

Agricultural Outlook Forum 2008

Crystal City, VA FOOD RISK & SECURITY TRACK Protecting the Food Supply Through Food Safety and Defense

"Preventing E. coli Contamination of Food" Robert E. Mandrell, Ph.D.

Research Leader, Produce Safety and Microbiology Research Unit USDA, Agricultural Research Service, Western Regional Research Center 800 Buchanan Street, Albany, CA 94710

Topics covered

- E. coli O157:H7 outbreaks associated with leafy vegetables.
- Central California Coast
 - Environment
 - Incidence in watersheds
 - Spinach outbreak, Sep-Oct, 2006.
- <u>Potential</u> risk factors and solutions.

Foodborne outbreaks related to fresh produce, 1973-1997

Ref.: R. Tauxe. 2005. CDC.

Figure 8. Leading Produce Pathogens

Ref.: Outbreak alert! 2006. CSPI.

From 1995 to 2006, There have been ~22 outbreaks *E. coli* 0157:H7 in the US associated with lettuce and other leafy vegetables

E. coli O157:H7 outbreaks associated with leafy vegetables, 1995-2006

Outbr.#	Month	Year	Location	No. III	Known/Suspected Vehicle	Region of Source
1	Jul	1995	MT	74	Romaine lettuce	MT, WA
2	Sep	1995	ID	20	Romaine lettuce	Unknown
3	Oct	1995	OH	11	Lettuce	Unknown
4	May	1996	IL, CT	61	Mesclun mix lettuce	Salinas Valley, CA
5	Jun	1996	NY	7	Mesdun lettuce	Unknown
6	May	1998	CA	2	Salad	Unknown
7	Sep	1998	MD	4	Lettuce	Unknown
8	Sep	1999	CA	8	Romaine lettuce	Salinas Valley, CA
9	Sep	1999	WA	6	Romaine lettuce	Salinas Valley,CA
10	Oct	1999	OH, IN	47	Lettuce	Unknown
11	Oct	1999	OR	3	Romaine hearts	Salinas Valley, CA
12	Oct	1999	PA	41	Romaine lettuce	Salinas Valley, CA
13	Jul	2002	WA (Spokane)	29	Romaine lettuce	Salinas Valley, CA
14	Nov	2002	IL, WI, MN, SD, UT	24	Lettuce	San Joaquin Valley, CA
15	Sep	2003	CA (Pat &Oscars)	57	Romaine/iceberg lettuce	Salinas Valley, CA
16	Sep	2003	ND	5	Lettucemix w. romaine	Unknown
17	Oct	2003	CA (Sequoias)	16	Spinach	Salinas Valley, CA
18	Nov	2004	NJ	6	Lettuce	Salinas Valley, CA
19	Sep	2005	MN	11	Romaine mix w. veg.	Salinas Valley, CA
20	Aug-Sep	2006	26 states	>200	Baby spinach, bagged	San Juan Valley, CA
21	Nov	2006	NJ, NY, PA, DE	71	Iceberglettuce (TB)	Central Valley, CA
22	Nov-Dec	2006	MN, IA, WI	81	Iceberg lettuce (TJ)	Central Valley, CA

Many in the US are wondering...

What's going on? Has something changed?

twists up the center until it falls at last into Monterey Bay."

Leafy Vegetable Production

- California-Arizona
 - Salinas/Santa Maria valleys
 - Temp: cool, to warm, to cool
 - Rainfall: 12-15 in, between Nov to Mar/Apr
 - 2-3 crops per year
 - San Benito County
 - Huron (Central Valley)
 - Imperial Valley/Yuma, AZ (winter)
- 70-80% of the US supply

Low incidence in the environment may be amplified and/or spread - How long does it survive in the environment?

One theory is that expansion of bagged salad industry may lead to an increase in cross-contamination of more product = more cases of *E. coli* O157:H7

E. coli O157:H7 in the Environment

Islam et al, 2004, J Food Protection	 154 to 217 d in soil amended with spiked compost 77 d on lettuce, 177 d on parsley 			
Mukherjee et al,	 Child illness due to: O157:H7 in garden soil fertilized			
2006,	with cow manure This "naturally occurring" strain			
J Appl Microbiol	survived >69 days			

E. coli O157:H7 in the Environment

Elder et al, 2000, <i>Proc. Nat. Acad.</i> Sci.	 28% in feces of cattle at slaughter ~50% on hides 		
LeJeune et al., 2006, J. Clin. Microbiol.	 Most cattle have <100 CFU/g feces 		
	 Some, >10,000 CFU/g feces = "Super Shedders" 		
	 These high shedders may be most important epidemiologically 		

What happens if enteric pathogens get on plants?

Do human pathogens survive and grow on or in produce?

E. coli O157:H7 colonization of Romaine lettuce plants (growth chamber)

M. Brandl, Appl. Environ. Microbiol. In press

Erwinia (green) and *E. coli* O157 (pink)

"Is the pathogen in the production environment?"

Identifying sources and transport of pathogens may assist in understanding how pre-harvest contamination of produce occurs

Single farm provided product associated with 3 outbreaks in 2002, 2003

Positive for E. coli 0157:H7

E.coli O157:H7: Salinas Valley Watershed

- Study was expanded in coordination with CDPH and CCRWQCB (TMDL surveys)
- Jan-2005 to Sept-2006 (19 mo.)
- ~ 1200 samples analyzed for *E. coli* 0157:H7

Summary of results of isolation of *E.coli* O157:H7 from the Salinas Valley Watershed

Selected region of the watershed with frequent isolation of *Ec*O157

Feb. 16, 2005 samples: MLVA 2 strainsApril 18, 2006 samples: MLVA 100 strains

Salinas Valley watershed sampling ended in Sept., 2006 Then The Spinach Outbreak of Aug/Sep 2006

Multi-State Outbreak of *E. coli* O157:H7 Infections From Fresh Spinach, October 6, 2006

- >200 illnesses
- **51%** were hospitalized
- 16% developed hemolytic uremic syndrome
- 3 deaths

FDA-CFSAN, Oct. 6, 2006

- E. coli O157 was isolated from 13 packages of spinach supplied by patients living in 10 states
- Multi-agency (FDA, CDHS, USDA-ARS) investigation of the <u>4 farms and adjacent ranches was initiated: >1500</u> <u>samples tested</u>

E. coli O157:H7 outbreak associated with consumption of spinach, 2006

(Addendum to CDPH-FDA "E. coli O157:H7 Spinach Report" May 7, 2007)

Farm	Samples	Ecoli O157:H7 (% of total)		
Α	351	45/351 (13.5%);		
		28/45 match outbreak strain (62%)*		
В	102	10/102 (9.8%); 0 match		
C 132		1/132 (0.8%); 0 match		
D	45	1/45 (2.2%); 0 match		
Total	630	57/630 (9.0%)		

* Cattle (15), wild pig (8), water (4), dirt/soil (1).

Table 2. Unique alphanumeric MLVA types of *Escherichia coli* O157:H7 isolated from environmental samples collected at ranch A and an upstream watershed, California, September–November 2006*

Sample type	No. samples	No. isolates	MLVA type
Reference (human stool, bagged spinach)	NA	NA	E
Cattle feces	26	34	A, C, E, F, I, J, L, M, P, Q, R, S, T, W, X, Z
Feral swine feces	11	14	A, B, C, E, L, O, P, X, 5, 6
Feral swine colonic feces (necropsy)	2	10	A, C, D, G, H, K, L, U, V, Y
Sediment (river)	2	8	A, C, L, M, N, W, 3
Soil (cattle pasture)	1	1	А
Surface water	3	6	A , C , L, P, 4
Surface water Moore swab†	2	3	1, 2

*MLVA, multilocus variable number tandem repeat analysis; NA, not applicable. Samples indistinguishable from the major spinach-related outbreak strain by pulsed-field gel electrophoresis (*Xbal-Bln*I PulseNet profile EXHX01.0124-EXHA26.0015) are shown in **boldface**. †Isolates collected from surface water (river) ≈32 km upstream of ranch A.

How do pathogens get to produce from watersheds?

- Wild animals
 - Which animals?
- Flooding
- Irrigation
 - Wells (defective, shallow)
 - Surface water
- Fertilizer/compost
- ??

Prevention of E. coli on Food

- Pre-harvest approaches
 - Maintain water quality
 - Minimize exposure of produce to wild animals, flooding, dust
 - Treat livestock: vaccines, feed, novel antimicrobials
 - Observe/inspect, common sense
- Post-harvest approaches
 - Sampling and testing product, processing water
 - Effective "kill step" (new sanitizers, irradiation)
- No major outbreaks in 2007 associated with leafy vegetables!

New fencing for feral swine

Acknowledgements

ARS-PSMRU

- Michael Cooley
- Diana Carychou
- Craig Parker
- Maria Brandl
- CDHS (CDPH-FDLB)
 - Jeff Farrar
 - Leta Crawford-Miksza
 - Michele Jay-Russell
 - Carol Myers
 - Benson Yee

- CCRWQCB (Cal-EPA)
 - Chris Rose
- FDA-CFSAN
 - Christine Keys
 - Debra Street
- FDA-San Francisco
 - Rod Asmundson
 - David Lau
 - Erica Pomeroy