

Atom Probe Tomography for semiconductor applications

Frontiers of Characterization and Metrology for Nanoelectronics NIST 2007

IBM: P. Ronsheim, P. Flaitz, J. McMurray, C. Molella, C. Parks

Imago: K. Thompson, R. Alvis, D. Lawerence

	_	_	
-	_		_
_	-	_	
_			
 _	-		_
	-		

Atom Probe Tomography for Semiconductor Applications

- IBM / Imago: joint development of semiconductor applications for APT
- Application Space
 - Materials Issues
 - NiSi on doped Si**

_	_
	_
_	
_	

Materials Characterization

- NiPtSi on arsenic-doped Silicon
 - Current technology issue
 - Impurity segregation with anneal

- Comparative analysis techniques
 - APT, SIMS, Analytical TEM

Sample description

2 keV As implant and anneal NiPt deposition with TiN cap Anneal 1 Etch unreacted metal (Ni, TiN) Anneal 2

Wafer ID	Rapid anneal 1	Rapid anneal 2	Interface roughness
62SJA0	400	Ν	1.45
61SJD1	400	Y	1.27
60SJG2	360	Y	1.2
59SJD1	360	Ν	0.97

SIMS depth profile

Backside SIMS

61SJD1

% total

TEM and Atom Probe Data

Arsenic segregation at NiSi/Si interface

Pt distibutions

IBM Server and Technology Group

As Max = 1 Pt Max = 0.5

Chemical isosurface obtained from sample 61SJD1. As and Pt distributions as viewed in 2-D projections down the analysis direction.

Summary

- Atom probe: narrow As distributions at silicide/silicon interface
- TEM confirms the As/Pt segregation using 1 nm probe
- SIMS has sensitivity, but large area analysis averages local variations

	_		
		the second second	
		_	
 _	_		_

NiPtSi formation with interfacial oxygen

- Oxidation of doped silicon surface prior to Ni deposition
- Ti films used to break up oxide
- Role of oxygen in impurity segregation, NiSi formation

Sample Description:

Arsenic implant with anneal in SOI substrate split experiment with surface oxidation (extended exposure in tool) NiPt with TiN cap: deposition at 200 C Anneal to form NiSi

SIMS and LEAP 1-D chemical analysis results: **Sample with low oxidation** prior to NiPt deposition - after 200°C drive-in anneal.

Figure 4. SIMS and LEAP 1-D chemical analysis results after phase forming anneal.

IBM Server and Technology Group

Figure 5. LEAP reconstruction of silicide – Si surface after phase forming anneal with low oxygen presence. Measured roughness is 0.56 nm

NiSi – type C

SIMS 1-D chemical analysis after drive-in anneal with **high oxygen exposure** immediately prior to the Ni deposition.

Atom Probe Tomography for Semiconductor Applications / Frontiers -- Nanoelectronics

© 2006 IBM Corporation

IBM Server and Technology Group

Figure 7. SIMS and LEAP 1-D compositional analysis results after phase forming anneal with high oxygen presence

F – As and Pt seg, rough, silicide

LEAP 1-D chemical analysis results after phase-forming anneal with high oxygen exposure immediately prior to the Ni deposition. Ni diffusion into TiN, O at front of TiN, As, Pt and SiN at TiN-NiSi interface

_	_	_		-
	_	-	-	-
			-	
	_	_	-	
		_		

LEAP reconstruction of silicide – Si surface after phase forming anneal with high oxygen exposure immediately prior to the Ni deposition. The measured chemical roughness is 3.5 nm

NiSi – type F

IBM Server and Technology Group

Summary

- SIMS:
 - Oxygen profile before and after phase formation

Diffusing Ni leaves oxygen at original interface, which eventually

merges with the TiN interface

- Atom Probe:
 - Interfacial oxide correlated to silicide roughness, protrusions
 - Arsenic segregates to interface with silicide
 - Oxygen collects just inside TiN film during anneal

Conclusions

- Complementary analysis supports tomographic atom probe results
- APT materials characterization capability demonstrated
 - Advantages in nanometer scale resolution for interface analysis
 - Mass resolution sufficient for many materials
 - 3D visualization useful to understand materials properties
- Additional work to establish precision of atom probe in impurity concentration measurements