with a disorganized or microscale heterogen-

eity for which the atmospheric boundary layer responds

only to the composite surface structure. Therefore, the

atmospheric forcing parameters can be assumed to be

constant over the entire landscape (Chehbouni, Njoku,

Lhomme, & Kerr, 1995). Additionally, the analysis of

historical precipitation data from the WGEW performed

by Nichols, Lane, Asce, and Manetsch (1993) has shown

that daily precipitation was much less variable in space

than storm precipitation. The correlation coefficients

between daily precipitation amounts from two locations

separated by 5 km were about .9 and .6 for winter and

summer precipitation, respectively, considering only days

of measurable precipitation. These coefficients increase

with the time of integration, e.g., for weekly or seasonal

total precipitation (Nichols et al., 1993).

Fig. 7. Comparison of the GLAI simulated after model calibration and the GLAI measured at Kendall site.

Fig. 8. Comparison of the NDVI simulated after model calibration and the

NDVI measured by TM and ETM+ sensors.
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Image corrections for atmospheric effects were not based

on atmospheric RTM (e.g., Rahman & Dedieu, 1994; Tanré

et al., 1990) since required information about the atmo-

spheric conditions were unknown for the majority of the

images. Instead, the refine empirical line (REL) approach

(Moran et al., this issue) was used to convert image digital

number (dn) to surface reflectance factor, with an estimated

accuracy of 0.01 for red and NIR TM and ETM+ bands

(Moran et al., this issue).

NDVI simulated by the combined EM-RTM were com-

pared to NDVI calculated from reflectances measured by

TM and ETM+ sensors and corrected for atmospheric

effects (NDVIobs). Spatially unknown initial conditions

and parameters were estimated using an iterative procedure

based on the simplex method (Nelder & Mead, 1965) that

minimized the cost function ENDVI defined as (Eq. (8)):

ENDVI ¼
1

nobs

Xnobs
i¼1

ðNDVIsim � NDVIobsÞ2; ð8Þ

where nobs is the number of observations (images) and

NDVIsim and NDVIobs are the simulated and observed

NDVI, respectively.

Those parameters and initial conditions chosen to be

reparameterized/reinitialized were those (1) to which the

process model was highly sensitive, so that any change of

their values greatly impacts the aboveground biomass from

which the leaf area index (LAI, used as input to the RTM) is

derived; (2) which are spatially variable; and (3) which are

difficult to obtain by direct measurement at the watershed

scale. Following a previous sensitivity analysis, and taking

into account the above criteria, initial living root biomass,

BRini, and maximum light use efficiency, egmax (see Eq. (3))

were selected for the remotely sensed based calibration. For

C4 grasses, most of the published values of egmax range

between 5 and 9 g DMMJ� 1 (e.g., Charles-Edwards, Doley,

& Rimmington, 1986; Ehleringer & Pearcy, 1983; Goetz &

Prince, 1999; Hanan, Prince, & Bégué, 1997; Prince &

Goward, 1995; Saugier, 1992). The range of variation of

egmax may be even larger in natural environments such as

WGEW, due to spatial variations of plant species composi-

tion and soil nutrient status. A wide range of values is also

expected for BRini, which depends both on range conditions

and on the time of the year when the simulations start. For

short-grass ecosystems, published estimations of root bio-

mass generally range between 200 and 1200 g DM m� 2

Fig. 9. Volumetric soil water content of layers 0.02–0.15 and 0.15–0.60 m. Solid lines refer to simulations and circles refer to measurements. Broken lines

show field capacity and soil water content at air dryness.
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depending on site locations and conditions, time of the year,

sampling schemes, and harvest methods (e.g., Cox et al.,

1986; Dodd& Lauenroth, 1997; Hook, Lauenroth, & Burkes,

1994; Liang, Hazlett, & Lauenroth, 1989; Nouvellon, 1999;

Parton, Singh, & Coleman, 1978; Sims & Singh, 1978; Sims,

Singh, & Lauenroth, 1978; Singh & Coleman, 1975).

Applying the calibration procedure to every grassland

pixel of the WGEW (or for small clusters of adjacent pixels)

is feasible but has a high computational requirement. To

minimize the time consumed by the application of the

calibration procedure over the WGEW, we reduced the

redundancy of surface conditions by classifying the 60,199

pixels into 25 distinct classes related to similar temporal

profiles of NDVI. This was obtained with an unsupervised

classification based on NDVI derived from the 29 TM and

ETM+ images. This reduced the number of model calibra-

tions to a maximum number of 600 possible combinations

(25 NDVI classes by 24 soil classes).

5. Results

5.1. Model sensitivity to potential energy conversion

efficiency and initial root biomass

A demonstration of model sensitivity to eg max and

BRini is presented in Figs. 3 and 4. On Fig. 3, daily

courses of biomass obtained at the Kendall site for the 10-

year period using two a-priori sets of possible values of

egmax and BRini were compared to aboveground biomass

measured on this site from 1990 to 1999. The NDVI

simulated by the combined EM-RTM for these two a-

priori parameter sets were also compared to TM/ETM+

derived NDVI (mean values of NDVI of the cluster of

pixels that includes the Kendall site; Fig. 4). The first set

of a-priori values of egmax and BRini resulted in over-

estimation of measured aboveground biomass (root mean

square errors, RMSE of 21.8 g DM m � 2) and NDVI

(RMSE of 0.076). Underestimation of biomass and NDVI

resulted from the second set (RMSE of 20.4 g DM m� 2

and 0.069, respectively). The RMSE values computed for

other combinations of egmax and BRini are reported in

Table 1. The results show that model errors due to

uncertain values of egmax and BRini strongly propagate in

the RTM resulting in sensitivity of NDVI to egmax and

BRini. The high RMSE obtained for some combinations of

possible values of egmax and BRini stress the importance of

model calibration.

5.2. Calibration results

The maps of maximum light use efficiency (egmax) and

initial living root biomass (BRini) obtained after model

calibration are shown in Fig. 5. Retrieved egmax exhibited

Fig. 10. Comparison of simulated and measured living aboveground biomass.
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high spatial variation, with values ranging from 2.1 up to

11.5 g DM MJ� 1 for the most productive areas. Most of

these were found in the range of values given in the

literature. About 91% of the values ranged between 5 and

9 g DM MJ � 1, and 95% between 4.3 and 9.6 g DM MJ� 1.

The unexpected lowest values (2.1 g DM MJ � 1) occurred

in pixels that partially cover road tracks or former surface

mine areas. The mean value of retrieved egmax was about

Fig. 11. Maps of simulated (1) living aboveground biomass, (2) living belowground biomass, (3) GLAI, (4) volumetric soil water content of layers 0.02–0.15

m, and (5) volumetric soil water content of layers 0.15–0.60 m on the WGEW at peak biomass 1996 and 1997.
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6.7 g DM MJ � 1. As a comparison, the values given in

Prince and Goward (1995) and Charles-Edwards et al.

(1986) for maximum conversion efficiency for C4 grasses

are 6.9 and 8 g DM MJ� 1, respectively.

Similar to egmax, estimated values of initial living root

biomass (BRini) exhibited high-spatial variation, from 35 up

to 893 g DM m � 2, with their minimum values obtained for

the pixels that had the lowest egmax. All these values were

found in a biologically meaningful range, similar to the

values given in the literature for such ecosystems (e.g., Cox

et al., 1986; Nouvellon, 1999; Sims et al., 1978). About

91% of calculated values ranged between 200 and 600 g

DM m � 2. The mean value was about 403 g DM m � 2. As

a comparison, the living root biomass measured by Nou-

vellon (1999) on several short-grass sites in northern

Sonora (at about 50 km south to the WGEW) in July

1997 (before the monsoon growing season) ranged between

376 and 526 g DM m � 2.

5.3. Simulation results after model calibration

The Kendall site had estimated values of egmax and

BRini of 7.43 g DM MJ � 1 and 429.9 g DM m � 2,

respectively (Fig. 5). Biomass and GLAI simulated at the

Kendall site after model calibration (with estimated values of

egmax and BRini), on a daily basis over the 10-year simulation

period were compared to field measurements (Figs. 6 and 7).

The NDVI simulated by the calibrated EM-RTM were also

compared to the NDVI derived from satellite measurements

(Fig. 8). A comparison of soil water content in layers

Fig. 12. Maps of simulated ANPP from 1990 to 1999.

Y. Nouvellon et al. / Remote Sensing of Environment 78 (2001) 131–149 143



0.02–0.15 and 0.15–0.60 m simulated by the calibrated

model and measured at the Kendall site (TDR probes) from

June 1990 through December 1995 is also presented (Fig. 9).

The results show that after calibration, simulated above-

ground biomass and GLAI were in good agreement with

measurements, with RMSE of only 8.8 g DM m � 2 and

0.12, respectively (Figs. 6 and 7). The RMSE for living

aboveground biomass and NDVI are about two times less

than the RMSE obtained before calibration with the two

a-priori sets of egmax and BRini values (Figs. 3 and 4). For

most years, depending on the rainfall distribution, plant

growth pattern was bimodal. There was limited plant growth

in the spring when temperatures and soil condition were

favorable (spring growth did not occur for years 1994, 1997,

and 1999 due to insufficient late winter and spring precip-

itation). In May and June, most of the vegetation dries up

due to water limitations. The most significant growth then

occurs during the summer (July–October) season.

Over the 10-year period, no data were available to

validate root biomass simulations. Simulated living root

Fig. 13. Maps of calculated aboveground net production (radiation-use) efficiencies, ean, from 1990 to 1999.
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biomass was compared to the value measured by Cox et al.

(1986) in August 1983 at the Kendall site. Root biomass

decreases between consecutive growing seasons due to

respiration and senescence. This decrease is accelerated

during the onset of vegetation growth in spring and summer

due to translocation of carbohydrates from root to young

shoots. After shoot development, when the amount of

photoassimilated carbon allocated from the shoots to roots

exceed root respiration and senescence, root biomass

increases, and reaches its maximum value at the end of

the summer growing season (late September/early October).

This dynamic is similar to those described in other studies

for short-grass ecosystems (e.g., Bachelet et al., 1989;

Detling et al., 1979).

Comparisons of simulated and measured soil water con-

tents show the ability of the calibrated model to adequately

reproduce the time course of soil water (Fig. 9). The RMSE

was about 3.6% for layer 0.02–0.15 m and 2.6% for layer

0.15–0.60 m. Model estimates of field capacity, qc (defined
as the soil water content at � 0.033 MPa) and soil water

content at air dryness, qd (defined as the soil water content at
� 150 MPa) are drawn for each soil layer (horizontal lines).

Their accuracy depends on soil map accuracy. For the deeper

soil layer (0.15–0.60 m), qc and qd are slightly underesti-

mated, as suggested by the model underestimations observed

for the highest soil water contents (e.g., February 1992) and

for the lowest soil water contents (e.g., June 1994).

The biomass measured at other sites during 1999 sum-

mer growing season were also used for further model

evaluation. Living aboveground biomass simulated at these

sites by the calibrated model were compared to field

measurements (Fig. 10). Good agreement was obtained

between simulations and measurements. At these sites, the

accuracy was of the same order as the accuracy obtained at

the Kendall site from 1990 through 1999.

Maps of living aboveground biomass, living below-

ground biomass, GLAI, and soil moisture obtained at peak

biomass of two contrasted summer growing seasons (1996

and 1997) are presented in Fig. 11. Living aboveground

biomass simulated at peak biomass was higher in 1996 than

in 1997 (the average was 57.3 g DMm � 2 in 1996 and 45.4 g

DM m � 2 in 1997). Spatial variations, however, were found

to be even larger. A similar pattern was found for below-

ground biomass and GLAI.

At peak biomass, mean GLAI was about 0.60 in 1996

and 0.48 in 1997 (Fig. 11). GLAI varied by more than 20

times from the less productive areas to the more productive

areas. For comparison, the GLAI measured by Knight

(1973), Hazlett (1992), and Nouvellon, Bégué, et al.

(2000) near peak biomass on several short-grass ecosystem

sites and for different years ranged from 0.1 to 1.7.

At peak biomass, most of the soil water in the layer

0.02–0.15 m had been lost through evapotranspiration, and

the spatial variability of soil moisture was closely related

to the spatial variability of soil texture (Fig. 11 vs. Fig. 2).

For each soil class, soil moisture in the layer 0.02–0.15 m

was negatively correlated to GLAI, due to the high

efficiency of perennial grasses to extract soil water and

recycle it to the atmosphere.

The ANPP simulated for the ten years is presented in

Fig. 12. The results show both high spatial and inter-annual

variations. The lowest mean values were obtained in 1997

and 1994 (47.1 and 50.7 g DM m � 2) and the highest were

obtained in 1990 and 1999 (92.5 and 91.8 g DM m� 2).

The ANPP for the most productive years was therefore

twice as high as the ANPP of the less productive ones. The

aboveground net production (radiation-use) efficiencies

(ean), calculated on an annual basis (from simulated ANPP

and APAR; see Nouvellon, Lo Seen, et al., 2000) are

presented in Fig. 13. The spatially averaged ean was the

lowest in 1995 (0.21 g DM MJ � 1) and the highest in 1996

(0.36 g DM MJ� 1). For the most water-limited years (e.g.,

1997), the spatial pattern of ean reflects approximately the

spatial pattern of soil texture. Over the whole 10-year

period, the mean ean was about 0.28 g DM MJ � 1.

6. Discussion

The overall results indicate that this approach, which

combines grassland modeling and remote sensing, may

prove an efficient tool for accurate, multiyear simulation

and mapping of key variables for grassland management

(e.g., aboveground biomass) or for ecological and cli-

matological studies (e.g., LAI, gross and net primary

productivities, soil moisture, evapotranspiration). After

model calibration using time series of TM and ETM+

images, aboveground biomass, soil water content, and

GLAI were simulated with good accuracy (low RMSE).

The simulated ANPP were found to be highly variable

both spatially and temporally, with mean annual values

ranging from 47 to 92 g DM m � 2. For short-grass

ecosystems, most of ANPP values reported in the literature

range from 40 to 150 g DM m� 2 year� 1 (e.g., Epstein,

Burke, & Lauenroth, 1999; Epstein, Lauenroth, Burke, &

Coffin, 1998; Lauenroth & Sala, 1992; Milchunas &

Lauenroth, 1992; Sims & Singh, 1978). Several studies

have shown that for semiarid perennial grassland ecosys-

tems, ANPP depends not only on the rainfall pattern of the

current growing season, but also on those of the previous

years due to the storage of carbohydrates in the root

system (e.g., Cable, 1975; Webb, Szarek, Lauenroth, Kine-

rson, & Smith, 1978). There is a carryover of productivity

potential from previous years (Lauenroth & Sala, 1992;

Webb et al., 1978), which stress the importance of con-

tinuous, multiyear simulations, as done in this study. This

‘carryover’ effect was well simulated by the model, and

partially explained the low ANPP of 1994, and the high

productivity obtained in 1999 (the second year of 2

consecutive years of favorable precipitation; see Figs. 6

and 12).
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Radiation use efficiencies (RUE) and water use efficien-

cies (WUE) are widely used by ecologists to analyze and

compare ecosystems of diverse environments. The concept

of RUE has also been increasingly used to provide regional

or global estimations of ecosystem gross and net primary

productivity from remotely sensed estimates of APAR (e.g.,

Gower, Kucharick, & Norman, 1999; Prince, 1991; Prince

& Goward, 1995; Ruimy, Saugier, & Dedieu, 1994). The

accuracy of RUE models, however, depends on accurate

estimations of the production (radiation-use) efficiencies (e),
which are known to vary according to environmental con-

ditions, phenology, and species composition (Goetz &

Prince, 1998). The spatially averaged ean, computed on an

annual basis, ranged from 0.21 to 0.36 g DM MJ� 1. Over

the whole 10-year period, the mean ean was about 0.28 g

DM MJ � 1. For comparison, the 4-year average values

published by Paruelo, Epstein, Lauenroth, and Burke

(1997) for several shortgrass steppes ranged approximately

between 0.1 (0.25) and 0.15 g C MJ � 1 (0.37 g DM MJ� 1).

These values are about two to three-fold less than those

found for mixed-grass or tall grass ecosystems (e.g., Paruelo

et al., 1997) or semiarid annual grasslands (e.g., Hanan,

Prince, & Bégué, 1995; Mougin et al., 1995), which are

known to allocate a lower proportion of assimilate to the

belowground compartment (e.g., Ryle, 1970).

It is of interest to observe that the ‘carry over effect’

previously described for ANPP and reported by many

authors (e.g., Cable, 1975; Lauenroth & Sala, 1992; Webb

et al., 1978) is even more apparent on ean than on ANPP

(e.g., the lowest ean was obtained in 1995 after 2 low-

productive years). This has important implications for

applications based on RUE models, since the interannual

variations of the required efficiency could not be simply

predicted from correcting factors that account only for the

climatic condition of the current year. By contrast, assim-

ilating satellite images in an EM, as done in this study,

allows continuous, multiyear simulations of the carbon

budget, which correctly reproduce the influence of rainfall

of previous years on productivity of a given year.

One potential application of the present methodology is

the integration into an operational grassland management

system. However, many aspects of the procedure should be

improved for that integration to be successful. For this

reason, a number of studies have already been initiated to:

(1) Test more robust and low time-consuming calibration

procedures, for example, those based on extended

and nonlinear Kalman-filtering. This latter procedure,

in contrast to the simplex method, allows consider-

ations of both measurement and model errors and

provides robust estimations of values and uncertain-

ties of parameters and state variables (e.g., Cahill,

Ungaro, Parlange, Mata, & Nielsen, 1999; Rambal,

Romane, & Aguilar-Martin, 1977).

(2) Use in synergy optical, thermal, and microwave

remotely sensed data. While optical and microwave

data can give information about the amount and

structure of vegetation, thermal as well as microwave

data can be used to assess its water status (e.g.,

Moran et al., 1996, 1997). In addition, thermal data

inform about processes, which occur at time scales

shorter than the day. Therefore, in order to take full

account of the different types of remotely sensed

data, the water and energy budgets are being mod-

eled with an hourly time step (e.g., Lo Seen et al.,

1997; Nouvellon, Moran, et al., 2000). When used

together, this should result in a tighter control of the

model simulations and improvement in the estima-

tion of terms of the water budget.

(3) Address the problem of how meteorological data

obtained at discrete locations can be used on a

spatially distributed basis. In our case, spatialization

of meteorological data has not been necessary due to

the limited extent of the study area. However,

application to larger areas will be limited by the lack

of continuous fields of meteorological variables on a

daily time step. An approach is currently being tested

to retrieve spatially distributed meteorological data at

a fine 4-km resolution from a mesoscale meteoro-

logical model (Moran, Nouvellon, Bryant, & Ni,

2000; Toth, 1997).

(4) Relate long term plant production and resource use

efficiencies (LUE and WUE) to long-term runoff or

erosion. This is being done by coupling the EM with

a runoff model (the KINEROS model (Smith, Good-

rich, Woolhiser, & Unkrich, 1995)) together with a

Digital Elevation Model (DEM). It is expected that

information on this relation may give insights on the

mechanisms of landscape degradation. The objective

is to build a computationally efficient tool capable

of real-time simulations of plant growth and hydro-

logic processes, as well as simulations of land

management scenarios.

7. Conclusions

In this study, a coupled EM-RTM was run on a spatially

distributed basis with assimilation of a 10-year time series of

Landsat TM and ETM+ data. Satellite derived NDVI was

used to control the simulation of the coupled model through

a calibration procedure, which estimated two important

spatially variable initial conditions and model parameters.

Simulations for an area of about 150 km2 around the Kendall

site, continuous over ten years, gave consistent results when

compared with field measurements of biomass, LAI, and

soil moisture. These results suggest that the approach, using

modeling with remote sensing, may prove more useful in

grassland management than either in isolation.

An important feature of this method, for scaling up

grassland productivity and water budget, is the ability to

perform continuous multiyear simulations which correctly
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reproduce the influence of rainfall of previous years on

productivity of a given year. In this way, it was possible to

map key ecological variables like LAI, soil water content

and biomass for any day during the 10-year period as well

as to follow their time courses. The overall performance of

the model in the variety of situations met, both in space and

time, indicate that this method is adequate. Our results have

also pointed out that for short-grass ecosystems, due to time

variation of RUE, the accuracy of approaches based on the

time-integral of spectral vegetation indices (SVI) would be

limited, further supporting our modeling approach.

The promising results obtained in this study, together

with the improvements expected with ongoing work,

suggest that an approach based on coupling an EM and

high resolution multispectral satellite images like from the

TM and ETM+ sensors could result in accurate and

operational tools to provide spatially distributed informa-

tion about vegetation and soil conditions for day-to-day

grassland management.
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Hiérarchies et échelles en écologie. Ed. Naturalia, pp. 65–84.

Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I. (1986).

Estimating generalized soil –water characteristics from texture. Soil Sci-

ence Society of America Journal, 50, 1031–1036.

Sellers, W. D., & Hill, R. H. (1974). Arizona climate 1931–1972. The

University of Arizona Press, Tucson.

Sims, P. L., & Singh, J. S. (1978). The structure and the function of ten

western north American grasslands: II. Intraseasomal dynamics in

primary producer compartments. Journal of Ecology, 66, 547–572.

Sims, P. L., Singh, J. S., & Lauenroth, W. K. (1978). The structure and the

function of ten western north American grasslands: I. Abiotic and veg-

etational characteristics. Journal of Ecology, 66, 251–285.

Singh, J. S., & Coleman, D. C. (1975). Evaluation of functional root bio-

mass and translocation of photoassimilated carbon-14 in a shortgrass

prairie ecosystem. In: J. K. Marshall (Ed.), The belowground ecosystem:

a synthesis of plant associated processes ( pp. 123–131). Stroudsburg,

PA: Dowden Hutchison and Ross.

Smith, R. E., Goodrich, D. C., Woolhiser, D. A., & Unkrich, C. L. (1995).

KINEROS — a kinematic runoff and erosion model. In: V. J. Singh

(Ed.), Computer models of watershed hydrology ( pp. 697–732). High-

lands Ranch, CO: Water Resources Pub.

Stannard, D. I., Blanford, J. H., Kustas, W. P., Nichols, W. D., Amer, S. A.,

Schmugge, T. J., & Weltz, M. A. (1994). Interpretation of surface flux

measurements in heterogeneous terrain during the Monsoon ’90 experi-

ment. Water Resources Research, 30 (5), 1227–1239.

Taconet, O., Olioso, A., Ben Mehrez, M., & Brisson, N. (1995). Seasonal

estimation of evaporation and stomatal conductance over a soybean

field using surface infrared temperature. Agricultural and Forest Mete-

orology, 73, 321–337.
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