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ABSTRACT 
 
 

Over the last decade, ORNL has developed and patented a novel approach1-40 for forewarning of a 
large variety of machine and biomedical events. The present implementation uses desktop computers to 
analyze archival data. This report describes the next logical step in this effort, namely use of a hand-held 
device for the analysis. 
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1. INTRODUCTION 
 
 

ORNL staff have developed and patented technology for forewarning of machine and biomedical 
events. Six U.S. patents and two patents pending have resulted from this work, as follows. 
 
IP1) L.M. Hively, “Methods for Improved Forewarning of Critical Events Across Multiple Data 

Channels,” Patent pending (ORNL ERID# 1300) submitted to US Patent Office (22 Sept. 2003). 
 
IP2)  L.M. Hively, P.C. Gailey, V.A. Protopopescu, “Condition Assessment of Nonlinear Processes,” U.S. 

Patent #6,484,132 (19 Nov. 2002). 
 
IP3)  D.E. Welch, L.M. Hively, and R.F. Holdaway, “Nonlinear Prediction of Fatigue Failure,” US Patent 

#6,460,012  (1 Oct. 2002). 
 
IP4) L.M. Hively, “Methods for Consistent Forewarning of Critical Events Across Multiple Data 

Channels,” Patent pending (ORNL ERID#0885) submitted to US Patent Office (12 July 2002). 

 
IP5) L.M. Hively, N.E. Clapp, C.S. Daw, W.F. Lawkins, “Epileptic Seizure Prediction by Nonlinear 

Methods,” U.S. Patent #5,857,978 (12 January 1999). 
 
IP6) L.M. Hively and E.G. Ng, “Integrated Method for Chaotic Time Series Analysis,” U.S. Patent  

#5,815,413 (29 September 1998). 
 
IP7) L.M. Hively, N.E. Clapp, C.S. Daw, W.F. Lawkins, “Apparatus and Method for Epileptic Seizure 

Detection using Nonlinear Techniques,” U.S. Patent #5,743,860 (28 April 1998). 
  
IP8) N.E. Clapp, L.M. Hively, “Method and Apparatus for Extraction of Low-Frequency Artifacts from 

Brain Waves for Alertness Detection,” US Patent #5,626,145 (6 May 1997). 
 

Section 2 provides background on the specific biomedical and machine applications of this 
patented technology. Section 3 describes the analysis methodology for implementation on the hand-held 
device. Section 4 discusses the hardware and software implementation on a prototypical hand-held 
device, and corresponding validation results. Section 5 presents potential future applications of this work. 
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2. BACKGROUND 

 
 

The present work leverages nonlinear technology developments that have grown out of several 
recent projects. One project was sponsored under a Cooperative Research and Development Agreement 
(CRADA) collaboration in 1996 - 1998 at approximately $350K with Y-12 (lead), ORNL, and Cincinnati 
Milacron Incorporated (CMI) in Ohio, a premier manufacturer of machine tools. The bellows coupling on 
the Z-axis of a Magnum machining center at Y-12 (B9303) broke in the middle of July 1997. ORNL 
analyzed the motor current data, and found clear predictors of this failure. This work was the earliest 
implementation of patented technology for machine events and was published in the 1997 MAintenance 
and Reliability CONference (MARCON) proceedings.2 

 
A second project involved a funds-in CRADA collaboration with Nicolet Biomedical Incorporated 

(NBI). Dr. Jon Joseph of NBI contacted Lee Hively in the spring of 1999, because NBI’s literature search 
found ORNL’s US Patent on epilepsy forewarning (IP5). Dr. Joseph met with the ORNL team in March 
1999 to discuss a CRADA collaboration, which began in October 1999. The amount of funds-in from 
NBI for this CRADA was $247K in FY00 and $190K in FY01. DOE’s Laboratory Technology Research 
program (through Terry Payne at ORNL) provided additional funding of $47K in FY00 and $47.5K in 
FY01. Detailed results have been published and presented at various conferences2-19 While most other 
groups use invasive intracranial data, these results are based on non-invasive, scalp brain waves, using 
two novel technology components: (1) removal of eye blinks (and related muscular artifacts that are 
superimposed on the scalp brain waves), and (2) multi-channel nonlinear analysis for seizure forewarning. 
 

This and other recent analyses of biomedical data have demonstrated the nonlinear technology for a 
variety of biomedical applications, as follows: 
  - forewarning of epileptic seizures from scalp human brain wave data1-19; 
  - forewarning of ventricular fibrillation events from human heart waves14-15, 18-19; 
  - detection of inhaled-endotoxin-induced septic shock from rat heart waves14-15, 18-21; 
  - condition change due to increasing breathing difficulty from pig chest sounds14-15, 18-19; 
  - forewarning of fainting (syncope) from human heart waves12, 18-19; 
  - deception detection from polygraph data22.  
 

A third project was sponsored by the U.S. Department of Energy (DOE/NE-20) under their Nuclear 
Energy Research Initiative (NERI). ORNL was funded at $157K in FY2000, $481K in FY01, and $479K 
in FY02 to develop an advanced prognostic for machinery faults of progressively increasing severity, and 
to forewarn of uncontrolled failures. The NERI project results are thoroughly documented in various 
technical reports and conference papers26-35. The ORNL technology detects and predicts a rich variety of 
equipment faults (e.g., drill-bit wear, tool chatter, bellows coupling failure, imbalance, misalignment, 
offset, cut rotor bars, turn-to-turn short) in motors and motor-driven components (e.g., pump, bearing, 
gearbox, cracked blade, structural failure) via analysis of process-indicative, time-serial data (motor 
current, voltage, power, acceleration, torque, stress and strain)23-38. Success for this large array of diverse 
processes gives confidence that the paradigm may work for any nonlinear system. 
 

The present laboratory-class technology uses analyst-intensive, off-line analysis of archival data on 
desktop computers. The left column of Table 1 summarizes the features of the present research-class 
technology, as read from top to bottom. A prototypical device for potential commercialization needs to 
provide analyst-independent, on-line analysis of (near-)real-time data via a hand-held device. The right 
column of Table 1 shows the features of a practical prototype device, also as read from top to bottom. In 
response to a call for proposals from ORNL’s Office of Technology Transfer (OTT) early in 2004, we 
proposed development of a prototype for a specific application (e.g., forewarning of epileptic seizures) to 
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bridge the gap between today’s research-class technology (left column of Table 1) and a practical 
prototype (right column of Table 1), as shown in the center column of Table 1. OTT provided $50K for 
the proposed work. We anticipate subsequent use of the same technology infrastructure for other 
applications in the biomedical (e.g., forewarning of ventricular fibrillation) and machinery (e.g., 
forewarning of structural failure, forewarning of bearing failure) fields of use. The present work addresses 
near-term items (a’) – (b’) in Table 1, as the minimal set for a prototypical device.  
 

Table 1: Summary of Improvements for Commercialization 
  

Current laboratory-class technology Bridge Need for commercializable prototype 
(a) off-line use of …   now (a’) on-line use of … 
(b) a desktop computer for … now (b’) a held-held device for … 
(c) analysis of archival data … ≥1 year (c’) analysis of (near) real-time data …  
(d) that is analyst-intensive … ≤3 years (d’) that is analyst-independent … 
(e) giving binary forewarning that is … >3 years (e’) to give remaining time to failure, … 
(f)  machine- and fault-specific, after which … >3 years (f’)  independent of the machine or fault ... 
(g) failure occurs in an uncontrolled fashion … >3 years (g’) allowing failure avoidance or control … 
(h) using high-cost laboratory resources … ≥5 years (h’) at reasonable cost … 
(i)  that depend on laboratory infrastructure ≥5 years (i’)  reliably/independently for years 
_____________________________________________________________________________________ 
 

Task 1 of this project involved specification of the basic hardware and software for real-time data 
acquisition and analysis of data on a hand-held device (HHD), such as a digital signal processor or 
personal digital assistant. Modern HHDs have ≥64 MB of memory and a CPU speed of 624 MHz, which 
are not incompatible with the computational requirements for the  nonlinear analysis of Sect. 3.  
 

Task 2 of this work involved conversion of the present research-class FORTRAN nonlinear-
analysis software into code for the HHD. This task included a graphical user interface to (i) control the 
data acquisition, (ii) perform forewarning analysis, and (iii) display the results. This work began with an 
existing student-developed MatLab34 GUI to display the research results. This task also involved 
verification of the forewarning of epileptic events on the HHD against the results of our most recent 
work17 via real-time playback of existing archival data. The research-class software was developed and 
used on a variety of computers and operating systems over the past decade: IBM RISC/6000 under IBM’s 
version of UNIX, DEC-alpha under DEC’s version of UNIX, Intel-PII under Windows NT and Windows 
2000, and AMD-AthlonTM and Intel Pentium-4TM under Windows2000TM and Windows-XPTM. The 
software required little, and usually no, change to move from one computer and/or operating system to the 
next. Thus, we anticipated no problems with implementation on a HHD. Further improvements in speed 
and the memory requirement are possible by reducing unnecessary arrays and subroutines.  
 

Task 3 of this effort entailed the project management, including work coordination, documentation 
of the results, and formulation of any patent application(s). 
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3. ANALYSIS METHODOLOGY 
 
 

After initializations, we read the stream of time-serial data and divide it into contiguous, non-
overlapping windows of N data points. This step is labeled (A) in Fig. 1. Subsequent steps are noted 
below and labeled sequentially in Fig. 1. Each step operates on one window of data points, unless 
otherwise noted. 

 
The artifact signal is removed from each cutset with a novel zero-phase quadratic filter39, using a 

moving window of data points, ei, with the same number of data points, w, on either side of a central point 
[step (B) in Fig. 1]. We fit a quadratic curve in the least-squares sense over this window, taking the 
central point of the fit as the best estimate of the low-frequency artifact, fi. The residual value, gi = ei – fi 
(artifact-filtered data), has essentially no low-frequency artifact activity. 
 

We convert each artifact-filtered point into a discrete symbol, si, as one of S different integers in the 
range, 0 ≤ si ≤ S–1. For this purpose, we obtain the minimum, gmin, and maximum, gmax, in the data of the 
first baseline cutset [step (C) in Fig. 1]. We use contiguous, non-overlapping partitions to obtain uniform 
symbols: si = INT[S (gi - gmin)/(gmax - gmin)]  for gi < gmax, and si = S – 1 for gi = gmax to maintain exactly S 
discrete symbols [step (D) in Fig. 1]. The function, INT, converts a decimal number to the next lowest 
integer [e.g., INT(3.14) = 3]. 

 
The analysis assumes that the complex, high-dimensional brain dynamics evolve over a bounded, 

low-dimensional region, called an “attractor” in the parlance of nonlinear dynamics. Thus, the symbolized 
data can be converted into a phase-space (PS) representation [step (E) in Fig. 1] by standard 
reconstruction of the dynamics via the time-delay vectors41. The single-channel form is: 
 
    y(i) = [si, si+λ , . . . , si+(d–1)λ]                                                                                                           (1) 
 
Eq. (1) converts the time-serial data into a sequence of discrete locations (phase-space states) within a d-
dimensional geometric object to extract event forewarning on the basis of a local time delay, λ, 
dimensionality, d, and signal precision, S. Moreover, information exchange in the brain connects local 
processes, implying that a multi-channel PS vector of C channels42 may extract additional information:  
 
    y(i) = [s(1)i, s(1)i+λ , … , s(1)i+(d–1)λ, …, s(C)i, s(C)i+λ , … , s(C)i+(d–1)λ].                                     (2) 
 
Here, s(k) denotes symbols from the kth channel, 1 ≤ k ≤ C. Symbolization in this more general case 
divides the multi-channel phase-space into SCd bins. The present analysis uses two channels (C=2). 
 

We next tabulate the number of points that occur in each PS bin, y(i), to obtain the distribution 
function (DF) of the PS points on the attractor [step (F) in Fig. 1]. We denote the population of the ith bin 
of the DF, Qi, for the base case, and Ri for a test case, respectively. An (un)changing DF indicates 
(un)altered dynamics. We save the DFs from first B cutsets as baseline DFs [step (G) in Fig. 1] to 
represent non-seizure dynamics, with B=10 to capture sufficient variability. 

 
The baseline DFs are exhaustively compared to one another in pair-wise fashion [step (H) in Fig. 1] 

via the dissimilarity measures (DM) of Eqs. (3) - (6), to obtain [step (I) in Fig. 1] the mean baseline 
dissimilarity, V, and a corresponding standard deviation, σ, for each DM from the set, V = {L, Lc, χ2, χc

2}. 
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In a similar fashion, we obtain the dissimilarity3-7, 9, 16-17 [step (H’) in Fig. 1] between DFs for the baseline, 
Qi, and test case, Ri, respectively. One set of dissimilarity measures (DM) is: 
 
  ( ) ( )∑ +−=

i
iiii RQRQ ,/22χ                                                                                                     (3) 

 ∑ −=
i

ii RQL .                                                                                                                             (4) 

These summations run over all populated phase-space states. These measures account for the geometry 
and visitation frequency of the attractor. A second DM set represents the dynamical flow43 by connecting 
successive PS points, y(i) → y(i + 1). This extended form of the PS reconstruction is a 2Cd-dimensional 
vector, Y(i) = [y(i), y(i + 1)], which is obtained by adjoining two vectors at successive time steps from the 
Cd-dimensional PS of Eqs. (1-2). We call Y(i) the connected phase space (CPS), which is divided into 
S2Cd bins by the symbolization. As before, Q and R denote the CPS DFs for the baseline and test cases, 
respectively.  The PSDM compare these two CPS DFs via the L1-distance and χ2 statistic, as before7: 

( ) ( )22 /c ij ij ij ij
ij

Q R Q Rχ = − +∑ ,                                                                                                   (5) 

| | .c ij ij
ij

L Q R= −∑                                                                                                                           (6) 

The subscript c denotes connected PS measures. The first index in (5)−(6) labels the initial PS state, y(i); 
the second subscript, j, labels the sequel PS state, y(i+1).  The CPS DM have higher discrimination than 
their PS counterparts by satisfying the following inequalities7: χ2 ≤ L, χc

2 ≤ Lc, L ≤ Lc, and χ2 ≤ χc
2. 

 
The disparate range and variability of these measures are difficult to interpret, so we need a 

consistent means of comparison. Thus, we renormalize the dissimilarity measures3-7, 9, 16, 35 by comparing 
each of the B baseline cutsets to each (ith) test case cutset, and then computing the corresponding average 
dissimilarity value, Vi, of the ith cutset [step (J) in Fig. 1]. The renormalized form is: U(V) = |Vi – V|/σ, as 
the number of standard deviations that the test case deviates from the baseline mean. This renormalized 
dissimilarity is used to test for statistically significant change in the dynamics.  

 
Further analysis [step (K) in Fig. 1] uses the renormalized DM from the beginning of the data file, 

proceeding forward in time until a forewarning occurs, as defined next. A true positive (TP = 1 in the sum 
below) is a correct forewarning of a seizure event. This forewarning occurs when a specific number, NSIM, 
of PSDM simultaneously exceed a threshold, UC, for a number of sequential occurrences, NOCC, within a 
preset forewarning window, T1 ≤ TSZ - TFW ≤ T2, before the seizure onset time, TSZ. This analysis uses a 
value of T1 = 1 minute, based on input from a physician collaborator that with even one minute of 
forewarning, useful things could be done to help the patient medically44.  The corresponding forewarning 
time is TFW. Recent work by Litt et al.45 found precursors that occur up to several hours before epileptic 
events. Consequently, this work uses a forewarning window out to T2 ≤ 8 hours before the epileptic event 
to obtain ≤5.5 hours of forewarning before the seizure event. A false positive (FP) is a seizure 
forewarning in a non-event dataset, or when TSZ - TFW < T1 or TSZ - TFW > T2. A true negative (TN = 1) 
corresponds to no forewarning in a non-event dataset. No forewarning in an event dataset is a false 
negative (FN). This analysis is repeated for each additional window of time-serial data [step (L) in Fig. 1]. 

 
We tabulate the occurrence of forewarning for each dataset via the above algorithm, and then 

combine the results for all of the datasets. The algorithmic flow for this portion of the methodology (not 
in Fig. 1) involves loops over NSIM , NOCC , UC , each of several data channels, and over datasets. We 
determine channel-consistent forewarning16 in the ith dataset for the jth channel of the kth patient by 
summing the number of true instances, Tjk  = Σi [TPijk + TNijk]. The sum over datasets runs from i=1 to 
M(k) = number of datasets for the kth patient. The occurrence of Tjk ≥ 2 indicates consistency in more than 
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one dataset for the same patient, while Tjk ≤ 1 means that the jth channel provides no such consistency. 
The best channel consistency is ck  = max (Tjk), for Tjk ≥ 2 and k fixed; ck  = 0, if Tjk=1; and ck = 1 for 
patients with only one dataset. The channel-consistent total-true rate then becomes fT = [Σk ck]/[Σk M(k)]. 
Here, k runs over all P of the patients, weighting each dataset equally. Steps (K)-(L) are very fast and are 
not presently implemented on the prototypical HHD; they are described here for completeness and clarity. 
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4. IMPLEMENTATION ON A HAND-HELD DEVICE 
 
 

The analysis of Sect. 3 was converted from existing research-class FORTRAN code to C/C++ 
using Microsoft Visual C++ version 6.0, and then to C# (Microsoft Visual .Net version 1.0).  The 
majority of the work involved conversion of the programming commands and array syntax from one 
language to another. Standard functions (e.g., square root) were replaced with the appropriate language-
specific functions. The basic code structure, procedures, and algorithms were retained. Table 2 
summarizes the FORTRAN subroutines that were retained in the C/C++/C# versions with the same 
names, except for capitalization. The only object-oriented classes in the C/C++ version were for data 
input, data output, and error messages.  The C# version also uses object-oriented classes for the GUI and 
for the sort method, as described in the next paragraph. Two versions of the C# implementation exist. One 
is a single executable version. The second is a client/server version, which consists of a server program 
that runs on a laptop or desktop (to emulate acquisition of data and to receive the PocketPC results) and a 
client that runs the forewarning analysis on a PocketPC (400-MHz Compaq iPaq PocketPC, Model 3970 
with 64 MB of memory, running PocketPC 2002 version 3.0.11171 and .Net Compact Framework 
version 1.1). 
_____________________________________________________________________________________ 

Table 2: Summary of Routines in Forewarning Implementation 
 
Subroutine  Brief Description      Step in Fig. 1  Comment                         
aaaanal2   high level routine         ----     choose type of data analysis 
analysis    call steps in Fig. 1        A-J 
artfiltr     artifact filter            B 
chisquab   baseline dissimilarities      H-I 
chisquar   test-case dissimilarities     H’-J 
concpsdf   construct DF            E-F 
datasett    extract data for analysis     A 
mcphssp0  setup of PS analysis       E-F 
mcphssp1  perform PS analysis       E-F 
quiksor1    sort (next paragraph)       F       C/C++ version; C# version uses built-in function 
readdata   input data             A 
savebscs   save baseline DFs        G 
statistc    linear statistics          C 
symbunif   uniform symbols         D 
writesum   output results summary     J                                       
 
Each phase-space state, y(i), is uniquely represented by an integer via modular arithmetic: 
                 k=d-1 

IDi ≡ ID[y(i)] = Σ si+kd Sk; CIDi ≡ ID[Y(i)] =  ID[y(i)] + Sd ID[y(i+1)].                (7) 
             k=0 

Thus, the EEG dynamics are represented by a sequence of identifiers for the phase-space state, IDi, and 
the connected phase-space state, CIDi. The analysis sorts this sequence of identifiers from the smallest to 
largest value. Then, the method tabulates the distribution function by counting the number of occurrences 
of each (rank-ordered) identifier. The FORTRAN version uses the QuickSort algorithm from the book, 
Numerical Recipes in FORTRAN46;the C/C++ version also uses the QuickSort algorithm from a 
companion book, Numerical Recipes in C47.  The FORTRAN and C/C++ QuickSort routines are 
algorithmically equivalent. The C# version uses the built-in Array.Sort method that is provided by the 
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.Net Framework Class Library, also based on the QuickSort algorithm. This analysis is part of step (F) in 
Fig. 1 (Table 2).  
   

Further changes were required for the PDA platform to accommodate restrictions in memory (64 
MB) and software emulation of floating-point arithmetic. First, the FORTRAN, C/C++, and C# compilers 
each handle memory allocations in different ways. Second, the FORTRAN version apparently places all 
(or most) of the data in virtual memory, because most of the variables are in common blocks. This 
allocation results in the FORTRAN code using 2.82 MB of random access memory and 1.07 GB of 
virtual memory; see Table 3 for typical values. The C/C++ version will not run in the Microsoft Visual 
Studio environment if these large data arrays are allocated statically. Rather, the large data arrays must be 
allocated dynamically via the “new” or “malloc” operator. The C# version does not have this limitation. 
Third, all of the large data arrays in the C/C++/C# versions were reduced in size using the minimum array 
indices for the best EEG analysis parameters17. Several of the FORTRAN double precision arrays were 
converted to single precision without affecting the accuracy of the results in the C/C++/C# versions. 
 
 

Table 3: Summary of Validation Results 

Language Program Platform Compiled CPU Time 
(h:mm:ss)

Wall 
Clock 
Time 

(h:mm:ss) 

Peak 
Memory 
Usage 
(Mb) 

Virtual 
Memory 

Size 
(Mb) 

Release 0:00:14 0:00:15 2.82 1069.271.8 GHz PC 
Debug 0:00:15 0:00:16 2.924 1073.16FORTRAN stand-

alone 
400 MHz laptop Release 0:00:54 0:01:00 2.732 1069.24

Release 0:00:16 0:00:17 6.244 5.7481.8 GHz PC 
Debug 0:00:42 0:00:45 6.308 5.748C/C++ stand-

alone 
400 MHz laptop Release 0:01:27 0:01:37 6.168 5.728

Release 0:00:26 0:00:27 11.292 9.9161.8 GHz PC 
Debug 0:00:27 0:00:28 11.912 10.216C# stand-

alone 
400 MHz laptop Release 0:01:36 0:01:43 13.36 12.176

server 1.8 GHz PC Release 0:26:00 23.464 20.184C# 
client 1.8 GHz PC Release 0:01:04

0:01:56 
16.796 14.456

server 1.8 GHz PC Release   13.152 11.088
C# 

client 
PocketPC 
emulator Release   

2 hours 
11.16   

server 400 MHz laptop Release 0:02:34 12.936 11.028
C# 

client 
400 MHz 
PocketPC Release   

7-8 hours 
15.88   

 
Table 3 shows test results for the FORTRAN (first row). The “Debug” form has extra code and 

print statements for debugging, which the FORTRAN compiler automatically inserts. The “Release” form 
excludes the extra code and print statements. The times in Table 3 are in a format of hours, minutes, and 
seconds [h:mm:ss], unless otherwise noted. The results are for the EEG dataset, DAT.F00163, which 
spans 5,000 wall-clock seconds (1 hour and 24 minutes). The output was a single line with the four 
PSDM values for each analysis window of N data points. 
 

Subsequent work involved conversion of the FORTRAN to a stand-alone WindowsTM application 
in C/C++ (second row in Table 3) on a 1.8-GHZ Pentium-4 PC with 2 GB of memory, under the 
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Windows XP SP2 operating system. (The release mode of C/C++ only compiles if the optimizer is 
disabled under project settings.) The C/C++ results duplicate the FORTRAN results to 7 digits for 
representative datasets17 (DAT.F00163, DAT.F00308, and DAT.F00207). 

 
Further revisions provided a stand-alone C# code (third row in Table 3), which was tested on the 

same 1.8-GHZ Pentium-4 PC. These analyses show that the processing (wall-clock) time for the stand-
alone versions (14 – 28 seconds) is much faster than real-time (5,000 seconds of EEG data).  Execution of 
the same stand-alone C# code on a 400-MHz Pentium-2 laptop (384 MB of memory under WindowsTM 
XP SP2) yielded a processing (wall-clock) time of 103 seconds, which also is much faster than real-time. 
The C# version duplicates the FORTRAN results to 6-7 digits, when run on the 1.8-GHz Pentium-4 PC. 
Consequently, the stand-alone C/C++/C# software duplicates the original FORTRAN results, in terms of 
accuracy and much-faster-than-real-time processing. 
 

The C# software was next divided into two components (fourth row in Table 3). The server 
component emulates data acquisition, transmission of that data to the client, and receipt of the analysis 
results from the client. The client component provides the forewarning analysis, as described in Sect. 3. 
The processing time for this case (6,960 seconds) is 39% more than the 5,000-second length of the 
dataset. The fifth row in Table 3 shows the results for software emulation of the PocketPC on the 1.8-
GHZ Pentium-4 PC, giving a processing time that is 44% more than the dataset length. These two 
simulations clearly show a dramatic decline in processing speed, arising from the server-client 
interactions.  
 

Finally, the client software was installed and tested on the PocketPC hardware (sixth row of Table 
3), with the server code on a 400-MHz Pentium-2 laptop with 384 MB of memory under WindowsTM XP 
SP2. The processing time (7-8 hours) depended on network variability. The C# client on the PocketPC 
uses integer arithmetic to emulate floating-point analysis, and duplicates results only to 3-4 digits for 
DAT.F00163. Further work (beyond the scope of the present project) is needed, as follows. Use of a 
faster-CPU HHD will improve the interaction efficiency between the server and client software. 
Improvements in the wireless network link should yield a faster, more stable client-server 
communications. A HHD with a floating-point arithmetic unit will improve the analysis precision.  
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5. FUTURE POTENTIAL APPLICATIONS 

 
 

Implementation of the EEG-epilepsy forewarning analysis on a hand-held device provides an initial 
bridge between the research-class version and a prototype for practical use of the technology, as discussed 
in Sect. 2. This success also provides a personal monitor for a wide variety of potential biomedical 
applications. An advanced version of the HHD might include a mobile phone and global-positioning 
system (GPS) in severe cases for an automatic request of emergency responders to the patient’s location. 
We briefly discuss these future potential applications below. 
 
1. Epilepsy Diagnosis for inpatients in an EEG monitoring unit. Wireless forehead electrodes initially 

would send data to the hand-held device for analysis. After receipt of a seizure forewarning, a full set 
of scalp electrodes could be installed by hospital staff for acquisition of complete, multi-channel EEG 
data. This approach would eliminate tethering to a monitoring station, and would reduce the potential 
for accident or injury by alerting staff (and the patient) to an impending seizure event; 

 
2. Pre-surgical epilepsy evaluation for outpatients undergoing 24-hour monitoring. After receipt of a 

seizure forewarning, the patient could report to the hospital monitoring unit for pre-surgical 
evaluation, including video and EEG capture of the seizure activity. Use of outpatient monitoring 
could dramatically reduce inpatient hospital cost; 

 
3. Refractory epilepsy monitoring for outpatients undergoing 24-hour monitoring. After receipt of a 

seizure forewarning, the patient could follow the physician’s pre-arranged protocol. Examples 
include: stop dangerous activity (e.g., operating a motor vehicle, climbing a latter, handling hazardous 
material), lie down until the seizure event passes, take medication, and/or call an emergency 
responder; 

 
4. Child epilepsy monitor that would alert the care-giver of the impending event for appropriate action; 
 
5. Vagal nerve stimulation only after receipt of a seizure forewarning, which we conjecture would 

improve the present 30% event suppression rate under continual simulation. The forewarning device 
could be programmed to automatically activate the vagal nerve stimulator. Further research is needed 
to confirm this conjecture; 

 
6. Functional imaging studies (e.g., fMRI, PET, SPECT) of an epilepsy outpatient after the receipt of a 

seizure forewarning. Use of outpatient monitoring would dramatically reduce the medical costs and 
increase the likelihood of imaging studies during the pre-ictal and/or seizure period; 

 
7. Epilepsy drug discovery that would be enhanced by 24-hour, ambulatory monitoring during trials of 

candidate drugs to screen for those worth pursuing in multi-center trials; 
 
8. Stroke detection that would be based on ambulatory EEG and electrocardiogram (ECG) monitoring 

of high-risk individuals. This approach would enhance the recognition of stroke onset for prompt 
application of clot-dissolving therapies prior to irreversible brain damage (currently ~5% of patients 
receive such therapy due to delays). The patient and medical personnel could be alerted; 

 
9. Early diagnosis of Parkinson’s Disease and other dynamical brain disorders via advanced 

analysis of EEG dynamics for early treatment to slow or halt the deterioration. Tremor monitoring 
(e.g., 3-axis acceleration, electrical activity of the muscles) and scalp EEG monitoring could provide 
indication for clinical diagnosis of Parkinson’s or other neuromuscular pathologies; 
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10. Diagnosis of CNS pathologies that would be based on analysis of sensory-evoked potential changes 

in EEG. Present analysis uses (for example) EEG changes immediately after (e.g., within 300 
milliseconds) presentation of sensory input (e.g., a computer image or sound); 

 
11. Hands-free computer control, which is hampered by the presence of confounding eye-blink (and 

other facial muscular) activity in scalp EEG. We conjecture that removal of these artifacts via 
ORNL’s patented artifact removal filter (IP8) could greatly enhance hands-free computer control via 
scalp EEG. Specific applications include computer control by paraplegics and quadriplegics (e.g., 
wheelchair, prosthetic devices), rapid/complex operations by airplane pilots, gamers, etc. Present 
approaches use invasive intracranial electrodes in paraplegics and quadriplegics to avoid these EEG 
artifacts; 

 
12. Head trauma diagnosis via EEG changes (e.g., intracranial pressure or bleeding); 
 
13. Cochlear-implant monitor via analysis of EEG and imposed sounds to evaluate the brain’s 

processing of signals if hearing is not restored; 
 
14. Drug/chemical effects diagnosis via EEG changes to identify drug overdose/abuse or chemical 

exposure with central-nervous-system (CNS) toxicity; 
 
15. Motion disorder management by EEG analysis for onset detection, followed by deep brain 

stimulation and/or trans-spinal drug infusion; 
 
16. Detection of brain ischemia (loss of blood flow) during brain surgery, which is not possible with 

present technology; 
 
17. Drowsiness monitor, using extraction of the eye-blinks (an indicator of sleepiness) from scalp EEG 

via ORNL’s patented artifact filter (IP8) coupled with EEG analysis. This application could alert the 
operator, supervisor, or others as appropriate. Typical users include long-haul commercial truck 
drivers, airplane pilots on long flights, patients with sleep disorders, guards, operators of 
critical/heavy equipment, medical and military personnel, and shift workers; 

 
18. Fitness-for-duty monitor for key personnel in high stress situations via EEG analysis. Typical users 

include air traffic controllers, reactor operators, military personnel, soldiers, physicians, and 
astronauts; 

 
19. Automated sleep staging of nighttime polysomnogram data in outpatients to reduce the physician’s 

time (and cost) for interpretation of a sleep study; 
 
20. Daytime sleepiness in ambulatory outpatients for a sleep disorder. This approach would be more 

accurate than personal recall, and would be much less expensive than inpatient monitoring; 
 
21. Cardiac diagnosis of ambulatory outpatients via ECG monitoring using an augmented or “smart” 

Holter monitor. An advantage over current Holter monitor technology is forewarning of cardiac 
events; 

 
22. Forewarning of cardiac events in ambulatory outpatients after a heart attack or with other high-risk 

indicators for ventricular or atrial fibrillation. After receipt of an event forewarning, the patient could 
immediately follow the physician’s pre-arranged protocol, as in item 3. A more advanced device 
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could incorporate event forewarning into pacemaker/defibrillators to allow intra-cardiac injection of 
therapeutic agent, followed by preemptive shocks if drug injection does not prevent the event; 

 
23. Forewarning of cardiac events during transport by an emergency responder to enable appropriate 

in-transit care; 
 
24. Fetal ECG monitor during labor and delivery, allowing the mother more comfort and 

enhancement of labor by walking and maintenance of an upright position; 
 
25. Monitor for premature and newborn infants with an elevated risk for cardiovascular events or 

sudden infant death syndrome (SIDS). The analysis could include ECG, EEG, and/or chest sounds; 
 
26. Heart valve monitors via ECG or chest sounds to forewarn of an impending failure; 
 
27. Fainting (syncope) monitor via ECG analysis for susceptible patients (e.g., orthostatic hypotension, 

Shy-Draeger syndrome, and cardiac pathologies). Syncope also occurs in healthy people (e.g., 
astronauts after many days in a micro-gravity, military aircraft pilots after a long flight) when they 
attempt to stand and/or walk. Syncope forewarning would avoid falls and concomitant injuries;  

 
28. Shock monitor via ECG analysis for trauma patients (e.g., surgery, accident); 
 
29. Abdominal aortic aneurism (AAA) to forewarn at-risk patients of impending or incipient rupture 

via analysis of ECG, abdominal sounds, and/or aortic stress-strain data; 
 
30. Diagnosis of lung disorders via analysis of chest sounds for breathing difficulty. Shortness of breath 

may also be an indicator of a cardiac pathology (items 20-22). The ability to distinguish cardiac and 
pulmonary pathologies clearly will require careful research;  

 
31. Forewarning/detection of an asthma attack via chest-sound analysis to alert the patient, care-giver, 

or emergency responders. Current technology uses an exhalation peak-flow meter; 
 
32. Monitor for orthopedic implants via analysis of joint sounds and/or muscle activity to detect wear, 

infection, bone degeneration, and related abnormalities; 
 
33. Artificial-heart monitor via analysis of chest sounds and/or electrical activity to adjust pumping 

effort for metabolic demand and forewarn of mechanical failure; 
 
34. Continuous blood-glucose monitor via skin-mounted optical-sensor data for automatic insulin 

infusion and/or other therapeutic agent to maintain tight blood glucose control; 
 
35. Personal monitor for dementia-sufferer at home. Multiple sensors (e.g., EEG, ECG, and chest 

sounds) could provide early detection of illness and/or forewarning of catastrophic health events (e.g., 
items 1-34) in cognitively impaired people, who have difficulty sensing, evaluating, and/or 
communicating health-related symptoms to caregiver(s). An embedded GPS and mobile phone could 
alert the caregiver to unanticipated excursions and could preclude the patient from becoming lost; 

 
36. Multi-purpose monitor for nursing home and assisted-care residents. Typical data could include 

EEG, ECG, pulse oximetry, body temperature, and geographical location via GPS. Caregivers could 
then respond promptly to cardiac, or breathing events. Prevention of wandering-related falls 
(particularly in dementia patients) would be highly cost-effective by alerting staff as early as possible; 
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37. Multi-purpose soldier monitor via clothing-embedded sensors with wireless transmission to the 
HHD for assessment of the physiological and battle readiness via multi-channel analysis. Typical data 
could include EEG, ECG, body temperature, pulse oximetry, and chest sounds. Typical battlefield 
endpoints include exposure to chemical/biological/radiological agents, fatigue, stress, alertness, 
injury, unconsciousness, breathing difficulty, and septic shock from an infected wound.  An 
embedded GPS and mobile phone could request a medical responder for prompt care as in Item 3; 

 
38. Sports/fitness monitor via ECG and chest sounds to assess training results in terms of healthy 

variability (e.g., as a function of jogging speed, distance, and effort level). 
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Figure 1: Flow diagram for nonlinear analysis. The letters in each box refer to the corresponding 
description in the text of Sect. 3. 
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