NCSX Construction Update

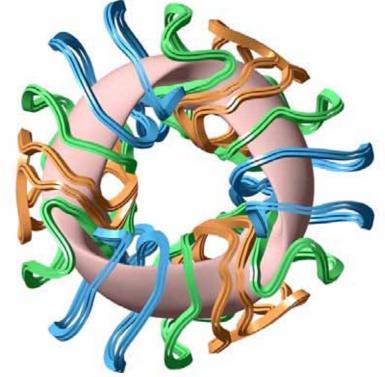
Hutch Neilson for the NCSX Team

Princeton Plasma Physics Laboratory Oak Ridge National Laboratory

NCSX Program Advisory Committee Meeting #8 Princeton Plasma Physics Laboratory November 9, 2006

NCSX Construction is Making Excellent Progress

- Component production is going well.
 - Vacuum vessel completed.
 - 6 modular coils (of 18) completed through VPI.
- Earlier production start-up challenges were overcome.
 - Modular coil winding form vendor delays.
 - Modular coil winding learning curve.
- Physics requirements are being met.
 - Complex 3D geometries realized.
 - Field errors are minimized.
- Assembly activities are starting.


NCSX Optimized Configuration to Test High β, Quasi-axisymmetric Stellarator

Plasma Properties at $\beta = 4\%$

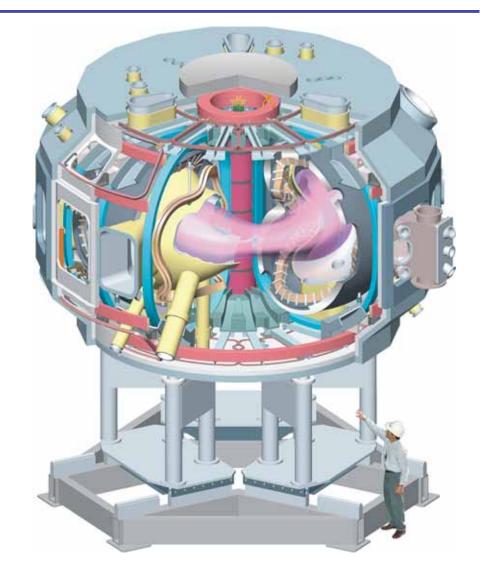
- Quasi-axisymmetric. Low ripple.
 - Tokamak-like particle and flow behavior.
- Stable, good magnetic surfaces.
- Low R/(a) (4.4)
- Reverse shear q-profile.
- 25% of transform from bootstrap.
- Constrained by engineering feasibility metrics.

Benefits

- Steady state without current drive.
- High- β , disruption-free operation.
- Compact, tokamak-like performance.

- 3-period plasma.
- 18 modular coils (3 shapes).
- TF, PF, & helical trim coils (not shown).

Mission:


- Assess MFE attractiveness
- 3D toroidal plasma physics

Stellarator is Being Constructed to Mission Requirements

- R = 1.4 m, $\langle a \rangle$ = 0.3 m
- B = 1.2 2.0 T / pulse 0.5 2 s.
- Mod coil current center geometry as specified by optimization.
- Plasma configuration flexibility.
- Initial trim coil set.
- Field errors minimized (±1.5 mm coil accuracy, low µ, low eddy currents, stellarator symmetry)
- Diagnostic and heating port access.
- Embedded magnetic loops.
- VV bakeable to 350 C.

Acceptance Tests @ CD-4

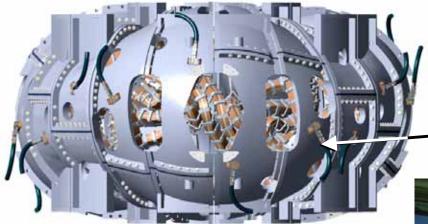
- First Plasma @ B=0.5 T, $I_P = 25$ kA.
- e-beam mapping @ B= 0.1 T

Enormous Progress Since PAC-7 (July, 2004)

Status at PAC-7

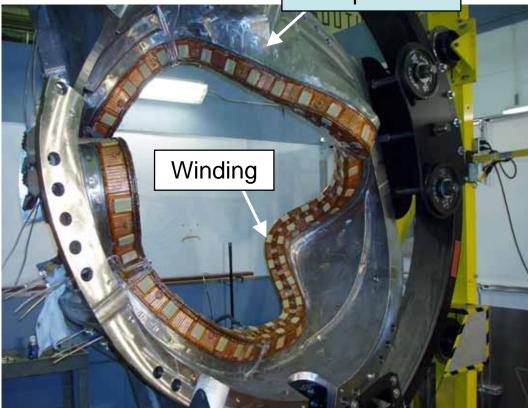
- Completed Project Reviews needed for DOE construction approval.
- Awaiting proposals for winding form and vacuum vessel contracts.
- \Rightarrow Received construction approval (CD-3) & placed contracts in Sept., 2004.

Since PAC-7, project has come a long way:


- Completed major manufacturing prototypes (MCWF, MC winding, VV).
- Completed vacuum vessel manufacture.
- Brought modular coils into routine production.
- Placed fixed price contract for TF coils.
- Developed field period assembly plans. Held international peer review.

In moving from design, through R&D, and into production, significant challenges were successfully overcome.

Coil Design Reduces Field Error Risks


Modular Coil

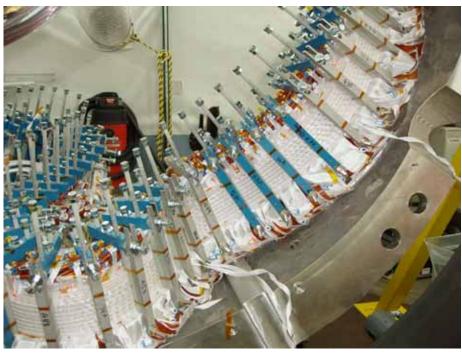
System

- Robust structural shell minimizes deflections.
- Toroidal and poloidal breaks inhibit eddy currents. $\tau \approx 17$ ms.
- Winding form stays with the coil as a permanent structure.
- Lead / crossover arrangement minimizes field errors.

Modular coil winding form (MCWF) one per coil.

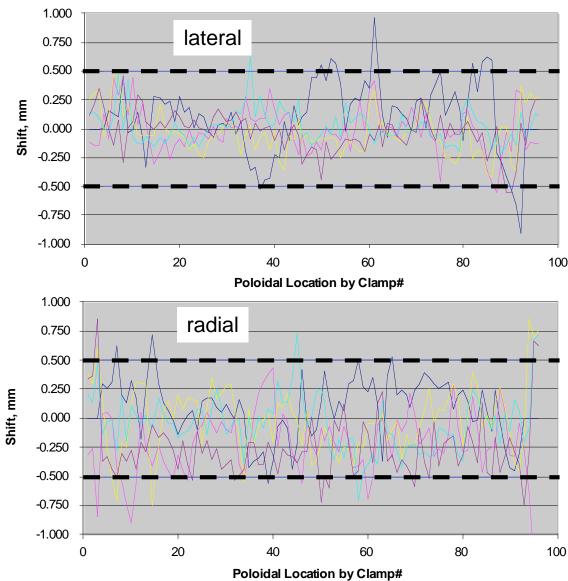
Winding Forms Are Manufactured to ±0.25 mm Tolerance on Critical Surfaces

- Custom casting alloy (close to 316LN st. steel)
 - Low permeability ($\mu < 1.02\mu_0$)
 - Air quenchable (minimizes distortion risk).
- Optimized casting mold.
 - Hard wood pattern for part reproducibility.
 - Flow-solidification simulations used to design molten metal feed system.
- Machined on a series of multiaxis milling machines.



All 18 Have Been Cast 10 Have Completed Machining and Shipped to PPPL.

Winding Process Controls Current Center Position

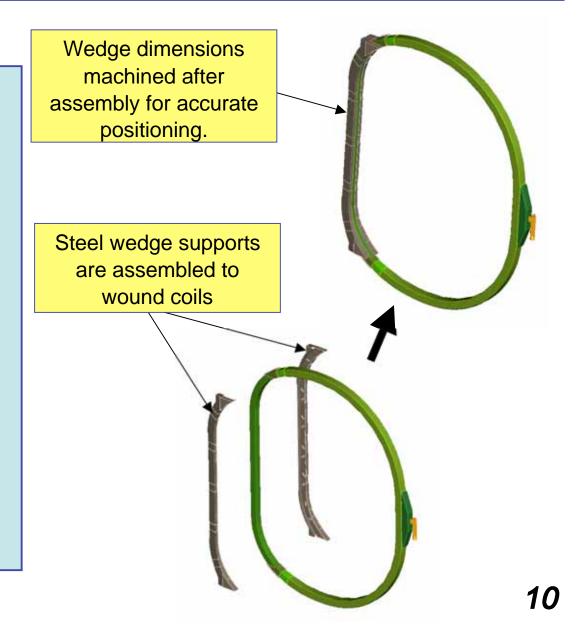

- Conductor is flexible copper "rope".
 - Follows "Tee" winding surface.
 - Small (9x10 mm) conductor, wound
 - 4-in-hand, maintains shape in bends.



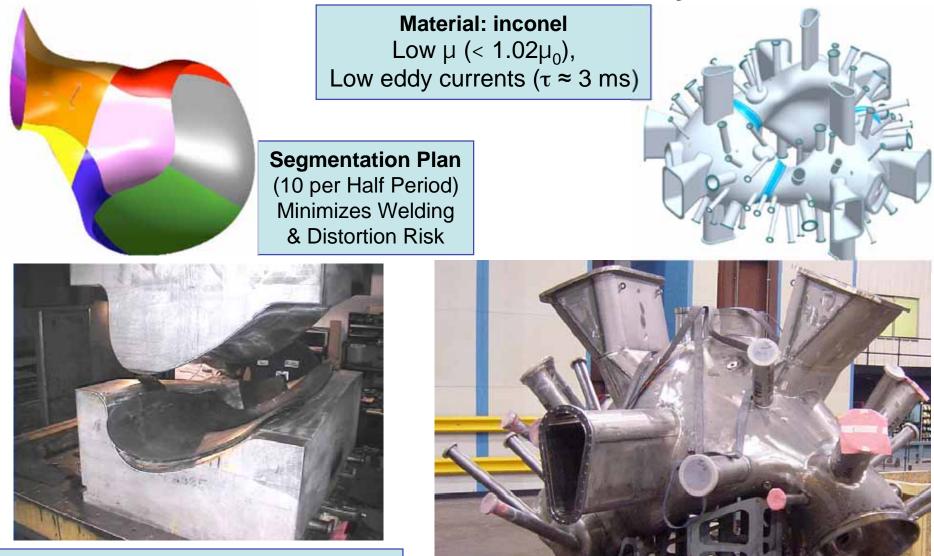
- Winding pack dimensions are adjusted with clamps.
 - Compensates for winding form errors.
 - Bundle secured with fabric strips after adjustment.
 - Complete assembly is epoxyimpregnated by VPI.

Coil Construction Achieves ±0.5 mm Accuracy

Current Center Position Error (5 Type C Coils)


6 Coils Have Been Completed

- First coil was successfully cooled down and tested at full current.
- All coils are tested at RT: –insulation strength
 - -coil resistance
 - cooling line pressure.


9

TF Coil Construction Ensures Accurate Positioning

- TF contract was awarded to Everson Tesla, Inc. (U.S.) in May.
- Their winding line has been constructed and is being tested.
 Winding will start in November.
- They have a lower-tier subcontract in place to supply the wedge supports.
- First coil will be delivered in February.

Large-Panel Vacuum Vessel Construction Achieved ±5 mm Accuracy

Panels Pressed at Room Temp. Assembled & welded on skeletal fixtures

All 3 Field Period Sectors Completed!

1

Assembly Activities Have Started

Mounting locations for flux loops and heating/cooling hoses are transferred from CAD model to vessel using laser scanner.

Most of the Project Risks Identified in 2004 Are Now Retired

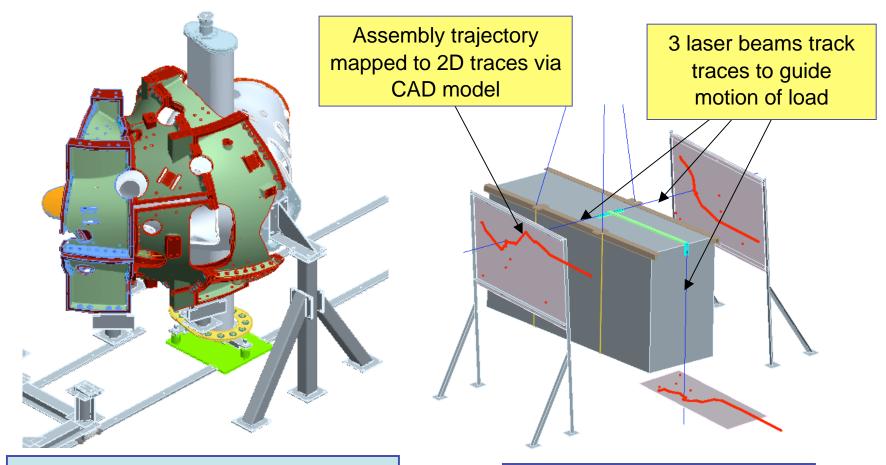
Vacuum Vessel- uncertainties in manufacturing cost and schedule.

- Basic process (large panels, full penetration welds, fixturing, inspection) was demonstrated on prototype 20-degree sector, prior to production.
 - Lesson learned from ATF experience in 1980's.
- Full vessel was completed without significant technical problems.
- Delay (~9 months) was accommodated by float in the schedule.

Modular Coil Winding Forms- cost and schedule uncertainties.

- Alloy and casting process were developed via prototype prior to production.
 All 18 castings were completed with high quality and no significant issues.
- We did not prototype machining, so efficient process had to be developed on first 3 production winding forms, causing ~6 month delay.
 - Project and vendor worked cooperatively to find optimum solution.
 - Vendor has delivered ~1 per month since February.
- Delay was accommodated by schedule float and assembly re-planning.

Project Risk Management- Continued


Modular Coil Winding: demanding requirements met.

- Cost-effective dimensional control process was developed on "twisted racetrack" R&D coil in 2005.
 - Post-winding repositioning strategy replaced original (inter-turn shimming) plan.
 Three-way win: better results, lower cost, more margin!
- Insulation weakness (~2 M Ω to ground) on first coil was corrected by minor design change and relatively easy repair. Coils now testing @ >100 G Ω .
- Process developed on twisted racetrack has been technically successful in production.
 - Cost efficiency and production rate are steadily improving.

Main remaining risks- assembly operations- are being managed.

- Process uncertainties have narrowed considerably as a result of design and R&D work since 2004.
- Recent review (reviewers from W-7X, HSX, SNS) provided valuable input.
- We are prototyping procedures on Field Period #1 while assembly is still well off the critical path.

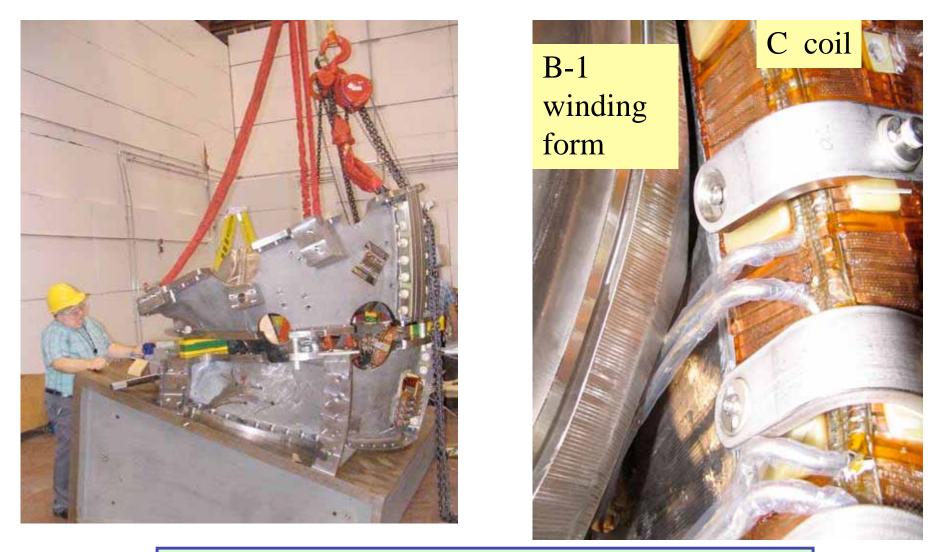
Next Step: Build Field-Period Subassemblies

Modular Coil triplets will be installed over vacuum vessel.

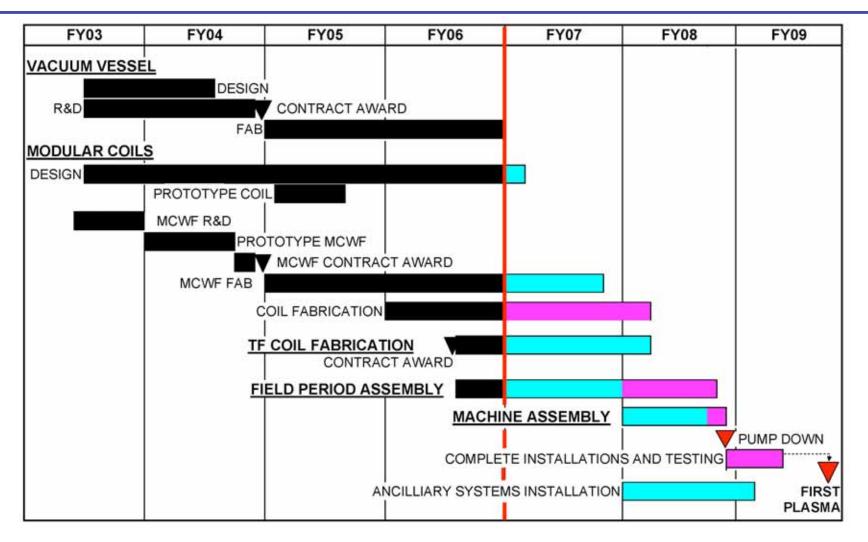
• Coils are moved along assembly trajectory suspended from crane.

Low-cost trajectoryfollowing technique was successfully demonstrated.

Coil-to-Coil Fit-Up Tests Have Started



- Test handling and metrology procedures.
- Resolve issues while assembly activities are well off the critical path.



Availability of All MCWF Types Permits Fit-Up Trials Prior to Winding

Fit-up of a Type C coil and Type B winding form

NCSX is On Schedule for July, 2009 First Plasma

Construction Project Budget: \$92.4M

• Scope is being managed with a tight focus on CD-4 objectives.

ECH First Plasma Scenario is Being Investigated

Replace 25 kA Ohmic First Plasma Scenario with Currentless ECH Scenario?

• Available hardware at ORNL & PPPL offers several Day-1 ECH possibilities:

Source	Frequency/ harmonic #	Resonant field (T)	Critical density x1012 cm-3	Day-1 Power (kW)
28 GHz gyrotron	28 GHz / fund 28 GHz / 2nd	1 0.5	9.2	40 kW
	15.3 GHz/fund	0.546	2.7	15 kW
18 GHz klystrons	18 GHz / fund.	0.64	3.8	20-30 kW

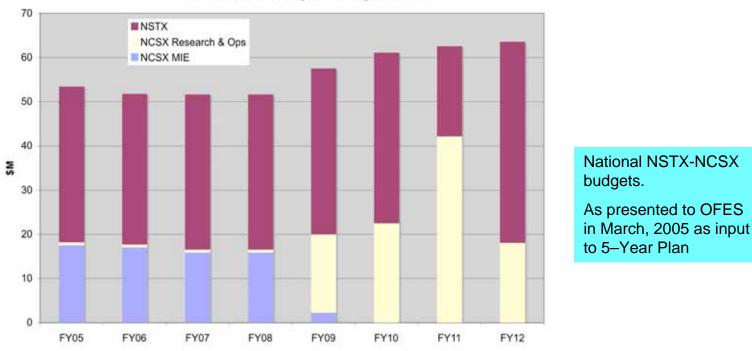
- Standalone gyrotron system at ORNL could produce 40 kW, 500-ms pulse.
 - HV power supply, magnet, socket, controls, window cooling system.
 - ATF launcher can be used to provide focussed power.
- 15.3 GHz operation of 28-GHz gyrotron is being tested at ORNL.
- Possible ECH costs: transportation, installation at PPPL, launcher mods.
- Offsetting savings:
 - Reduce number of coil circuits from 4 to 2 (power modular coils only).
 - Some power supplies and PF coils could be deferred until later.

Standalone Gyrotron System Includes HV Power Supply, Socket, Magnet, Water Manifold

4'x6' footprint

Controls, magnet, and waveguide are compatible with 200-kW upgrade at 28 GHz using existing PPPL supplies.

ECH First Plasma Scenario May Be More Attractive


- Demonstrates currentless NCSX startup option.
 - Simpler plasma control (avoiding Ohmic currents) may be advantageous for initial operations.
 - Note: ECH is now part of NCSX program plans for FY–11 and beyond (MZ).
- Cost Assessment (preliminary): ECH First Plasma option appears promising.
 - Will complete evaluation this month in preparation for Lehman Review.

Change would affect First Plasma definition- requires DOE approval.

We will make recommendation to DOE at NCSX Lehman Review (Dec. 19-20).

PAC advice is requested.

Research Planning is Consistent With SC's Five-Year Plan (FY07-11)

NSTX - NCSX Program Budget Profile

- Combined NSTX+NCSX national budget assumed to be essentially flat.
- NCSX and NCSX will operate in alternate years.
 - Current NCSX plan: 6 weeks in FY-09, 24 weeks in FY-11.
- NCSX currently focused on construction. Small research prep effort.
- Funding for NCSX diagnostics and facility upgrades starts in FY-09.
 - Planning is under way now. PAC input requested.

Summary

- Stellarator is being constructed to mission requirements.
- Major components are in production- several finished.
- Assembly activities have begun.
- Most of the construction risks are behind us.
 - Remaining risks are actively managed.
- On schedule for July, 2009 First Plasma.
- Research program planning is under way.