pmc logo imageJournal ListSearchpmc logo image
Logo of mbcJournal URL: redirect3.cgi?&&auth=0VGnaDXJfRx8qn0OHu52luMBVdK022eb4cjwpAkD5&reftype=publisher&artid=65649&article-id=65649&iid=1837&issue-id=1837&jid=1&journal-id=1&FROM=Article|Banner&TO=Publisher|Other|N%2FA&rendering-type=normal&&http://www.molbiolcell.org
Mol Biol Cell. 2002 February; 13(2): 558–569.
doi: 10.1091/mbc.01-07-0336.
PMCID: PMC65649
The Drosophila Nuclear Lamina Protein YA Binds to DNA and Histone H2B with Four Domains
Jing Yu* and Mariana F. Wolfner
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
Tim Stearns, Monitoring Editor
Corresponding author. E-mail address: mfw5/at/cornell.edu.
*Present address: Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138.
Received July 5, 2001; Revised November 16, 2001; Accepted November 16, 2001.
Abstract
Dramatic changes occur in nuclear organization and function during the critical developmental transition from meiosis to mitosis. The Drosophila nuclear lamina protein YA binds to chromatin and is uniquely required for this transition. In this study, we dissected YA's binding to chromatin. We found that YA can bind to chromatin directly and specifically. It binds to DNA but not RNA, with a preference for double-stranded DNA (linear or supercoiled) over single-stranded DNA. It also binds to histone H2B. YA's binding to DNA and histone H2B is mediated by four domains distributed along the length of the YA molecule. A model for YA function at the end of Drosophila female meiosis is proposed.
INTRODUCTION

Upon fertilization, there is a transition between meiosis and mitosis that involves a number of reorganizations of the structure of the nucleus and its contents. For example, in most animals meiotic progression is reinitiated upon fertilization/egg activation (for reviews, see Schultz and Kopf, 1995 blue right-pointing triangle; Page and Orr-Weaver, 1997 blue right-pointing triangle), and the condensed chromosome sets complete their divisions. The chromosomes of one of the female haploid meiotic products then decondense as it becomes a pronucleus. The sperm nucleus decondenses in a stepwise process (see Cameron and Poccia, 1994 blue right-pointing triangle; Collas and Poccia, 1995 blue right-pointing triangle, 1998 blue right-pointing triangle; Cothren and Poccia, 1993 blue right-pointing triangle; Longo et al., 1994 blue right-pointing triangle; Poccia and Collas, 1996 blue right-pointing triangle, 1997 blue right-pointing triangle; Wright, 1999 blue right-pointing triangle for reviews; Yamashita et al., 1990 blue right-pointing triangle). First, it loses its nuclear envelope (if it has one). Then its chromatin decondenses as factors such as nucleoplasmin (Xenopus, Philpott et al., 1991 blue right-pointing triangle; molluscs, Rice et al., 1995 blue right-pointing triangle; Drosophila, Ito et al., 1996b blue right-pointing triangle; mice, Maeda et al., 1998 blue right-pointing triangle; salmon, Iwata et al., 1999 blue right-pointing triangle) aid in replacing sperm histones/protamines with somatic histones (Philpott and Leno, 1992 blue right-pointing triangle; reviewed by Laskey et al., 1993 blue right-pointing triangle). The sperm nucleus then acquires a new nuclear envelope largely from maternal components to form the male pronucleus (Longo, 1985 blue right-pointing triangle; Stricker et al., 1989 blue right-pointing triangle; Poccia and Collas, 1996 blue right-pointing triangle; Liu et al., 1997 blue right-pointing triangle) and then completes its chromatin decondensation in a membrane-dependent manner (Lohka and Masui, 1984 blue right-pointing triangle; Collas and Poccia, 1995 blue right-pointing triangle; Poccia and Collas, 1996 blue right-pointing triangle, 1997 blue right-pointing triangle).

These changes in nuclear condensation state appear to be necessary for progression of zygotic development. In Xenopus, nucleoplasmin is required for sperm DNA to be replication-competent (Gillespie and Blow, 2000 blue right-pointing triangle). In rhesus monkey zygotes, DNA replication will not initiate until all the sperm chromatin has decondensed, and improper chromosome decondensation in either the female or the male pronucleus causes cell cycle arrest at the interphase of the first mitosis (Hewitson et al., 1996 blue right-pointing triangle, 1999 blue right-pointing triangle). In Drosophila, a condensed sperm nucleus is unable to participate in development (snky, Fitch and Wakimoto, 1998 blue right-pointing triangle; ssm, Loppin et al., 2000 blue right-pointing triangle; ms(3)K81, Fuyama, 1986 blue right-pointing triangle; Yasuda et al., 1995 blue right-pointing triangle; mh, Gans et al., 1975 blue right-pointing triangle; Zalokar et al., 1975 blue right-pointing triangle; Santamaria and Gans, 1980 blue right-pointing triangle; Santamaria, 1983 blue right-pointing triangle; Edgar et al., 1986 blue right-pointing triangle; Loppin et al., 2001 blue right-pointing triangle). Mutations in the fs(1)Ya (Ya) gene that result in abnormal chromatin condensation and postmeiotic association of pronuclei (Liu et al., 1995 blue right-pointing triangle; Lopez, 1996 blue right-pointing triangle) arrest development during the transition from meiosis to mitosis (Lin and Wolfner, 1991 blue right-pointing triangle; Liu et al., 1995 blue right-pointing triangle; Lopez, 1996 blue right-pointing triangle).

A few chromatin decondensation factors have been identified that function in this critical cellular process. In Xenopus, nucleoplasmin functions at the first step of sperm chromatin decondensation. Nucleoplasmin has been suggested to also function in sperm chromatin decondensation in other organisms (Mytilus, Rice et al., 1995 blue right-pointing triangle; Drosophila, Ito et al., 1996b blue right-pointing triangle; mice, Maeda et al., 1998 blue right-pointing triangle; salmon, Iwata et al., 1999 blue right-pointing triangle). The nuclear envelope also plays a role in sperm chromatin decondensation. In sea urchins, nuclear swelling requires the nuclear lamina (Lohka and Masui, 1984 blue right-pointing triangle; Collas and Poccia, 1995 blue right-pointing triangle). In Drosophila, decondensation proteins purified from early embryos include dNAP-1 (Drosophila nucleosome assembly protein 1), dNLP (Drosophila nucleoplasmin-like protein), CRP1, P22, and DF 31 (Kawasaki et al., 1994 blue right-pointing triangle; Crevel and Cotterill, 1995 blue right-pointing triangle; Ito et al., 1996a blue right-pointing triangle, 1996b blue right-pointing triangle; Crevel et al., 1997 blue right-pointing triangle). They may function through their binding to chromatin (Crevel et al., 1997 blue right-pointing triangle), especially to core histones (Crevel and Cotterill, 1995 blue right-pointing triangle; Ito et al., 1996b blue right-pointing triangle). Some of these proteins have been shown to decondense sperm chromatin in vitro (P22, Kawasaki et al., 1994 blue right-pointing triangle; DF 31, Crevel and Cotterill, 1995 blue right-pointing triangle; dNAP-1, Ito et al., 1996b blue right-pointing triangle; CRP1, Crevel et al., 1997 blue right-pointing triangle), although their exact roles during pronuclear formation and mitosis in vivo are not known.

The essential, maternally provided Drosophila nuclear lamina protein YA appears to be involved in regulation of chromosome condensation state at the end of meiosis. YA, which is in the nuclear lamina of fertilized eggs, is required only for the transition from female meiosis to embryo mitosis (Lin and Wolfner, 1991 blue right-pointing triangle; Liu et al., 1995 blue right-pointing triangle). Oogenesis and meiosis, including chromosome segregation, in eggs from Ya-deficient females (“Ya2 eggs” for simplicity in the rest of this text) progress normally (Lin and Wolfner, 1991 blue right-pointing triangle; Liu et al., 1995 blue right-pointing triangle; Lopez, 1996 blue right-pointing triangle; Berman, 2000 blue right-pointing triangle). At the end of meiosis, a nuclear envelope forms around each of the four female meiotic products, and if the egg is fertilized, a functional nuclear envelope with a nuclear lamina also forms around the male pronucleus (Liu et al., 1997 blue right-pointing triangle). However, the DNA condensation state of all the haploid nuclei in Ya2 zygotes is abnormal at the end of meiosis (Liu et al., 1995 blue right-pointing triangle). In wild-type Drosophila fertilized eggs, all four female meiotic products and the male pronucleus decondense their chromatin. Then presumably after DNA replication, the male and female pronuclei condense their DNA, initiate the first mitotic division (the gonomeric division) and associate, and the three polar body nuclei also condense their chromatin and associate (Sonnenblick, 1950 blue right-pointing triangle; Callaini and Riparbelli, 1996 blue right-pointing triangle). In fertilized Ya2 eggs, nuclei are of different chromatin condensation states, and they associate randomly (Liu et al., 1995 blue right-pointing triangle; Lopez, 1996 blue right-pointing triangle). Mitosis never occurs, and the embryos arrest at the pronuclear stage (Lin and Wolfner, 1991 blue right-pointing triangle). The phenotypes of Ya2 eggs suggest that YA may play a role in modulating chromosome condensation state at the end of meiosis. Consistent with this, YA protein in embryo extracts binds to decondensed sperm chromatin in vitro, and YA binds to polytene chromosomes when ectopically expressed (Lopez and Wolfner, 1997 blue right-pointing triangle). It was not known whether YA binds to chromatin directly and what interactions mediate this binding. To help understand how chromatin condensation state is regulated at the end of Drosophila female meiosis and YA's roles in this process, we dissected YA's binding to chromosomes. We show that YA can bind directly to chromosomes through interactions with DNA and histone H2B. This binding involves four chromatin-binding domains in YA, all of which bind to both DNA and histone H2B.

MATERIALS AND METHODS

Constructs, Proteins, and Escherichia coli Expression of YA Fragments
The full-length Ya cDNA, Ya cDNAs with inactivating mutations in the first (C1), second (C2), or both zinc fingers (C1C2; Liu and Wolfner, 1998 blue right-pointing triangle), and all Ya fragments were cloned in frame into either the pGEX-2T vector (Pharmacia, Piscataway, NJ) to make GST fusion proteins or into the pMAL-C2-HMK(R) vector (modified from pMAL-C2 [New England BioLabs, Beverly, MA] by Z. Li and M.L. Goldberg) to express fusion proteins with MBP (maltose binding protein) fused to phosphorylation target sites for HMK (heart muscle kinase; Blanar and Rutter, 1992 blue right-pointing triangle); details of the clonings, including primers used, are available in Yu (2000) blue right-pointing triangle.

Protein induction and purification were according to the NEB protein fusion and purification (pMAL) instruction manual (for MBP-HMK fusions) and the GST gene fusion system manual (Pharmacia; for GST fusions) with minor modifications. Fusion proteins were purified by column or batch purification with glutathione beads (Sigma, St. Louis, MO; for GST fusions) or amylose beads (New England BioLabs; for MBP-HMK fusions) to near homogeneity and dialyzed against TK buffer (50 mM Tris-HCl, pH 7.5, 70 mM KCl, 1 mM DTT, 2.5 mM benzamidine, 1 mM PMSF). The proteins were checked for concentration and size by SDS-PAGE and Western blotting with both anti-YA antibodies (affinity-purified guinea pig anti–full-length YA antibodies [see below] or affinity-purified rabbit anti–C-terminal YA antibodies (Lin and Wolfner, 1991 blue right-pointing triangle; Lopez et al., 1994 blue right-pointing triangle) and monoclonal anti-GST antibodies (for GST fusion proteins; Sigma) or polyclonal anti-MBP antisera (for MBP-HMK fusion proteins, New England BioLabs). Proteins were checked again by SDS-PAGE immediately before the mitotic chromosome binding reactions. Like endogenous YA, MBP-HMK-YA protein can interact with embryonic YA (unpublished observations). MBP-HMK-YA can also be incorporated into the nuclear envelope of in vitro assembled nuclei in Xenopus egg extracts (M.F. Wolfner, unpublished observations), suggesting that it at least retains some YA functions.

Drosophila core histones, purified as in Bulger and Kadonaga (1994) blue right-pointing triangle, were kindly provided by Dr. Lee Kraus. Calf thymus histone H1, H2A, and H2B were purchased from Roche Molecular Biochemicals (Indianapolis, IN). Salmon sperm DNA (Sigma) was deproteinated and resuspended in TK buffer. Plasmid DNA used for mitotic chromosome binding assays was purified with QIAfilter Plasmid Maxi kit (QIAGEN, Santa Clarita, CA). Linear plasmid DNAs were generated by EcoRI digestion. The linearized DNA and tRNA were deproteinated and dissolved in dH2O. Single-stranded plasmid DNA was generated by denaturation of linear plasmid DNA at 95°C for 5 min.

Antibodies
Guinea pig anti–full-length YA antisera were produced by Covance Research Products (Denver, PA) from purified MBP-HMK-YA protein, and affinity-purified. The specificity of the antibodies was verified by Western blotting. Polyclonal rabbit anti-Drosophila core histone antibodies (Ito et al., 1996a blue right-pointing triangle) were gifts from Dr. Lee Kraus.

Mitotic Chromosome Binding Assay
Mitotic chromosomes were isolated from Chinese hamster ovary (CHO) cells as described in Glass and Gerace (1990) blue right-pointing triangle. The binding of mitotic chromosomes with fusion proteins containing YA or YA fragments was according to Goldberg et al. (1999) blue right-pointing triangle with a few modifications. Mitotic chromosomes were examined with an Olympus BX-50 microscope (Lake Success, NY) equipped with epifluorescence and a Pentamax camera (Princeton Instruments, Monmouth Junction, NJ). Data were processed with Metamorph software (Universal Imaging, West Chester, PA). All binding experiments were done at least twice; each time more than 10 chromosomes were examined. The results shown are representative. DNA competitors were added at 200 ng/μl unless otherwise noted. Histone competitors were added at 7 μM for each histone. Spermine and spermidine competitors were added at 1000-fold molar excess. Polynucleosomes were purified from rat liver as described in Goldberg et al. (1999) blue right-pointing triangle. Primary antibodies used for immunostaining were purified polyclonal rabbit anti-YA antibodies, polyclonal anti-MBP, or monoclonal mouse anti-GST antibody. Secondary antibodies used were rhodamine-conjugated anti-rabbit antibodies or rhodamine-conjugated anti-mouse antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA).

Solid-phase Chromatin Binding Assay
Purified MBP-HMK-YA and MBP-HMK were 32P-labeled with heart muscle kinase according to Blanar and Rutter (1992) blue right-pointing triangle to a specific activity of ~1.2 × 106cpm/μg. Polynucleosomes of 8–30 nucleosomes were purified and bound to the solid phase as described in Goldberg et al. (1999) blue right-pointing triangle. Radiolabeled MBP-HMK-YA or MBP-HMK protein (75 μg/ml) was incubated with polynucleosomes, in the presence or absence of unlabeled MBP-HMK-YA or MBP-HMK competitor. Duplicate data points were taken and repeats of all assays yielded comparable results. To calculate apparent Kd, the data were expressed in linearizing plots for single-site competitive interactions (Hulme and Birdsall, 1992 blue right-pointing triangle).

MBP Pull-down Assay
For MBP pull-down assays on DNA, 4 μg MBP-HMK-YA or 32 μg MBP-HMK in TK buffer was incubated with 1.2 μg plasmid DNA in TK buffer at 4°C for 1 h. Amylose beads (20 μl) were then added, and the mixture was incubated at 4°C for 4 h. The beads were harvested and washed with TK buffer containing 130 mM NaCl. DNA and proteins were eluted from the beads by incubation in SDS-PAGE sample buffer without β-mercaptoethanol at 65°C for 10 min. DNA and proteins were analyzed by agarose gel electrophoresis and Western blotting, respectively. For MBP pull-down assays on histones, 4 μg of calf thymus histone H2A, H2B, or 4 μg of purified Drosophila core histone mix (an equimolar mixture of all four core histones) was mixed with 4 μg of MBP-HMK-YA or 32 μg of MBP-HMK in the binding buffer (20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM EDTA). The binding conditions were as above for MBP pull-down assays on DNA. For washes, beads from pull-down reactions on histone H2A or H2B were washed four times with the binding buffer, whereas beads from the pull-down reaction on core histone mix were washed three times with the binding buffer supplemented with 100 mM NaCl. The proteins bound to beads were eluted by boiling in SDS-PAGE sample buffer for 5 min.

RESULTS

YA Binds to Mitotic Chromosomes Directly In Vitro
To determine if YA binds directly to chromatin and to investigate the characteristics of this binding, we used a mitotic chromosome binding assay that had been previously used to characterize lamin-chromatin binding (Glass and Gerace, 1990 blue right-pointing triangle; Glass et al., 1993 blue right-pointing triangle; Taniura et al., 1995 blue right-pointing triangle) including that of Drosophila lamin Dm0-chromatin binding (Goldberg et al., 1999 blue right-pointing triangle). Purified E. coli-made MBP-HMK-YA protein or the control MBP-HMK protein was incubated with CHO cell mitotic chromosomes (MBP-HMK stands for maltose binding protein fused to the phosphorylation target sites for heart muscle kinase; Blanar and Rutter, 1992 blue right-pointing triangle). As shown in Figure 1, anti-MBP antisera stained chromosomes incubated with MBP-HMK-YA (Figure 1B, and red in 1C) but did not stain chromosomes incubated with MBP-HMK (Figure 1E, and red in 1F). Thus, signals seen on chromosomes incubated with MBP-HMK-YA reflect chromosome binding by the YA moiety of MBP-HMK-YA. More bound MBP-HMK-YA is detected at the surface of the mitotic chromosomes relative to the interior, similar to the apparently preferential staining of mitotic chromosome surfaces reported for human, rat, and Drosophila lamins (Glass and Gerace, 1990 blue right-pointing triangle; Glass et al., 1993 blue right-pointing triangle; Goldberg et al., 1999 blue right-pointing triangle). This staining pattern could be due to the better accessibility of MBP-HMK-YA (and lamin) or antibodies to the surface of mitotic chromosomes, or it could reflect preferential binding of YA (and lamin) to the surface domain of mitotic chromosomes.
Figure 1Figure 1
YA binds to mitotic chromosomes directly. Purified MBP-HMK-YA (A–C) or MBP-HMK (D–F) was incubated with mitotic chromosomes. The chromosomes were stained with the DNA dye DAPI (A and D, and blue in C and F) and anti-MBP antisera (B and (more ...)

MBP-HMK-YA's binding to the mitotic chromosomes is not simply a nonspecific charge interaction. It was unaffected by the presence of 1000-fold molar excess of polycations such as spermine or spermidine (Figure 2, compare panels B and C with panel A), nor was it affected by a 8 × 106-fold molar excess of BSA in the binding reaction (unpublished observations) or by a 25-fold molar excess of MBP-HMK protein (Figure 2D).

Figure 2Figure 2
YA's binding to mitotic chromosomes is specific. Binding reactions of MBP-HMK-YA with mitotic chromosomes were carried out in the presence of 1000-fold molar excess of spermidine or spermine, 25-fold molar excess of MBP-HMK or 18-fold molar excess of (more ...)

The binding of MBP-HMK-YA to mitotic chromosomes is mediated by YA's binding to nucleosomes, because an 18-fold excess of polynucleosome competitors greatly reduced MBP-HMK-YA's binding to mitotic chromosomes (Figure 2E). To measure the affinity of MBP-HMK-YA's binding to chromatin, we used the displacement assay described for lamin (Taniura et al., 1995 blue right-pointing triangle; Goldberg et al., 1999 blue right-pointing triangle). Radioactively labeled MBP-HMK-YA or MBP-HMK was incubated with polynucleosomes bound to the solid phase in the presence or absence of different concentrations of nonlabeled MBP-HMK-YA or MBP-HMK. MBP-HMK-YA bound to immobilized chromatin at significant levels, whereas MBP-HMK bound to chromatin poorly (6–10% of the amount of MBP-HMK-YA). With increasing amounts of unlabeled MBP-HMK-YA, less radioactivity is detected on immobilized polynucleosomes (Figure 3A). Repeats of these experiments resulted in calculated Kd values between 1.1 and 2.4 μM. An experiment that gave a Kd of 1.1 μM is shown in Figure 3. The Kd of YA's binding to chromatin is similar to that of Drosophila lamin Dm0 (~1 μM; Goldberg et al., 1999 blue right-pointing triangle). They are both lower than that those reported for human lamin Dm0 A/C and B (Taniura et al., 1995 blue right-pointing triangle). This is either because Drosophila nuclear lamina proteins have lower affinity for chromatin or because they bind more weakly than mammalian lamin to non-Drosophila (mammalian) chromatin, the standard substrate for this assay.

Figure 3Figure 3
MBP-HMK-YA binds to immobilized chromatin with apparent Kd of 1.1 μM. (A) 32P-labeled MBP-HMK-YA was incubated with immobilized polynucleosomes in the presence of increasing concentration of unlabeled MBP-HMK-YA. Binding at each point was corrected (more ...)

YA Binds to DNA
That MBP-HMK-YA's binding to mitotic chromosomes is competed by polynucleosomes suggests that YA binds to DNA and/or chromosomal proteins. To test whether YA binds to DNA, deproteinated salmon sperm DNA was added to the mitotic chromosome binding reaction (Figure 4A). MBP-HMK-YA's binding to mitotic chromosomes was reduced by the presence of DNA in a dose-dependent manner, nearing background at 200 ng/μl salmon sperm DNA, the highest concentration tested (Figure 4A, panel D). The residual binding seen at the highest concentration of competitor could reflect incomplete competition by DNA or MBP-HMK-YA's binding to chromosomal proteins (see below). Addition of 200 ng/μl tRNA to the binding reaction had no effect on MBP-HMK-YA's binding to mitotic chromosomes (Figure 4A, panel E), suggesting that YA does not bind to RNA. In addition to the overall decrease in the amount of MBP-HMK-YA staining on chromosomes with increasing concentrations of added salmon sperm DNA, the staining became more punctate at higher competitor concentrations. We believe that the punctate staining is caused by MBP-HMK-YA aggregation on mitotic chromosomes, because YA can interact with itself directly (Liu and Wolfner, 1998 blue right-pointing triangle, and our unpublished observations). Similar aggregation was reported for the binding of Drosophila lamin Dm0 to mitotic chromosomes (Goldberg et al., 1999 blue right-pointing triangle). An alternative explanation for the appearance of punctate staining at high concentrations of added DNA would be that YA binds to some sequences with higher affinity, although no evidence of highly preferential binding sites was seen upon binding of ectopically expressed YA to polytene chromosomes (Lopez and Wolfner, 1997 blue right-pointing triangle). Another possibility is that DNA in some regions of mitotic chromosomes is more accessible.
Figure 4Figure 4
YA's binding to mitotic chromosomes can be competed by salmon sperm DNA, by different forms of plasmid DNA, but not by tRNA. The binding reactions of MBP-HMK-YA with mitotic chromosomes in Figure 4A were performed in the presence of deproteinated salmon (more ...)

The fact that MBP-HMK-YA's binding to mitotic chromosomes can be competed by salmon sperm DNA, but not by RNA, suggests that YA binds to DNA. To determine additional characteristics of this binding, we carried out a similar competition experiment, except using 88 ng/μl DNA of plasmid pGEX-2T, which has a more simple sequence composition than salmon sperm DNA (Figure 4B). Single-stranded plasmid DNA did not displace MBP-HMK-YA's binding to mitotic chromosomes as well as double-stranded DNA (compare Figure 4B, panel E, in which ubiquitous YA signals overlapped with the mitotic chromosome, with panels B, C, and D), indicating that YA binds to double-stranded DNA better than to single-stranded DNA. Supercoiled and linear plasmid DNA were both able to displace MBP-HMK-YA's binding to mitotic chromosomes better than salmon sperm DNA (compare Figure 4B, panels C and D with panel B), suggesting that YA's binding to DNA may have some sequence preference. Confirming YA's ability to bind to both supercoiled and linear DNA, using an MBP pull-down assay we observed that double-stranded plasmid DNA of all three forms (supercoiled, linear, and open circle) was pulled down by amylose beads together with MBP-HMK-YA but not with MBP-HMK (Figure 5).

Figure 5Figure 5
DNA is pulled down with MBP-HMK-YA in a MBP pull-down assay. MBP-HMK-YA (4 μg; Tag-YA) or MBP-HMK (32 μg; Tag) was incubated with 1.2 μg plasmid pGEX-2T DNA and then pulled-down with amylose beads. The DNA was separated on a 1% (more ...)

YA Binds to Histone H2B
To test whether YA also binds to chromosomal proteins, purified histone H1 (20 μM) or an equimolar mixture of purified Drosophila core histones (7 μM of each) was added to the mitotic chromosome binding reaction with MBP-HMK-YA. As shown in Figure 6, MBP-HMK-YA's binding to mitotic chromosomes was not affected by the presence of histone H1 (Figure 6, cf. A and B) but was greatly reduced in presence of core histones (Figure 6, cf. A and C). The residual binding in panel C may be from MBP-HMK-YA's binding to DNA or from incomplete competition. These results suggest that YA also binds to core histones.
Figure 6Figure 6
YA's binding to mitotic chromosomes can be competed by histone H2B. Binding reactions of MBP-HMK-YA with mitotic chromosomes were performed in the presence of 20 μM Drosophila histone H1 (B), equi-molar mix of Drosophila core histones (7 μM (more ...)

To confirm YA's binding to core histones and to determine which core histone(s) binds to YA, we performed an MBP pull-down assay. An equimolar (1 μg each) mixture of all four core histones was incubated with either MBP-HMK-YA or MBP-HMK. Amylose beads were then added to pull down MBP fusion proteins. Only one core histone band was pulled down by the beads together with MBP-HMK-YA (Figure 7A, lane 3); it was not pulled down by beads in the presence of MBP-HMK (Figure 7, lane 4), indicating that this core histone binds to YA specifically. The SDS-polyacrylamide gel mobility of this band matched that of histone H2B or H2A. To test whether YA binds to histone H2B or H2A or both, we performed a mitotic chromosome binding assay with MBP-HMK-YA in the presence of either purified histone H2B or purified H2A (Figure 6, D and E). In the presence of purified histone H2B, MBP-HMK-YA's binding to mitotic chromosomes was greatly reduced (Figure 6D), but the presence of histone H2A did not interfere with MBP-HMK-YA's binding to mitotic chromosomes (Figure 6E). To confirm that histone H2B but not H2A binds to YA, we performed MBP pull-down assays with purified histone H2B or H2A. As shown in Figure 7B, histone H2B was pulled down by amylose beads together with MBP-HMK-YA but not with MBP-HMK, confirming that histone H2B binds to YA. In contrast, MBP pull-downs with purified histone H2A showed that H2A did not bind to MBP-HMK-YA (Figure 7C).

Figure 7Figure 7
YA binds to histone H2B. MBP-HMK-YA (4 μg; Tag-YA) or MBP-HMK(32 μg; Tag) was incubated with 4 μg of a mixture of core histone (A), 4 μg histone H2B (B), or 4 μg histone H2A (C). The mixture was then incubated with (more ...)

Four Domains in YA Bind to DNA and Histone H2B
To define the domains of YA that mediate YA's binding to mitotic chromosomes, mitotic chromosome binding assays were performed with YA fragments as GST or MBP-HMK fusion proteins, with GST or MBP-HMK controls, as in Figure 1; representative examples are shown in Figure 8, A–I. Their binding to DNA or histone H2B was also tested separately, by competition assays as in Figures 4 and 6; representative examples of each are shown in Figure 8, J–M. GST alone did not bind to mitotic chromosomes (Figure 8E). As summarized in Figure 9A, four separable domains in YA were shown to bind to mitotic chromosomes. These minimal binding regions are: aa1–117 (domain A in Figure 9A; Figure 8A), which contains two C2H2-type zinc fingers and a half zinc finger similar to Krox-20 (Chavrier et al., 1990 blue right-pointing triangle); aa270–396 (domain B in Figure 9A; Figure 8F), which contains the Q-rich opa region and part of the Ser/Thr rich region; aa 397–472 (domain C in Figure 9A; Figure 8G), which contains the rest of the Ser/Thr rich region; and aa 506–696 (domain D in Figure 9; Figure 8D), which contains the SPKK potential DNA-binding motif and is highly positively charged (Lin and Wolfner, 1991 blue right-pointing triangle; Liu and Wolfner, 1998 blue right-pointing triangle). The binding of each of the regions to mitotic chromosomes was competed by DNA (as in Figure 4A, panel D) and by histone H2B (as in Figure 6D). These data, summarized in Figure 9B, suggesting that each of the domains binds to both DNA and histone H2B.
Figure 8Figure 8
Representative YA fragments' binding to mitotic chromosomes in the presence or absence of salmon sperm DNA (DNA) or histone H2B (H2B) competitors. Purified YA fragments produced as GST or MBP-HMK fusion proteins were incubated with mitotic chromosomes. (more ...)
Figure 9Figure 9
(A) Four regions in YA bind to chromosomes. Purified YA fragments as GST or MBP-HMK fusion were used for mitotic chromosome binding assays. Horizontal lines show the YA regions tested for binding. (A) Four regions, aa 1–117 (domain A), aa 270–396 (more ...)

YA's Q-rich region is not required for chromosome binding, as fragment dQ aa 230–396 from which the Q-rich region was deleted (Liu and Wolfner, 1998 blue right-pointing triangle) can still bind to chromosomes (Figure 8H).

Both zinc fingers are important for YA's binding to mitotic chromosomes, because mutation of two cysteines in either zinc finger (C1 or C2; Liu and Wolfner, 1998 blue right-pointing triangle) greatly decreased fragment aa 1–117's binding to mitotic chromosomes (Figure 8, B and C). As the binding to mitotic chromosomes of aa 1–117 mutant in just one zinc finger can still be competed by DNA competitors (Figure 8, J and K), both zinc fingers bind to DNA. Binding of C1 aa1–117 (mutant in zinc finger 1 but with normal zinc finger 2) to mitotic chromosomes was not competed by histone H2B (Figure 8L). Binding of C2 aa1–117 (mutant in zinc finger 2 but with normal zinc finger 1) to mitotic chromosomes was competed by histone H2B (Figure 8M). These data suggest that zinc finger 1 but not zinc finger 2 binds to histone H2B. Although the zinc finger is thought mainly to mediate protein-DNA binding, it has been found to be also involved in protein–protein interactions (for a recent review, see Leon and Roth, 2000 blue right-pointing triangle); this appears to be the case for zinc finger 1 in YA.

The binding of these four domains to mitotic chromosomes is likely to be specific, because MBP-HMK (Figure 8I), GST (Figure 8E), or many smaller YA fragments did not bind to mitotic chromosomes under the same conditions.

DISCUSSION

YA Binds to DNA and Histone H2B
Chromosome condensation state is important for nuclear functions such as DNA replication, transcription, and chromosome segregation (for reviews, see Koshland and Strunnikov, 1996 blue right-pointing triangle; Wolffe, 1996 blue right-pointing triangle; Qumsiyeh, 1999 blue right-pointing triangle) and is an active process that requires chromosome decondensation and condensation factors. The YA phenotype (Liu et al., 1995 blue right-pointing triangle; Berman, 2000 blue right-pointing triangle) suggests that YA may be essential to attain the proper chromatin condensation state at the end of female meiosis in Drosophila and is most consistent with YA's action being to decondense the chromatin following meiosis.

YA is normally found at the nuclear periphery as well as throughout the nucleoplasm (Lin and Wolfner, 1991 blue right-pointing triangle; Lopez et al., 1994 blue right-pointing triangle). YA had previously been shown to bind to decondensed sperm chromatin in Xenopus egg extracts and to polytene chromosomes when ectopically expressed (Lopez and Wolfner, 1997 blue right-pointing triangle), but the nature and mediators of its chromatin binding were not known. Here, we showed that YA can bind directly to chromatin, with an affinity (Kd = 1.1 μM) similar to that with which Drosophila lamin Dm0 binds chromatin (Goldberg et al., 1999 blue right-pointing triangle). YA binds to chromatin through its interaction with DNA and histone H2B. YA prefers double-stranded DNA to single-stranded and can bind DNA of different superhelicity states.

All chromatin decondensation factors tested thus far have been shown to bind to core histones (nucleoplasmin, Dilworth et al., 1987 blue right-pointing triangle; Kleinschmidt et al., 1990 blue right-pointing triangle; Philpott and Leno, 1992 blue right-pointing triangle; DF 31, Crevel and Cotterill, 1995 blue right-pointing triangle; Ito et al., 1996b blue right-pointing triangle; dNAP-1, Ito et al., 1996a blue right-pointing triangle), suggesting that binding to core histones may be a general way to regulate chromatin decondensation. However, how binding to core histones affects chromosome decondensation is not fully understood and may benefit from the sort of in vivo analysis made possible by Ya mutants. Studies of the role of histones in chromosome condensation have mainly focused on histone H1 and H3 (for recent reviews, see Koshland and Strunnikov, 1996 blue right-pointing triangle; Hirano, 2000 blue right-pointing triangle). However, there is also evidence for a role of histone H2B in this process. Trypanosoma cruzi, whose chromatin contains a unique variant of histone H2B, retains its chromatin in an unusual decondensed state throughout the entire cell cycle (Toro et al., 1993 blue right-pointing triangle). In addition, in the slime mold Physarum polycephalum, histones H2A and H2B are ubiquitinated from anaphase to prophase and are deubiquitinated during metaphase, suggesting that ubiquitination is an early step in chromosome decondensation and deubiquitination is a late step in chromosome condensation (Mueller et al., 1985 blue right-pointing triangle). The binding of YA to histone H2B may be another case of the involvement or modulation of histone H2B in chromosome condensation state, in this case at a specific developmental time.

Incubation of MBP-HMK-YA with mitotic chromosomes did not visibly alter the condensation state of those chromosomes, suggesting that YA is not sufficient for chromatin decondensation per se. It is possible that certain histone modifications such as ubiquitination at the end of meiosis and/or other factors such as the nuclear envelope might be needed for YA to participate in modifying chromatin structure. For example, the nuclear envelope is important for sperm chromatin decondensation (Lohka and Masui, 1984 blue right-pointing triangle; Collas and Poccia, 1995 blue right-pointing triangle; Poccia and Collas, 1996 blue right-pointing triangle, 1997 blue right-pointing triangle). The C-terminal fragment of YA, aa 506–696, contains both a chromosome-binding domain (this study) and a lamin-binding domain (Goldberg et al., 1998 blue right-pointing triangle; Rajagopal, Fan, Garfinkel, Mani, and Wolfner, unpublished results). It is possible that YA's binding to lamin and chromatin with overlapping domains brings chromatin close to the nuclear envelope and hence facilitates chromosome decondensation.

Why Might YA's Binding to Chromatin Be Important in Development?
At the end of female meiosis in wild-type Drosophila embryos, chromatin begins to decondense in telophase II. It then enters an interphase-like state; at this time YA is first seen in nuclei (Yu et al., 1999 blue right-pointing triangle). Chromatin then recondenses and starts the first (gonomeric) mitosis (Callaini and Riparbelli, 1996 blue right-pointing triangle). The sperm's nucleus decondenses during this time, losing its paternal investments (Liu et al., 1997 blue right-pointing triangle) and becoming spherical. Eggs and embryos produced by mothers lacking Ya function arrest development immediately after meiosis (Lopez, 1996 blue right-pointing triangle; Berman, 2000 blue right-pointing triangle; Lopez, Berman, Yu, Dernburg and Wolfner, unpublished results). Their chromatin is abnormally condensed, and nuclei within YA-deficient eggs show lack of coordination in condensation state (Liu et al., 1995 blue right-pointing triangle). Fertilized eggs lacking YA do convert the sperm nucleus to a male pronucleus but it, and the abnormally condensed nuclei resulting from female meiosis, fail to associate correctly or to initiate the first embryonic cell cycle. The observations reported here, that YA protein binds to DNA and histone H2B and that the YA regions responsible for this binding correlate with those required for YA's function, lead to the model that YA's binding to DNA and histone H2B may regulate the condensation state of nuclei at the time of fertilization.

Proper chromosome condensation state appears to be critical for making the transition from meiosis to mitosis. In rhesus monkey zygotes, Hewitson et al. (1999) blue right-pointing triangle proposed a checkpoint that monitors pronuclear chromosome condensation state and must be passed to allow the onset of DNA replication for the zygote's first mitosis. If the male or female pronucleus has a chromosome condensation defect, development is arrested at the pronuclear stage (Hewitson et al., 1996 blue right-pointing triangle). If chromatin decondensation is simply delayed in either the female or the male pronucleus of rhesus monkey zygotes, initiation of DNA replication is similarly delayed in both pronuclei, until the chromatin has decondensed (Hewitson et al., 1999 blue right-pointing triangle). This suggests that a G1/S transition checkpoint may monitor chromatin condensation state at the pronuclear stage in rhesus monkey zygotes. Inability to properly decondense the chromatin or to sense that this had occurred would thus arrest development after meiosis but before the embryo initiates mitosis.

The Ya null mutant phenotype suggests that YA's activity might be necessary to pass an analogous checkpoint in Drosophila development (Lopez, Berman, Yu, Dernburg, and Wolfner, unpublished results). Ya embryos arrest development at the pronuclear stage (Lin and Wolfner, 1991 blue right-pointing triangle) with nuclei that show abnormal chromatin condensation (Liu et al., 1995 blue right-pointing triangle). Ya's epistasis to mutations such as gnu (Liu et al., 1997 blue right-pointing triangle) that affect S/M coordination and result in multiple rounds of DNA replication (Freeman et al., 1986 blue right-pointing triangle; Freeman and Glover, 1987 blue right-pointing triangle; Elfring et al., 1997 blue right-pointing triangle) suggests that arrest of Ya embryos occurs before the initiation of DNA replication. This phenotype is analogous to that of the rhesus monkey zygotes described above. There is, however, one difference between the trigger for this potential checkpoint in Drosophila vs. rhesus monkeys. Drosophila mutations that affect male pronuclear chromatin condensation state only, such as maternal haploid, ms(3)K81, and sésame, do not trigger arrest of initiation of mitosis by the female pronucleus (Zalokar et al., 1975 blue right-pointing triangle; Yasuda et al., 1995 blue right-pointing triangle; Loppin et al., 2000 blue right-pointing triangle) in contrast to the G1/S block in rhesus monkey zygotes with abnormal condensation of the male pronucleus. (The converse type of mutation [leaving the female pronucleus highly condensed but allowing mitosis by the male pronucleus] has never been reported) This suggests that, in Drosophila, sensing the condensation state of the female pronucleus may be sufficient to determine whether the checkpoint can be passed. If the male pronucleus does not decondense sufficiently, this is not grounds for aborting the first cell cycle. The fact that some insects can develop into viable fertile haploids might have resulted in less stricture on the male pronucleus' structure to “trip” the early development checkpoint.

In summary, we have shown here that the nuclear lamina protein YA binds to chromatin via interactions with DNA and with histone H2B; YA's interaction with chromatin has a similar Kd to lamin–chromatin interaction. The YA regions that bind to DNA and histone H2B correlate with regions required for YA function. Taken together with phenotypic data, these data suggest that YA's binding to DNA and histone H2B act to mediate proper chromosome condensation state during the transition from meiosis to mitosis.

ACKNOWLEDGMENTS

The authors thank Drs. K. Kemphues, R. Cerione, J. Lis, L. Kraus, J. Liu, and S. Mani for helpful suggestions and for valuable comments on the manuscript; L. Kraus for Drosophila core histones and anti-Drosophila core histone antibodies; R. Rajagopal for the YA C-terminal deletion constructs; and Drs. Y. Gruenbaum and M. Goldberg for protocols. The work was funded by National Institutes of Health grant GM44659 to M.F.W.

Footnotes
Article published online ahead of print. Mol. Biol. Cell 10.1091/mbc.01–07-0336. Article and publication date are at www.molbiolcell.org/cgi/10.1091/mbc.01–07-0336.
REFERENCES
  • Berman, CL. The Role of YA Protein in Drosophila Female Meiosis [M.S. Thesis]. Ithaca, NY: Cornell University; 2000.
  • Blanar, MA; Rutter, WJ. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-Fos. Science. 1992;256:1014–1018. [PubMed]
  • Bulger, M; Kadonaga, JT. Biochemical reconstitution of chromatin with physiological nucleosome spacing. Meth Molec Genet. 1994;5:241–262.
  • Callaini, G; Riparbelli, MG. Fertilization in Drosophila melanogaster: centrosome inheritance and organization of the first mitotic spindle. Dev Biol. 1996;176:199–208. [PubMed]
  • Cameron, LA; Poccia, DL. In vitro development of the sea urchin male pronucleus. Dev Biol. 1994;162:568–578. [PubMed]
  • Chavrier, P; Vesque, C; Galliot, B; Vigneron, M; Dolle, P; Duboule, D; Charnay, P. The segment-specific gene Krox-20 encodes a transcription factor with binding sites in the promoter region of the Hox-1.4 gene. EMBO J. 1990;9:1209–1218. [PubMed]
  • Collas, P; Poccia, D. Formation of the sea urchin male pronucleus in vitro: membrane-independent chromatin decondensation and nuclear envelope-dependent nuclear swelling. Mol Rep Dev. 1995;42:106–113. [PubMed]
  • Collas, P; Poccia, D. Remodeling the sperm nucleus into a male pronucleus at fertilization. Theriogenology. 1998;49:67–81. [PubMed]
  • Cothren, CC; Poccia, DL. Two steps required for male pronucleus formation in the sea urchin egg. Exp Cell Res. 1993;205:126–133. [PubMed]
  • Crevel, G; Cotterill, S. DF 31, a sperm decondensation factor from Drosophila melanogaster: purification and characterization. EMBO J. 1995;14:1711–1717. [PubMed]
  • Crevel, G; Huikeshoven, H; Cotterill, S; Simon, M; Wall, J; Philpott, A; Laskey, RA; McConnell, M; Fisher, PA; Berrios, M. Molecular and cellular characterization of CRP1, a Drosophila chromatin decondensation protein. J Struct Biol. 1997;118:9–22. [PubMed]
  • Dilworth, SM; Black, SJ; Laskey, RA. Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell. 1987;51:1009–1018. [PubMed]
  • Edgar, BA; Kiehle, CP; Schubiger, G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell. 1986;44:365–372. [PubMed]
  • Elfring, LK; Axton, JY; Fenger, DD; Page, AW; Carminati, JL; Orr-Weaver, TL. Drosophila PLUTONIUM protein is a specialized cell cycle regulator required at the onset of embryogenesis. Mol Biol Cell. 1997;8:583–593. [PubMed]
  • Fitch, KR; Wakimoto, BT. The paternal effect gene ms(3)sneaky is required for sperm activation and the initiation of embryogenesis in Drosophila melanogaster. Dev Biol. 1998;197:270–282. [PubMed]
  • Freeman, M; Glover, DM. The gnu mutation of Drosophila causes inappropriate DNA synthesis in unfertilized and fertilized eggs. Genes Dev. 1987;1:924–930. [PubMed]
  • Freeman, M; Nusslein-Volhard, C; Glover, DM. The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell. 1986;46:457–468. [PubMed]
  • Fuyama, Y. Genetics of parthenogenesis in Drosophila melanogaster. II. Characterization of a gynogenetically reproducing strain. Genetics. 1986;114:495–510.
  • Gans, M; Audit, C; Masson, M. Isolation and characterization of sex-linked female sterile mutants in Drosophila melanogaster. Genetics. 1975;81:683–704. [PubMed]
  • Gillespie, PJ; Blow, JJ. Nucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication. Nucleic Acids Res. 2000;28:472–480. [PubMed]
  • Glass, CA; Glass, JR; Taniura, H; Hasel, KW; Blevitt, JM; Gerace, L. The alpha-helical rod domain of human lamins A and C contains a chromatin binding site. EMBO J. 1993;12:4413–4424. [PubMed]
  • Glass, JR; Gerace, L. Lamins A and C bind and assemble at the surface of mitotic chromosomes. J Cell Biol. 1990;111:1047–1058. [PubMed]
  • Goldberg, M; Harel, A; Brandeis, M; Rechsteiner, T; Richmond, TJ; Weiss, AM; Gruenbaum, Y. The tail domain of lamin Dm0 binds histones H2A and H2B. Proc Natl Acad Sci USA. 1999;96:2852–2857. [PubMed]
  • Goldberg, M; Lu, H; Stuurman, N; Ashery-Padan, R; Weiss, AM; Yu, J; Bhattacharyya, D; Fisher, PA; Gruenbaum, Y; Wolfner, MF. Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Mol Cell Biol. 1998;18:4315–4323. [PubMed]
  • Hewitson, L; Dominko, T; Takahashi, D; Martinovich, C; Ramalho-Santos, J; Sutovsky, P; Fanton, J; Jacob, D; Monteith, D; Neuringer, M; Battaglia, D; Simerly, C; Schatten, G. Unique checkpoints during the first cell cycle of fertilization after intracytoplasmic sperm injection in rhesus monkeys. Nat Med. 1999;5:431–433. [PubMed]
  • Hewitson, LC; Simerly, CR; Tengowski, MW; Sutovsky, P; Navara, CS; Haavisto, AJ; Schatten, G. Microtubule and chromatin configurations during rhesus intracytoplasmic sperm injection: successes and failures. Biol Reprod. 1996;55:271–280. [PubMed]
  • Hirano, T. Chromosome cohesion, condensation, and separation. Annu Rev Biochem. 2000;69:115–144. [PubMed]
  • Hulme, EC; Birdsall, NJM. Receptor Ligand Interactions: A Practical Approach. New York: Oxford University Press; 1992.
  • Ito, T; Bulger, M; Kobayashi, R; Kadonaga, JT. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol. 1996a;16:3112–3124. [PubMed]
  • Ito, T; Tyler, JK; Bulger, M; Kobayashi, R; Kadonaga, JT. ATP-facilitated chromatin assembly with a nucleoplasmin-like protein from Drosophila melanogaster. J Biol Chem. 1996b;271:25041–25048. [PubMed]
  • Iwata, K; Hozumi, K; Iihara, A; Nomizu, M; Sakairi, N; Nishi, N. Mechanism of salmon sperm decondensation by nucleoplasmin. Int J Biol Macromol. 1999;26:95–101. [PubMed]
  • Kawasaki, K; Philpott, A; Avilion, AA; Berrios, M; Fisher, PA. Chromatin decondensation in Drosophila embryo extracts. J Biol Chem. 1994;269:10169–10176. [PubMed]
  • Kleinschmidt, JA; Seiter, A; Zentgraf, H. Nucleosome assembly in vitro: separate histone transfer and synergistic interaction of native histone complexes purified from nuclei of Xenopus laevis oocytes. EMBO J. 1990;9:1309–1318. [PubMed]
  • Koshland, D; Strunnikov, A. Mitotic chromosome condensation. Annu Rev Cell Dev Biol. 1996;12:305–333. [PubMed]
  • Laskey, RA; Mills, AD; Philpott, A; Leno, GH; Dilworth, SM; Dingwall, C. The role of nucleoplasmin in chromatin assembly and disassembly. Philos Trans R Soc Lond B Biol Sci. 1993;339:263–269. [PubMed]
  • Leon, O; Roth, M. Zinc fingers: DNA binding and protein-protein interactions. Biol Res. 2000;33:21–30. [PubMed]
  • Lin, H; Wolfner, MF. The Drosophila maternal-effect gene fs(1)Ya encodes a cell cycle-dependent nuclear envelope component required for embryonic mitosis. Cell. 1991;64:49–62. [PubMed]
  • Liu, J; Song, K; Wolfner, MF. Mutational analyses of fs(1)Ya, an essential, developmentally regulated, nuclear envelope protein in Drosophila. Genetics. 1995;141:1473–1481. [PubMed]
  • Liu, J; Song, K; Wolfner, MF. Formation of the male pronuclear lamina in Drosophila. Dev Biol. 1997;184:187–196. [PubMed]
  • Liu, J; Wolfner, MF. Functional dissection of YA, an essential, developmentally regulated nuclear lamina protein in Drosophila melanogaster. Mol Cell Biol. 1998;18:188–197. [PubMed]
  • Lohka, MJ; Masui, Y. Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian cells. J Cell Biol. 1984;98:1222–1230. [PubMed]
  • Longo, FJ. Pronuclear events during fertilization. In: Metz C B, Monroy C B. , editors. Biology of Fertilization. Vol. 3. New York: Academic Press; 1985. pp. 251–293.
  • Longo, FJ; Mathews, L; Palazzo, RE. Sperm nuclear transformations in cytoplasmic extracts from surf clam (Spisula solidissima) oocytes. Dev Biol. 1994;162:245–258. [PubMed]
  • Lopez, J; Song, K; Hirshfeld, A; Lin, H; Wolfner, MF. The Drosophila fs(1)Ya protein, which is needed for the first mitotic division, is in the nuclear lamina and in the envelopes of cleavage nuclei, pronuclei and nonmitotic nuclei. Dev Biol. 1994;163:202–211. [PubMed]
  • Lopez, JM. Functional studies of “YA,” a developmentally regulated nuclear lamina protein that is essential for Drosophila embryogenesis [Ph.D. Thesis]; Ithaca, NY: Cornell University; 1996.
  • Lopez, JM; Wolfner, MF. The developmentally regulated Drosophila embryonic nuclear lamina protein ‘Young Arrest’ (fs(1)Ya) is capable of associating with chromatin. J Cell Sci. 1997;110:643–651. [PubMed]
  • Loppin, B; Berger, F; Couble, P. Paternal chromosome incorporation into the zygote nucleus is controlled by maternal haploid in Drosophila. Dev Biol. 2001;231:383–396. [PubMed]
  • Loppin, B; Docquier, M; Bonneton, F; Couble, P. The maternal effect mutation sesame affects the formation of the male pronucleus in Drosophila melanogaster. Dev Biol. 2000;222:392–404. [PubMed]
  • Maeda, Y; Yanagimachi, H; Tateno, H; Usui, N; Yanagimachi, R. Decondensation of the mouse sperm nucleus within the interphase nucleus. Zygote. 1998;6:39–45. [PubMed]
  • Mueller, RD; Yasuda, H; Hatch, CL; Bonner, WM; Bradbury, EM. Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum. Disappearance of these proteins at metaphase and reappearance at anaphase. J Biol Chem. 1985;260:5147–5153. [PubMed]
  • Page, AW; Orr-Weaver, TL. Stopping and starting the meiotic cell cycle. Curr Opin Genet Dev. 1997;7:23–31. [PubMed]
  • Philpott, A; Leno, GH. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell. 1992;69:759–767. [PubMed]
  • Philpott, A; Leno, GH; Laskey, RA. Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell. 1991;65:569–578. [PubMed]
  • Poccia, D; Collas, P. Transforming sperm nuclei into male pronuclei in vivo and in vitro. In: Current Topics in Developmental Biology. Pederson R A, Schatten G. , editors. Vol. 34. San Diego: Academic Press; 1996. pp. 25–88.
  • Poccia, D; Collas, P. Nuclear envelope dynamics during male pronuclear development. Dev Growth Differ. 1997;39:541–550. [PubMed]
  • Qumsiyeh, MB. Structure and function of the nucleus: anatomy and physiology of chromatin. Cell Mol Life Sci. 1999;55:1129–1140. [PubMed]
  • Rice, P; Garduno, R; Itoh, T; Katagiri, C; Ausio, J. Nucleoplasmin-mediated decondensation of Mytilus sperm chromatin: identification and partial characterization of a nucleoplasmin-like protein with sperm-nuclei decondensing activity in Mytilus californianus. Biochemistry. 1995;34:7563–7568. [PubMed]
  • Santamaria, P. Analysis of haploid mosaics in Drosophila. Dev Biol. 1983;96:285–295. [PubMed]
  • Santamaria, P; Gans, M. Chimeras of Drosophila melanogaster obtained by injection of haploid nuclei. Nature. 1980;287:143–144. [PubMed]
  • Schultz, RM; Kopf, GS. Molecular basis of mammalian egg activation. Curr Top Dev Biol. 1995;30:21–62. [PubMed]
  • Sonnenblick, BD. The early embryology of Drosophila melanogaster. In: The Biology of Drosophila. Demerec M. , editor. New York: John Wiley & Sons; 1950. pp. 62–167.
  • Stricker, S; Prather, R; Simerly, C; Schatten, H; Schatten, G. Nuclear architecture changes during fertilization and development. In: Schatten H, Schatten G. , editors. The Cell Biology of Fertilization. New York: Academic Press; 1989. pp. 225–250.
  • Taniura, H; Glass, C; Gerace, L. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J Cell Biol. 1995;131:33–44. [PubMed]
  • Toro, GC; Wernstedt, C; Hellman, U; Galanti, N. Presence of histone H2B in Trypanosoma cruzi chromatin. Biol Res. 1993;26:41–46. [PubMed]
  • Wolffe, AP. Chromatin and gene regulation at the onset of embryonic development. Reprod Nutr Dev. 1996;36:581–606. [PubMed]
  • Wright, SJ. Sperm nuclear activation during fertilization. Curr Top Dev Biol. 1999;46:133–178. [PubMed]
  • Yamashita, M; Onozato, H; Nakanishi, T; Nagahama, Y. Breakdown of the sperm nuclear envelope is a prerequisite for male pronucleus formation: direct evidence from the gynogenetic crucian carp Carassius auratus langsdorfii. Dev Biol. 1990;137:155–160. [PubMed]
  • Yasuda, GK; Schubiger, G; Wakimoto, BT. Genetic characterization of ms(3)K81, a paternal effect gene of Drosophila melanogaster. Genetics. 1995;140:219–229. [PubMed]
  • Yu, J. Drosophila egg activation, and regulation and function of an essential, maternally-provided, nuclear protein YA [Ph.D. Thesis]. Ithaca, NY: Cornell University; 2000.
  • Yu, J; Liu, J; Song, K; Turner, SG; Wolfner, MF. Nuclear entry of the Drosophila melanogaster nuclear lamina protein YA correlates with developmentally regulated changes in its phosphorylation state. Dev Biol. 1999;210:124–134. [PubMed]
  • Zalokar, M; Audit, C; Erk, I. Developmental defects of female-sterile mutants of Drosophila melanogaster. Dev Biol. 1975;47:419–432. [PubMed]