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WHAT WORKS CLEARINGHOUSE 
EVIDENCE STANDARDS FOR REVIEWING STUDIES 

 
REVISED MAY 2008 

INTRODUCTION 

The Institute of Education Sciences (IES) and the What Works Clearinghouse (WWC) have 
identified topic areas that present a wide range of our nation’s most pressing issues in education 
(e.g., middle school math, beginning reading, and character education). Within each selected 
topic area, the WWC collects studies of interventions (i.e., programs, products, practices, and 
policies) that are potentially relevant to the topic area through comprehensive and systematic 
literature searches. The studies collected are then subjected to a three-stage review process.1 
 
First, the WWC screens studies based on their relevance to the particular topic area, the quality 
of the outcome measures, and the adequacy of data reported. Studies that do not pass one or 
more of these screens are identified as Does Not Meet Evidence Screens and hence excluded 
from the WWC review. 
 
Second, for each study that meets these initial screens, the WWC assesses the strength of the 
evidence that the study provides for the effectiveness of the intervention being tested. Studies 
that provide strong evidence for an intervention’s effectiveness are characterized as Meet 
Evidence Standards. Studies that offer weaker evidence Meet Evidence Standards with 
Reservations. Studies that provide insufficient evidence are characterized as Does Not Meet 
Evidence Screens. In order to meet evidence standards (either with or without reservations), a 
study has to be a randomized controlled trial or a quasi-experiment with one of the following 
three designs: quasi-experiment with equating, regression discontinuity designs, or single-case 
designs.2 The rules for determining the specific evidence category that a study falls under 
depends on the design of the study, as will be detailed later in the document. 
 
At the third stage, studies that are rated as meeting evidence standards (either with or without 
reservations) during the second stage are reviewed further to assure consistent interpretation of 

 
1 The WWC regularly updates WWC technical standards and their application to take account of new considerations 
brought forth by experts and users. Such changes may result in re-appraisals of studies and/or interventions 
previously reviewed and rated. Current WWC standards offer guidance for those planning or carrying out studies, 
not only in the design considerations but the analysis and reporting stages as well. WWC standards, however, may 
not pertain to every situation, context, or purpose of a study and will evolve. 
2 Randomized controlled trials are studies in which participants are randomly assigned to an intervention group that 
receives or is eligible to receive the intervention and a control group that does not receive the intervention. Quasi-
experimental designs are primarily designs in which participants are not randomly assigned to the intervention and 
comparison groups, but the groups are equated. Quasi-experimental designs also include regression discontinuity 
designs and single case designs. Regression discontinuity designs are designs in which participants are assigned to 
the intervention and the control conditions based on a cutoff score on a pre-intervention measure that typically 
assesses need or merit. This measure should be one that has a known functional relationship with the outcome of 
interest over the range relevant for the study sample. Single-case designs are designs that involve repeated 
measurement of a single subject (e.g., a student or a classroom) in different conditions or phases over time.  



2 

study findings and allow comparisons of findings across studies. During this stage, WWC 
gathers information about variations in participants, study settings, outcomes, and other study 
characteristics that provide important information about the studies and study findings. Note that 
the information collected from the third review stage is for consistency in presenting findings 
from different studies and other descriptive purposes. The information does not affect the rating 
of the strength of the study determined during the second review stage. 
 
Based on studies that Meet Evidence Standards and Meet Evidence Standards with Reservations, 
the WWC produces two types of reports: WWC intervention reports and WWC topic reports. 
Intervention reports summarize evidence from studies on a specific intervention. Similarly, topic 
reports summarize evidence from all interventions that qualify for a WWC intervention report in 
a specific topic area. 
 
Neither the WWC nor the U.S. Department of Education endorses any interventions. 
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STAGE 1: DETERMINING THE RELEVANCE OF A STUDY TO A 
WWC REVIEW 

 
OVERVIEW 

 
In each topic area identified by the IES and the WWC, the WWC collects both published and 
unpublished impact studies that are potentially relevant to the topic. The WWC review team then 
screens all collected studies to ensure that the studies to be included in a WWC review are 
eligible for the review based on WWC screening standards and criteria specified in the WWC 
review protocol developed for each topic area. The main considerations are whether a study was 
conducted within a relevant timeframe, was focused on an intervention that meets the protocol 
criteria, included a sample that meets the protocol criteria, used appropriate measures for 
relevant outcomes, and reported findings adequately. 
 

SCREENING STANDARDS 
 

�� Relevant Timeframe: The study must have been conducted during a timeframe 
relevant to the WWC review. For example, according to the WWC review protocol 
for the topic area of middle school math, only studies conducted after 1983 are 
eligible for inclusion in the WWC review. 

�� Relevant Intervention: The intervention must be relevant to the WWC review. An 
intervention designed to improve students’ writing skills, for example, is not a 
relevant intervention for the topic area of beginning reading. In contrast, a study of an 
intervention designed to improve vocabulary would be. 

�� Relevant Sample: The study’s sample must be relevant to the WWC review. In the 
topic area of beginning reading, for example, a relevant study sample has to consist of 
students in grades K–3. 

�� Relevant Outcome: The study must report on at least one outcome relevant to the 
WWC review. Student engagement, for example, is not considered a relevant 
outcome for interventions in middle school math, which focuses on achievement 
outcomes. 
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�� Adequate Outcome Measure: The measure used must be able to reliably measure a 
relevant outcome that it is intended to measure.3 For example, a nationally normed, 
validated test of math computation skills would be an adequate measure of math 
skills. In contrast, a self-report of math competency would not be considered a 
reliable measure of math competency. 

�� Adequate Reporting: It must be possible to calculate the effect size for at least one 
adequate measure of a relevant outcome. In the simplest randomized controlled trial, 
for example, this requires the study report means and standard deviations of the 
outcomes for the intervention and comparison groups respectively, and usually the 
sample sizes for the intervention and comparison groups. 

o By default, the WWC calculates effect sizes using the pooled standard deviation. 
If the pooled standard deviation is not available, the standard deviation for the 
comparison group, if available, will be used to calculate the effect sizes. 

o For studies that report effect sizes but do not provide data for computing the effect 
sizes, the WWC will report the effect sizes presented in the study unless there is 
reason to cast them in doubt (e.g., unusually large effect sizes). 

 
3 The study author must provide the title of the test and one or more of the following: (1) documentation that the test 
items are relevant to the topic, (2) a description of the test items that is sufficient to demonstrate that the items are 
relevant to the topic, or (3) evidence of test reliability. 
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STAGE 2: ASSESSING THE STRENGTH OF THE EVIDENCE THAT 
A STUDY PROVIDES FOR THE INTERVENTION’S 

EFFECTIVENESS 
 

OVERVIEW 
 

The WWC reviews each study that passes the preceding screens to determine whether the study 
provides strong evidence (Meets Evidence Standards), weaker evidence (Meets Evidence 
Standards with Reservations), or insufficient evidence (Does Not Meet Evidence Screens) for an 
intervention’s effectiveness. Studies that Meet Evidence Standards are well-designed and 
implemented randomized controlled trials. Studies that Meet Evidence Standards with 
Reservations are quasi-experiments with equating4 and no severe design or implementation 
problems, or randomized controlled trials with severe design or implementation problems. The 
evidence standards for two special cases of quasi-experimental designs, regression discontinuity 
designs and single-case studies, are under development as of September 2006. 

 

 

EVIDENCE STANDARDS 
Study Design: In order for a study to be rated as meeting evidence standards (with or without 
reservations), it must employ one of the following types of research designs: a randomized 
controlled trial or a quasi-experiment (including quasi-experiments with equating, regression 
discontinuity designs, and single-case designs). 

 
4 Equating may be done either through matching to make the study groups comparable in terms of important pre-
intervention characteristics, or through statistical controls during the analysis stage to adjust for pre-intervention 
difference between the study groups, or both. 
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If the study appears to be a randomized controlled trial (RCT), the following rules are used to 
determine whether the study Meets Evidence Standards or Meets Evidence Standards with 
Reservations. 

 
�� Randomization: For an RCT to Meet Evidence Standards, the study participants 

(e.g., students, teachers/classrooms, or schools) should have been placed to each 
study condition through random assignment or a process that was haphazard and 
functionally random. 

o For studies received by the WWC prior to December 31, 2006: If the study 
authors used the term “random assignment” but gave no other indication of how 
the assignment procedure was carried out, the label is assumed to have been 
properly applied unless there is reason to doubt this claim. 

o For studies received by the WWC beginning January 1, 2007: For the sample 
allocation to be considered “random assignment,” the study authors must report 
specifics about the randomization procedure, including: (a) details about how the 
assignment sequence was generated, (b) information about the role of the person 
who generated the sequence, and (c) methods used to conceal the sequence until 
participants were assigned to conditions. 

o Examples of haphazard assignment that might be functionally random include: 
alternating by date of birth (e.g., January 5 is placed into group A, January 7 is 
placed into group B, and January 13 is placed into group A); and alternating by 
the last digit of an identification code (e.g., “evens” are placed into group A, 
“odds” are placed into group B). Examples of haphazard assignment that are 
unlikely to be functionally random include: placing birth months January–June 
into group A, birth months July–December into group B; and using scheduling 
software to assign students to conditions. 

If the assignment process in an RCT is truly random or functionally random as described above, 
the RCT Meets Evidence Standards.  If the study has high levels of overall or differential 
attrition, it cannot receive the top rating. 
 

�� Overall Attrition: Attrition is defined as a failure to measure the outcome variable 
on all the participants initially assigned to the intervention and comparison groups. 
High overall attrition generally makes the results of a study suspect, although there 
may be rare exceptions.  

�� Differential Attrition: Differential attrition refers to the situation in which the 
percentage of the original study sample retained in the follow-up data collection is 
substantially different for the intervention and the comparison groups. Severe 
differential attrition makes the results of a study suspect because it may compromise 
the comparability of the study groups.  

If the study has high levels of overall or differential attrition, it should demonstrate baseline 
equivalence of the post-attrition analysis samples to receive the Meets Evidence Standards with 
Reservations rating. 
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�� Baseline Equivalence: The groups should have been equated on a pretest (or a proxy 
of the pretest) of the outcome measure and across any other characteristics identified 
in the WWC review protocol for the topic area.   

If the study has high levels of overall or differential attrition and does not demonstrate baseline 
equivalence, it Does Not Meet Evidence Standards.  However, if statistical adjustment was used 
to account for these differences in the analysis, the Principal Investigator for the topic area has 
discretion to determine whether the study Meets Evidence Standards with Reservations.  
 

�� Statistical Adjustment: The use of statistical procedures (e.g., covariate adjustment 
in an ANCOVA) to equate groups on pretest may address baseline incomparability in 
the impact analysis.  

�� Intervention Contamination: Intervention contamination occurs when something 
happens after the beginning of the intervention and affects the outcome for the 
intervention or the comparison group, but not both. For an RCT to Meet Evidence 
Standards, there should be no evidence of a changed expectancy/novelty/disruption, a 
local history event, or any other intervention contaminants.5 

o If there is evidence of intervention contamination, the study Meets Evidence 
Standards with Reservations. 

�� Teacher-Intervention Confound: A teacher-intervention confound occurs when 
only one teacher is assigned to each condition.6 For an RCT to Meet Evidence 
Standards, there should be more than one teacher assigned to each condition or, if 
there is only one teacher per condition, there should be strong evidence that teacher 
confound problem is negligible.7 

o If there is only one teacher per condition and there is no evidence that teacher 
effects are negligible, the study Does Not Meet Evidence Screens. 

o If there is only one teacher per condition and there is evidence that teacher effects 
are minimal but not negligible, the study Meets Evidence Standards with 
Reservations. 

�� Mismatch Between Unit of Assignment and Unit of Analysis: Some RCTs may be 
designed and implemented well, but the analysis of data may be incorrect. A common 
problem is that the units of random assignment may not match up with the units of 
analysis and this feature of the study design is ignored in the analysis. Ignoring this 
fact may lead to inflated estimates of the statistical significance of study findings. 

 
5 Intervention contamination poses a threat to the validity of the evidence for an intervention’s effects in that the 
observed difference between the intervention and the comparison groups may not be entirely attributable to the 
intervention, but may reflect the effect of the contaminant. 
6 This standard also applies to studies with assignment at the level of other aggregated units, such as classrooms, 
schools or districts, in which only one aggregated unit is assigned to each condition. 
7 See technical guidance on teacher-intervention confound for more details. 
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Mismatch does not affect the rating given to a study; that is, it does not affect the 
statement about meeting evidence standards because the standards rely solely on the 
design rather than the data analysis of the study. Nevertheless, WWC reports need to 
recognize the mismatch problem and adjust the estimates of statistical significance 
when it occurs. 

If the study appears to use a quasi-experimental design (QED) with equating, use the following 
rules to determine whether the study Meets Evidence Standards with Reservations or Does Not 
Meet Evidence Screens. 
 

�� Group Assignment: Studies in which participants were placed into groups using 
procedures other than random assignment or a cutoff score on a pre-intervention 
measure are assumed to Meet Evidence Standards with Reservations, unless one or 
more of the following conditions is violated: 

�� Equating and Baseline Equivalence: The groups should have been equated on a 
pretest (or a proxy of the pretest) of the outcome measure and across any other 
characteristics identified in the WWC review protocol for each topic area through 
matching and/or statistical adjustment to establish baseline equivalence. 

o Equating accomplished through matching involves creating or identifying 
intervention and comparison groups that “look” similar on a pretest of the 
outcome measure. 

o Equating accomplished through statistical adjustment involves using statistical 
procedures (e.g., covariate adjustment in an ANCOVA) to equate groups on 
pretest and address baseline incomparability in the impact analysis. If there was 
baseline incomparability that was not accounted for in the analysis, the study 
Does Not Meet Evidence Screens. 

o If the groups appeared to be patently incomparable at baseline,8 and the 
incomparability was unlikely to be adequately addressed through statistical 
adjustment, the study Does Not Meet Evidence Screens. 

�� Overall Attrition: For a QED to Meet Evidence Standards with Reservations, there 
should not be a severe overall attrition problem or, if there was, it should have been 
accounted for in the analysis. 

o Severe overall attrition (if not too extreme) can be addressed by demonstrating 
post-attrition equivalence of the groups. If addressed in this way, the study is not 
downgraded. 

o Random attrition (e.g., random selection of several students from a class to test) is 
not considered a threat to internal validity, and does not contribute to severe 
overall attrition. 

 
8 The PI and the Review Team for a given topic area have the discretion to determine whether the baseline 
incomparability in a study was too substantial to be adequately adjusted. The decision rules for handling such 
studies will be documented and justified. 
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o If there was severe overall attrition that cannot be discounted on the basis of 
evidence, the study Does Not Meet Evidence Screens. 

�� Differential Attrition: For a QED to Meet Evidence Standards with Reservations, 
there should not have been a severe differential attrition problem or, if there was, it 
should have been accounted for in the analysis. 

o Severe differential attrition (if not too extreme) can be addressed by 
demonstrating post attrition equivalence of the groups. If addressed in this way 
the study is not downgraded. 

o If there was severe differential attrition that cannot be discounted on the basis of 
evidence, the study Does Not Meet Evidence Screens. 

�� Intervention Contamination: There should be no evidence of a changed 
expectancy/novelty/disruption, a local history event, or any other intervention 
contaminants. 

o If there is evidence of an intervention contamination, the study Does Not Meet 
Evidence Screens. 

�� Teacher-Intervention Confound: A teacher-intervention confound occurs when 
only one teacher is assigned to each condition.9 For a QED to Meet Evidence 
Standards with Reservations, there should be more than one teacher assigned to each 
condition or, if there is only one teacher per condition, there should be strong 
evidence that teacher effects on the findings are negligible.10 

o If there is only one teacher per condition and there is no evidence that teacher 
effects are negligible, the study Does Not Meet Evidence Screens. 

 
�� Mismatch Between Unit of Assignment and Unit of Analysis: Some QEDs may be 

designed and implemented well but the analysis of data may be incorrect. A common 
problem is that the units of random assignment may not match up with the units of 
analysis and this feature of the study design is ignored in the analysis. Ignoring this 
fact leads to inflated estimates of the statistical significance of study findings. 

Mismatch does not affect the rating given to a study; that is, it does not affect the 
statement about meeting evidence standards because the standards rely solely on the 
design rather than the data analysis of the study. Nevertheless, WWC reports need to 
recognize the mismatch problem and correct the estimates of statistical significance when 
it occurs. 

 
9 This standard also applies to studies with assignment at the level of other aggregated units, such as classrooms, 
schools or districts, in which only one aggregated unit is assigned to each condition. 
10 See technical guidance on teacher-intervention confound for more details. 
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STAGE 3: IDENTIFYING OTHER IMPORTANT CHARACTERISTICS OF 
A STUDY THAT MEETS EVIDENCE STANDARDS  

(WITH OR WITHOUT RESERVATIONS) 
 
 

OVERVIEW 
 
All studies that pass the evidence standards and are rated as either Meets Evidence Standards or 
Meets Evidence Standards with Reservations during the second review stage are further reviewed 
to describe other important study characteristics. The purpose of the Stage 3 review is to collect 
contextual information about the studies that provide evidence for the effectiveness of the 
interventions being tested, and to aid the interpretation of the findings presented in the WWC 
intervention and topic reports. The additional information collected during the third review stage 
does not affect the ratings of the studies on the evidence standards (i.e., Meets Evidence 
Standards, Meets Evidence Standards with Reservations, or Does Not Meet Evidence Screens), 
which are determined during the second review stage. 
 

OTHER STUDY CHARACTERISTICS 
 

�� Variations in People, Settings, and Outcomes11 

o Subgroup Variation: What subgroups were included in the study? 

o Setting Variation: In what settings did the study take place? 

o Outcome Variation: What outcomes were measured in the study? Which outcome 
domains did the outcome measures pertain to according to the outcome domain 
classification specified in the WWC review protocol for each topic area? 

�� Analysis of Intervention’s Effects on Different Subgroups, Settings, and 
Outcomes 

o Analysis by Subgroups: For what subgroups were effects estimated? 

o Analysis by Setting: For what settings were effects estimated? 

o Analysis by Outcome Measures: For what outcome measures and outcome 
domains were effects estimated? 

 
11 Information about the variations in people, settings, and outcomes of the studies as well as information about 
analysis within subgroups will help to assess the generalizability of the study findings. 
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�� Statistical Reporting 

o Complete Reporting: Are findings reported for most of the important measured 
outcomes?12 

o Relevant Statistics Reported: Are the following statistics reported: intervention 
and comparison group posttest means and standard deviations, posttest mean 
differences, sample sizes, pretest means, statistical significance levels of the 
posttest mean differences? 

o Covariate Adjustments: Are outcome measures adjusted for differences in pretest 
or other important pre-intervention differences between the intervention and 
comparison group? 

 
12 The purpose of this question is to assess the extent to which the study findings are biased by potential selective 
reporting, as reported findings are more likely to demonstrate positive intervention effects than findings from the 
same study that are not reported by the study authors. 



What Works Clearinghouse 
Study Design Classification

Revised September 2006

To be eligible for WWC review, a study must be a randomized controlled trial or a quasi-
experiment. An eligible quasi-experiment must be one of the following three designs: quasi-
experiment with equating on pretest, regression discontinuity design, or single-case design with 
multiple changes of condition. The questions and examples below are meant to help WWC staff 
to classify properly the design of each study potentially relevant to WWC review.1

Is this study a randomized controlled trial? 

1. Was random assignment used to place participants into different study groups?

For studies received by the WWC prior to December 31, 2006: If the study
authors used the term “random assignment” but gave no other indication of how 
the assignment procedure was carried out, the label is assumed to have been 
properly applied unless there is reason to doubt this claim.2

For studies received by the WWC beginning January 1, 2007: For the sample 
allocation to be considered “random assignment,” the study authors must report 
specifics about the randomization procedure, including: (a) details about how the 
assignment sequence was generated (e.g., use of a random number table or 
generator, coin flip, roll of a die), (b) information about the role of the person who 
generated the sequence, and (c) methods used to conceal the sequence until
participants were assigned to conditions. 

Occasionally, researchers will use the term “random assignment” when they
really mean “random selection.” Alternatively, they may use the term “random
selection” to mean “random assignment.” Coders should examine closely the 
context of the language used in the report for evidence of these types of 
confusion.

Occasionally, researchers will use matching, blocking, or stratifying before
randomization in order to minimize group differences on a variable or set of 
variables. Coders should closely examine studies to ensure that these are 
classified properly as randomized controlled trials.

1 The WWC regularly updates WWC technical standards and their application to take account of new considerations
brought forth by experts and users.  Such changes may result in re-appraisals of studies and/or interventions
previously reviewed and rated. Current WWC standards offer guidance for those planning or carrying out studies,
not only in the design considerations but the analysis and reporting stages as well. WWC standards, however, may
not pertain to every situation, context, or purpose of a study and will evolve.
2 Reasons to doubt the claim of randomization include the following: (1) the assignment procedure was described
and it resembles one of the strategies identified as “not functionally random” (see below) or (2) the sample sizes for
the intervention and comparison conditions are markedly different at the level of assignment.

1



2. If a randomization procedure was not used, were participants placed into intervention 
groups using a process that was haphazard and functionally random?

Examples of haphazard assignment that might be functionally random include: (a) 
alternating by date of birth (e.g., January 5 is placed into group A, January 7 is 
placed into group B, and January 13 is placed into group A); (b) alternating 
alphabetically by last name (e.g., Acosta is placed into group A, and Aguilera is 
placed into group B); and (c) alternating by the last digit of an identification code 
(e.g., “evens” are placed into group A, and “odds” are placed into group B).

Examples of haphazard assignment that are unlikely to be functionally random
include: (a) placing birth months January – June into group A, birth months July – 
December into group B; (b) placing participants with a last name beginning with 
A-M into group A, and last names beginning with N-Z into group B; (c) placing 
the first 20 arrivals into group A, and the last 20 arrivals into group B, and (d) 
using scheduling software to assign students to groups.3

Because it is often difficult to determine what is functionally random and what is 
not, the WWC’s Principal Investigators (PIs) and Technical Review Team (TRT) 
should weigh in whenever this decision is not clear cut.

An answer of “yes” to either of these questions leads to a categorization of the study as a 
randomized controlled trial. If the categorization is based on haphazard assignment, it will
be noted in the write-up of the intervention report. 

Is this study a quasi-experiment with equating on pretest? 

1. Were participants placed into different study groups on a non-random basis?

2. Were the groups equated on a pretest (or a proxy of the pretest) of the outcome
measure and across any other characteristics identified in the WWC review protocol 
for each topic area?

3 For the WWC to consider student assignment based on scheduling software functionally random, the study author
would need to demonstrate that the assignment of students to conditions was independent of students’ other interests
and course selections. For example, class scheduling software might be used to produce random samples in these
two situations: (1) The scheduling system is used with no pre-specified conditions (e.g., no classes or students with
certain characteristics were entered into the system before other students were assigned to groups) OR (2) The
sample was limited to students who were not affected by scheduling parameters or constraints (e.g., if gym, band,
and art classes were already set in the scheduling system, the random assignment  of students who did not take gym,
band, or art classes may produce a functionally random sample).

2



Equating can be accomplished through:

Matching. This involves creating or identifying intervention and comparison
groups that “look” similar on a pretest of the outcome measure and across any 
other characteristics identified in the WWC Review Protocol for each topic 
area. Because adequate matching may not be easy to accomplish, the WWC’s 
PIs and TRT should be consulted to determine whether the matching method
used in a particular study resulted in adequate equating on pretest.

Statistical adjustment. This involves using statistical procedures (e.g., 
covariate adjustment in an ANCOVA) to equate groups on a pretest measure
of the outcome.

Timing of equating:  Groups may be identified and matched before the 
intervention was implemented or prior to analysis after implementation. Groups 
may also be statistically equated during analysis.

Timing of pretest: The pretest may be administered at baseline, or it may be 
administered quite some time before the intervention was implemented (e.g., 
collected from achievement testing the previous year).

Sample pretested:  Under limited conditions, the pretest used in equating may
come from a preceding cohort of the students that comprise a larger unit of
intervention delivery.  For example, for interventions where the school is the unit 
of intervention delivery (e.g., a school-wide math curriculum), the pretest or 
“baseline” data may come from achievement testing at the school during the year 
that preceded the intervention’s implementation.  In this case, the pretest data 
would not come from the student cohort in the study sample, but from a different 
cohort of students who were in a given grade in the year before the intervention 
was implemented. Only when the unit of intervention delivery is at the school 
level or higher is this approach acceptable.  The timing and characteristics of the 
pretest should be noted during coding.

If the answer to both of these questions is “yes,” then the study meets the WWC’s
definition of a quasi-experiment with equating.
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What Works Clearinghouse Extent of Evidence Categorization 

The Extent of Evidence Categorization was developed to tell readers how much evidence was 
used to determine the intervention rating, focusing on the number and sizes of studies. This 
scheme has two categories: small and moderate/large.   

The extent of evidence is moderate/large: 
o The domain includes more than one study; AND 
o The domain includes more than one school; AND 
o The domain findings are based on a total sample size of at least 350 students OR, 

assuming 25 students in a class, a total of at least 14 classrooms across studies. 

The extent of evidence is small: 
o The domain includes only one study; OR 
o The domain includes only one school; OR 
o The domain findings are based on a total sample size of less than 350 students 

AND, assuming 25 students in a class, a total of less than 14 classrooms across 
studies.

Each intervention domain receives its own categorization. For example, each of the three 
domains in character education—behavior; knowledge, attitudes, and values, and academic 
achievement—receives a separate categorization. 

Example: 
Intervention Do Good, a character education intervention, had three studies that met WWC 
standards and were included in the review. All three studies reported on academic achievement. 
There were a total of 6 schools across the three studies. The first study reported testing on 150 
students, the second study 125 students, and the third study reported testing 4 classes with 15 
students in each class. The extent of evidence on academic achievement for the Do Good 
intervention is considered “moderate/large” – it met the condition for both the number of studies 
and the number of schools, and although the total number of students is less than 350 
(150+125+(4*15)=335), the number of classes exceeded 14 (150/25+125/25+4=15). 

A “small” extent of evidence indicates that the amount of the evidence is low. There is currently 
no consensus in the field on what constitutes a “large” or “small” study or database. Therefore, 
the WWC set the conditions above based on the following rationale: 

o When there is only one study, there is the possibility that some characteristics of the study—
the outcome instruments, the timing of the intervention, etc.—might have affected the 
findings. When there are multiple studies, especially if they differ, provide some assurance 
that the effects can be attributed to the intervention, and not some features of the particular 
place where the intervention was studied. Therefore, the WWC determined that the extent of 
evidence is small when the findings are based on only one setting.

o Similarly, when there is only one school, there is a possibility that some characteristics of the 
school—the principal, student demographics, etc.—might have affected the findings or are 



intertwined or confounded with the findings. Therefore, the WWC determined that the extent 
of evidence is small when the findings are based on only a single school.

o The sample size of 350 was derived from the following assumptions: 
a balanced sampling design that randomizes at the student level,  
a minimum detectable effect size of 0.3,
the power of the test at 0.8,
a two-tailed test with an alpha of 0.05, and 
the outcome was not adjusted by an appropriate pretest covariate.

The Extent of Evidence Categorization provided in recent reports, and described here, signals 
WWC’s intent to eventually provide a rating scheme on the external validity, or the 
generalizability, of the findings, for which the extent of evidence is only one of the dimensions. 
The Extent of Evidence Categorization, in its current form, is not a rating on external validity; 
instead, it serves as an indicator that cautions readers when findings are drawn from studies with 
small size samples, a small number of school settings, or a single study.   



What Works Clearinghouse Improvement Index 

In order to help readers judge the practical importance of an intervention’s effect, the WWC translates the 
effect size (see the WWC Effect Size Technical Paper) of the intervention’s effect into an “improvement
index.”  The improvement index represents the difference between the percentile rank corresponding to 
the intervention group mean and the percentile rank corresponding to the control group mean (i.e., 50th

percentile) in the control group distribution. Alternatively, the improvement index can be interpreted as 
the expected change in percentile rank for an average control group student if the student had received the 
intervention.

As an example, if an intervention produced a positive impact on students’ reading achievement with an 
effect size of 0.25, the effect size could be translated to an improvement index of 10 percentile points. We 
could then conclude that the intervention would have led to a 10% increase in percentile rank for an 
average student in the control group, and that 60% (10% + 50% = 60%) of the students in the intervention 
group scored above the control group mean.

Specifically, the improvement index is computed as follows: 

1. Compute Cohen’s U3 index that corresponds to the effect size estimate.

The U3 index represents the percentile rank of a control group student who performed at the level of an 
average intervention group student. An effect size of 0.25, for example, would correspond to a U3 of 
60%, which means that an average intervention group student would rank at the 60th percentile in the 
control group. Equivalently, an average intervention group student would rank 10 percentile points higher 
than an average control group student, who, by definition, ranks at the 50th percentile.

Mechanically, the conversion of an effect size to a U3 index entails looking up on a table that lists the 
proportion of area under the standard normal curve for different values of z-scores, which can be found in 
the appendices of most statistics textbooks. For a given effect size, U3 has a value equal to the proportion
of area under the normal curve below the value of the effect size—under the assumptions that the 
outcome is normally distributed and that the variance of the outcome is similar for the intervention group
and the control group.

2. Compute the improvement index as (U3 – 50%).

Given that U3 represents the percentile rank of an average intervention group student in the control group
distribution, and that the percentile rank of an average control group student is 50%, the improvement
index, defined as (U3 – 50%), would represent the difference in percentile rank of an average intervention 
group student and an average control group student in the control group distribution.
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What Works Clearinghouse Intervention Rating Scheme

Factors Determining the Rating 
Explicit heuristics will be applied to support two judgments about the findings of each qualifying 
study about a given outcome (or outcome domain) for a given intervention: 
1.  The direction, magnitude, and statistical significance of the empirical effect estimate. This will 

be characterized as a statistically significant positive, substantively important positive,
indeterminate, or statistically significant negative effect. 

2.  The quality of the research design generating the effect estimate. This will be characterized as 
a strong or weak design. (See the WWC Study Review Standards for further details.) 

The rating scheme based on these two factors is presented below. After that are the detailed
descriptions and heuristics for making the judgments on these factors for each study and outcome.

Rating Scheme Based on These Judgments 

Positive Effects: Strong evidence of a positive effect with no overriding contrary evidence. 
Two or more studies showing statistically significant positive effects, at least one of which 
met WWC evidence standards for a strong design. 
No studies showing statistically significant or substantively important negative effects. 

Potentially Positive Effects: Evidence of a positive effect with no overriding contrary evidence. 
At least one study showing a statistically significant or substantively important positive effect.
No studies showing a statistically significant or substantively important negative effect and 
fewer or the same number of studies showing indeterminate effects than showing statistically
significant or substantively important positive effects. 

Mixed Effects: Evidence of inconsistent effects as demonstrated through either of the following. 
At least one study showing a statistically significant or substantively important positive effect;
AND at least one study showing a statistically significant or substantively important negative
effect, but no more such studies than the number showing a statistically significant or
substantively important positive effect. 
OR, at least one study showing a statistically significant or substantively important effect
AND more studies showing an indeterminate effect than showing a statistically significant or 
substantively important effect.

No Discernible Effects: No affirmative evidence of effects. 
None of the studies shows a statistically significant or substantively important effect, either 
positive or negative.

Potentially Negative Effects: Evidence of a negative effect with no overriding contrary evidence. 
At least one study showing a statistically significant or substantively important negative
effect.
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No studies showing a statistically significant or substantively important positive effect OR 
more studies showing statistically significant or substantively important negative effects than
showing statistically significant or substantively important positive effects.

Negative Effects: Strong evidence of a negative effect with no overriding contrary evidence. 
Two or more studies showing statistically significant negative effects, at least one of which is 
based on a strong design. 
No studies showing statistically significant or substantively important positive effects.

Evidence Base and Heuristic Rules 

Points of Evidence
For each study of the intervention and for each outcome, the following points of evidence are the 
basis for characterizing the empirical findings: 
1.  Quality of the study design: RCT (meets evidence standards) or QED (meets evidence 

standards with reservations) under the current WWC criteria. 
2.  Effect size: A single effect size or, in the case of multiple measures of the specified outcome,

either (i) the mean effect size, or (ii) the effect size for each individual measure within the 
domain. The effect size is defined as the standardized mean difference (i.e., the difference 
between the student-level posttest means on an outcome variable divided by the pooled 
standard deviations, either calculated directly or derived from other appropriate statistics, 
corrected for small sample sizes).

3.  Sample size:  The number of units of assignment per condition and the number of students in 
those units per condition if students were not the units of assignment.

4.  Statistical significance of the effect based on a correct (“aligned”) analysis if reported. 
Statistical significance is assumed to mean the conventional alpha=.05, two-tailed for single 
measures and for mean effects within each domain.  When multiple hypothesis tests are 
performed using the number of measures greater than one (m>1measures) within each domain,
the Benjamini Hochberg procedure may be used to correct for multiple comparisons and 
identify statistically significant effects for individual measures (Benjamini, Y., and Y. 
Hochberg, Journal of the Royal Statistical Society 1995, Vol. 57, No.1, 289-300 
[http://www.math.tau.ac.il/~ybenja/MyPapers.html]).

Characterizing the Quality of the Research Design Generating the Effect Estimates
The heuristics for categorizing the quality of the research design used in a given study are as 
follows:

Strong design: designs that meet the WWC’s evidence standards, which are RCTs without 
severe design or implementation problems. ) 
Weak design: designs that meet WWC’s evidence standards with reservations, which include 
RCTs with severe design or implementation problems, and QEDs with equating and without 
severe design or implementation problems.

(See the WWC Study Review Standards for further details.) 

Characterizing the Direction and Magnitude of the Empirical Effect Estimate
These heuristics are applied to the outcome variable(s) identified by the Principal Investigator (PI)
as relevant to the review. The PI may choose to ignore some variables if they are judged 
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sufficiently peripheral or unrepresentative and consider only the remaining ones. Similarly, if the 
PI judges that there is one core variable with all the others secondary or subsidiary, only that one 
may be considered.

A. Definitions and Suggested Defaults
The heuristics in the next section require that values be set for certain terms. These terms and 
associated procedures are defined below with suggested default values. 

Minimum effect size. The smallest positive value at or above which the effect is deemed
substantively important with relatively high confidence for the outcome domain at issue. Effect 
sizes at least this large will be taken as a qualified positive effect even though they may not reach
statistical significance in a given study. The suggested default value is a student-level effect size 
greater than or equal to 0.25 (ES  0.25), corresponding to a 10 percentile point difference 
between the percentile rank of the average student in the comparison group (50th percentile) and 
the percentile rank of the average student in the intervention group (60th percentile) based on the 
comparison group distribution. The PI may set a different default if explicitly justified in terms of 
the nature of the intervention or the outcome domain. A similar default applies in the negative
direction. The suggested default value for a minimum negative effect is a student-level effect size 
less than or equal to –0.25 (ES  -0.25). 

t test adjusted for clustering. A t test applied to the effect size (or mean effect size in cases of 
multiple measures of the outcome) that incorporates an adjustment for clustering. This procedure 
allows the reviewer to test the effect size directly in cases where a misaligned analysis is reported. 
(Computational details are provided in the appendix.) However, the clustering adjustment requires 
specifying an ICC value. The suggested default ICC value for achievement outcomes is .20. The 
suggested default ICC for behavioral and attitudinal outcomes is .10. The PI may set different 
defaults if explicitly justified in terms of the nature of the research circumstances or the outcome
domain.

B. Heuristics for Characterizing Effects of a Study 
(Note: The italicized terms involve default values and are defined above.) 

Statistically significant positive effect: Any one of the following: 
If the analysis as reported by the study author is properly aligned: 

For a single outcome measure within an outcome domain, either of the following is 
appropriate. (If the results differ, select the strategy which demonstrates significance.) 
o The effect is reported as positive and statistically significant.
o The effect size is positive and statistically significant when tested using a t test adjusted 

for clustering.
For multiple measures of outcomes within an outcome domain, any of the following are
appropriate. (If the results differ, select the strategy that demonstrates statistical significance.) 
o Univariate statistical tests are reported for each outcome measure and at least half of the 

effect sizes are positive and statistically significant and no effect sizes are negative and 
statistically significant, ignoring multiple hypothesis tests. 
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o The omnibus effect for all the outcome measures together is reported as positive and 
statistically significant on the basis of a multivariate statistical test.

o Univariate statistical tests are reported for each outcome measure and the effect size for at
least one measure within the domain is positive and statistically significant and no effect
sizes are negative and statistically significant, when accounting for clustering and for 
multiple hypothesis tests within the domain.

o The mean effect size for the multiple measures of the outcome is positive and statistically
significant when tested using a t test adjusted for clustering.1

If the analysis as reported by the study author is not properly aligned, either of the following is 
appropriate:

The effect size or the mean effect size (if multiple measures of outcomes within a domain) is 
positive and statistically significant when tested using a t test adjusted for clustering.
Univariate statistical tests are reported for each outcome measure and at least one effect size is 
positive and statistically significant and no effect sizes are negative and statistically significant,
accounting for clustering and multiple comparisons within the domain.

Substantively important positive effect:
The effect size is not statistically significant in any of the senses described above, but the 
student-level effect size (if there was a single student-level measure within an outcome 
domain) or the mean effect size based on multiple student-level findings (if there were
multiple student-level measures within an outcome domain) is equal to or greater than the 
minimum effect size.2

Indeterminate effect:
The effect size is not statistically significant and does not qualify as a substantively important
positive effect as defined above (that is, the effect size or the mean effect size is less than the 
minimum effect size).

Substantively important negative effect: 
The effect size is not statistically significant in any of the senses described above, but the 
student-level effect size (if there was a single student-level measure within an outcome 
domain) or the mean effect size based on multiple student-level findings (if there were
multiple student-level measures within an outcome domain) is equal to or less than the
minimum negative effect size.2

1 Note that this formula is still acceptable if there is no clustering, as the clustering term drops out of the equation.
2 Note that this criterion, as well as the default minimum effect size, is entirely based on student-level ESs. Cluster-
level ESs are ignored for the purpose of the rating scheme because they are based on a different ES metric than the
student-level ESs, and therefore not comparable with student-level ESs. Moreover, cluster-level ESs are relatively 
rare, and there is not enough knowledge in the field yet to set a defensible minimum effect size for cluster-level ESs.
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Statistically significant negative effect: Any one of the following where no statistically
significant or substantively important positive effect has been detected (in the sense outlined
above):

If the analysis as reported by the study author is properly aligned: 
For a single outcome measure within an outcome domain, either of the following is 
appropriate. (If the results differ, select the strategy that demonstrates significance.)
o The effect is reported as negative and statistically significant.
o The effect size is negative and statistically significant when tested using a t test adjusted 

for clustering.
For multiple measures of outcomes within an outcome domain, any of the following is 
appropriate. (If the results differ, select the strategy which demonstrates significance.) 
o Univariate statistical tests are reported for each outcome measure and at least half of the 

effect sizes are negative and statistically significant and no effect sizes are positive and
statistically significant, ignoring multiple hypothesis tests.

o The omnibus effect for all the outcome measures together is reported as negative and 
statistically significant on the basis of a multivariate statistical test.

o Univariate statistical tests are reported for each outcome measure, and at least one effect
size is negative and statistically significant and no effect sizes are positive and statistically
significant, accounting for clustering and multiple comparisons within the domain.

o The mean effect size for the multiple measures of the outcome is negative and statistically
significant when tested using a t test adjusted for any clustering.3

If the analysis as reported by the study author is not properly aligned, either of the following is 
appropriate:

The effect size or the mean effect size (if multiple measures of outcomes within an outcome
domain) is negative and statistically significant when tested using a t test adjusted for 
clustering.
Univariate statistical tests are reported for each outcome measure and at least one effect size is 
negative and statistically significant and no effect sizes are positive and statistically 
significant, accounting for clustering and multiple comparisons within the domain.

3 Note that this formula is still acceptable if there is no clustering, as the clustering term drops out of the equation.
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Appendix: Computational details for the t test adjusted for clustering

To determine if it is plausible that the effect size in a study with a misaligned analysis is 
statistically significant 

(1) The reviewer has:

NT, NC, and N= NT + NC

(student-level sample sizes for the intervention and comparison groups respectively) 

m= mT + mC

(number of clusters—classrooms or schools) 

ES= (XT – XC)/Sp

(effect size computed from student level means and SDs with no attention to clustering) 

(2) A default rho is assumed (current default is =.20)

(3)  The t statistic is computed for the effect size ignoring clustering:

CT

CT

NN

NN
ESt

(4) The t value above is corrected for clustering using the default rho and assuming equal n in 
each cluster:

tA = ct   where 
]11)[2(
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N
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(5) Adjusted degrees of freedom are calculated:
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(6) Significance is determined in the usual way using adjusted tA with adjusted df=h

6



Technical Details of WWC-Conducted Computations 

(4-16-2007)

To assist in the interpretation of study findings and facilitate comparisons of findings across 
studies, the WWC computes the effect sizes (ES) and the improvement indices associated with 
study findings on outcome measures relevant to the WWC’s review. In general, the WWC 
focuses on ESs based on student-level findings regardless of the unit of assignment or the unit of 
intervention. Focusing on student-level findings not only improves the comparability of ES 
estimates across studies, but also allows us to draw upon existing conventions among the 
research community to establish the criterion for “substantively important” effects for
intervention rating purposes. In addition to ESs and improvement indices, the WWC also 
computes the levels of statistical significance of student-level  findings corrected for clustering 
and/or multiple comparisons where necessary.

The purpose of this document is to provide the technical details about the various types of 
computations conducted by the WWC as part of its review process, which will allow readers to 
better understand the findings that we report and the conclusions that we draw regarding the 
effectiveness of the educational interventions reviewed by the WWC.1 Specifically, the technical 
details of the following types of WWC-conducted computations are presented:

I Effect Size Computation for Continuous Outcomes
ES as Standardized Mean Difference (Hedges’s g) 
ES Computation Based on Results from Student-Level T-Tests or ANOVA
ES Computation Based on Results from Student-Level ANCOVA
ES Computation Based on Results from Cluster-Level Analyses
ES Computation Based on Results from HLM Analysis in Studies with 
Cluster-Level Assignment

II. Effect Size Computation for Dichotomous Outcomes
III. Computation of the Improvement Index 
IV Clustering Correction of the Statistical Significance of Effects Estimated with 

Mismatched Analyses 
V Benjamini-Hochberg Correction of the Statistical Significance of Effects 

Estimated with Multiple Comparisons

In addition to computational procedures, this document presents the rationale for the 
specific computations conducted and their underlying assumptions. These procedures are 
currently used to compute effect sizes and make corrections for study designs and reporting 
practices most commonly encountered during WWC’s review process. It is not meant to serve as 
a comprehensive compendium of an exhaustive list of ES computation methods that have ever 
been developed in the field. 

1 The WWC regularly updates WWC technical standards and their application to take account of new considerations
brought forth by experts and users.  Such changes may result in re-appraisals of studies and/or interventions
previously reviewed and rated. Current WWC standards offer guidance for those planning or carrying out studies,
not only in the design considerations but the analysis and reporting stages as well. WWC standards, however, may
not pertain to every situation, context, or purpose of a study and will evolve.
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I.  Effect Size Computation for Continuous Outcomes 

ES as Standardized Mean Difference (Hedges’s g) 

Different types of ES indices have been developed for different types of outcome measures,
given their distinct statistical properties. For continuous outcomes, the WWC has adopted the 
most commonly-used ES index—the standardized mean difference, which is defined as the 
difference between the mean outcome of the intervention group and the mean outcome of the 
comparison group divided by the pooled within-group standard deviation (SD) on that outcome
measure. Given that the WWC generally focuses on student-level findings , the default SD used 
in ES computation is the student-level SD.

The basic formula for computing standardized mean difference is as follows:

Standardized mean difference = (X1 – X2) / Spooled,     (1)

where X1 and X2 are the means of the outcome for the intervention group and the comparison
group respectively, and Spooled is the pooled within-group SD of the outcome at the student level. 
Formulaically,

Spooled = 
)2(
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Standardized mean difference (g) = 
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(g) = (X1 –X2)/sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

where n1 and n2 are the student sample sizes, and S1 and S2 the student-level SDs, for the 
intervention group and the comparison group respectively.

The ES index thus computed is referred to as Hedges’s g.2 This index, however, has been 
shown to be upwardly biased when the sample size is small. Therefore, we have applied a simple
correction for this bias developed by Hedges (1981), which produces an unbiased ES estimate by 
multiplying the Hedges’s g by a factor of [1-3/(4N-9)], with N being the total sample size. 
Unless otherwise noted, Hedges’s g corrected for small-sample bias is the default ES measure for
continuous outcomes used in the WWC’s review. 

2 The Hedges’ g index differs from the Cohen’s d index in that Hedges’s g uses the square root of degrees of
freedom (sqrt(N-k) for k groups) for the denominator of the pooled within-group SD (Spooled), whereas Cohen’s d 
uses the square root of sample size (sqrt(N)) to compute Spooled (Rosenthal, 1994; Rosnow, Rosenthal, & Rubin,
2000).
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In certain situations, however, the WWC may present study findings using ES measures
other than Hedges’s g. If, for instance, the SD of the intervention group differs substantially from
that of the comparison group, the PIs and review teams may choose to use the SD of the 
comparison group instead of the pooled within-group SD as the denominator of the standardized 
mean difference, and compute the ES as Glass’s  instead of Hedges’s g. The justification for 
doing so is that when the intervention and comparison groups have unequal variances, as in the 
case where the variance of the outcome is affected by the intervention, the comparison group 
variance is likely to be a better estimate of the population variance than the pooled within-group 
variance (Cooper, 1998; Lipsey & Wilson, 2001). The WWC may also use Glass’s , or other 
ES measures used by the study authors, to present study findings—if there is not enough 
information available for computing Hedge’s g. These deviations from the default will be clearly 
documented in the WWC’s review process.

The sections to follow focus on the WWC’s default approach to computing student-level 
ESs for continuous outcomes. We describe procedures for computing Hedges’s g based on 
results from different types of statistical analysis most commonly encountered in the WWC 
reviews.

ES Computation Based on Results from Student-Level T-Tests or ANOVA
For randomized controlled trials, study authors may assess an intervention’s effects based on 
student-level t-tests or analyses of variance (ANOVA) without adjustment for pretest or other 
covariates, assuming group equivalence on pre-intervention measures achieved through random
assignment. If the study authors reported posttest means and SD as well as sample sizes for both 
the intervention group and the comparison group, the computation of ESs will be straightforward
using the standard formula for Hedges’s g (see Equation (3)).

Where the study authors did not report the posttest mean, SD, or sample size for each 
study group, the WWC computes Hedges’s g based on t-test or ANOVA F-test results, if they 
were reported along with sample sizes for both the intervention group (n1) and the comparison
group (n2). For ESs based on t-test results,

Hedges’s g = t
21
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,

Hedges’s g = t * sqrt [(n1 +n2)/n1n2]       (4)

For ESs based on ANOVA F-test results, 

Hedges’s g = 
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,        (5)

Hedges’s g = sqrt [(F(n1 +n2)/n1n2]

ES Computation Based on Results from Student-Level ANCOVA

Analysis of covariance (ANCOVA) is a commonly used analytic method for quasi-experimental
designs. It assesses the effects of an intervention while controlling for important covariates,
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particular pretest, that might confound the effects of the intervention. ANCOVA is also used to 
analyze data from randomized controlled trials so that greater statistical precision of parameter
estimates can be achieved through covariate adjustment.

For study findings based on student-level ANCOVA, the WWC computes Hedges’s g as 
covariate adjusted mean difference divided by unadjusted pooled within-group SD. The use of 
adjusted mean difference as the numerator of ES ensures that the ES estimate is adjusted for 
covariate difference between the intervention and the comparison groups that might otherwise 
bias the result. The use of unadjusted pooled within-group SD as the denominator of ES allows 
comparisons of ES estimates across studies by using a common metric to standardize group 
mean differences, i.e., the population SD as estimated by the unadjusted pooled within-group SD. 

Specifically, when sample sizes, and adjusted means and unadjusted SDs of the posttest 
from an ANCOVA are available for both the intervention and the comparison groups, the WWC 
computes Hedges’s g as follows:

Hedges’s g = 
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Hedges’s g = (X1' –X2')/sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

where X1’ and X2’ are adjusted posttest means, n1 and n2 the student sample sizes, and S1 and S2

the student-level unadjusted posttest SD, for the intervention group and the comparison group 
respectively,

It is not uncommon, however, for study authors to report unadjusted group means on both 
pretest and posttest, but not adjusted group means or adjusted group mean differences on the 
posttest. Absent information on the correlation between the pretest and the posttest, as is 
typically the case, the WWC’s default approach is to compute the numerator of ES—the adjusted
mean difference—as the difference between the pretest-posttest mean difference for the
intervention group and the pretest-posttest mean difference for the comparison group. 
Specifically,

Hedges’s g = 
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Hedges’s g = [(X1 –X1-pre)- (X2 –X2-pre)]/sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

where X1 and X2 are unadjusted posttest means,  X1-pre and X2-pre unadjusted pretest means,  n1

and n2 the student sample sizes, and S1 and S2 the student-level unadjusted posttest SD, for the 
intervention group and the comparison group respectively, 

This “difference-in-differences” approach to estimating an intervention’s effects while 
taking into account group difference in pretest is not necessarily optimal, as it is likely to either 
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overestimate or underestimate the adjusted group mean difference, depending on which group 
performed better on the pretest.3 Moreover, this approach does not provide a means for adjusting 
the statistic significance of the adjusted mean difference to reflect the covariance between the 
pretest and the posttest. Nevertheless, it yields a reasonable estimate of the adjusted group mean
difference, which is equivalent to what would have been obtained from a commonly used 
alternative to the covariate adjustment-based approach to testing an intervention’s effect—the
analysis of gain scores. 

Another limitation of the “difference-in-differences” approach is that it assumes the 
pretest and the posttest are the same test. Otherwise, the means on the two types of tests might
not be comparable, and hence it might not be appropriate to compute the pretest-posttest
difference for each group. In cases where different pretest and posttests were used, and only 
unadjusted means on pretest and posttest were reported, the Principal Investigators (PIs) will 
need to consult with the WWC Technical Review Team to determine whether it is reasonable to 
use the difference-in-differences approach to compute the ESs.

The difference-in-differences approach presented above also assumes that the pretest-
posttest correlation is unknown. In some areas of educational research, however, empirical data 
on the relationships between pretest and posttest may be available. If such data are dependable, 
the WWC PIs and the review team in a given topic area may choose to use the empirical
relationship to estimate the adjusted group mean difference that is unavailable from the study 
report or study authors, rather than using the default difference-in-differences approach.  The 
advantage of  doing so is that, if indeed the empirical relationship between pretest and posttest is 
dependable, the covariate-adjusted estimates of the intervention’s effects will be less biased than 
those based on the difference-in-differences (gain score) approach. If the PIs and review teams
choose to compute ESs using an empirical pretest-posttest relationship, they will need to provide 
an explicit justification for their choice as well as evidence on the credibility of the empirical 
relationship.

Computationally, if the pretest and posttest has a correlation of r, then

Hedges’s g = 

)2(

)1()1(

)()(

21

2
22

2
11

2121

nn

SnSn

XXrXX prepre ,     (8)

Hedges’s g = [(X1 –X2)- r(X1-pre –X2-pre)]/sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

where all the other terms are the same as those in Equation (7).

A final note about ANCOVA-based ES computation is that Hedges’s g cannot be 
computed based on the F-statistic from an ANCOVA using Equation (5). Unlike the F-statistic 
from an ANOVA, which is based on unadjusted within-group variance, the F-statistic from an 
ANCOVA is based on covariate-adjusted within-group variance. Hedges’s g, however, requires 

3 If the intervention group had a higher average pretest score than the comparison group, the difference-in-difference
approach is likely to underestimate the adjusted group mean difference. Otherwise, it is likely to overestimate the
adjusted group mean difference.
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the use of unadjusted within-group SD. Therefore, we cannot compute Hedges’s g with the F-
statistic from an ANCOVA in the same way as we compute g with the F-statistic from an 
ANOVA. If the pretest-posttest correlation is known, however, we could derive Hedges’s g from 
the ANCOVA F-statistic as follows:

Hedges’s g = 
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,       (9)

Hedges’s g = sqrt[F(n1 + n2)(1-r^2)/n1n2]

where r is the pretest-posttest correlation, and n1 and n2 are the sample sizes for the intervention
group and the comparison group respectively. 

ES Computation Based on Results from Cluster-Level Analyses

The ES computation methods described above are all based on student-level analyses, which are 
appropriate analytic approaches for studies with student-level assignment. The case is more 
complicated, however, for studies with assignment at the cluster level (e.g., assignment of
teachers, classrooms, or schools to conditions), where data may have been analyzed at the 
student level, the cluster level, or through multilevel analyses. Although there has been a 
consensus in the field that multilevel analysis should be used to analyze clustered data (e.g., 
Bloom, Bos, & Lee, 1999; Donner & Klar, 2000; Flay & Collins, 2005; Murray, 1998; and 
Snijders & Bosker, 1999), student-level analyses and cluster-level analyses of such data still 
frequently appear in the research literature despite their problems.

The main problem with student-level analyses in studies with cluster-level assignment is 
that they violate the independence of observations assumption underlying traditional hypothesis 
tests and result in underestimated standard errors and inflated statistical significance (see Section 
IV for details about how to correct for such bias). The estimate of the group mean difference in 
such analyses, however, is unbiased and therefore can be appropriately used to compute the 
student-level ES using methods explained in the previous sections. 

For studies with cluster-level assignment, analyses at the cluster level, or aggregated 
analyses, are also problematic. Other than the loss of power and increased Type II error, potential
problems with aggregated analysis include shift of meaning and ecological fallacy (i.e.,
relationships between aggregated variables cannot be used to make assertions about the 
relationships between individual-level variables), among others (Aitkin & Longford, 1986; 
Snijders & Bosker, 1999), Such analyses also pose special challenges to ES computation during 
WWC reviews. In the remainder of this section, we discuss these challenges and describe 
WWC’s approach to handling them during WWC reviews.

How to compute student-level ESs for studies with cluster-level analyses

For studies that only reported findings from cluster-level analyses, it might be tempting to 
compute ESs using cluster-level means and SDs. This, however, is not appropriate for the 
purpose of the WWC reviews for at least two reasons. First, because cluster-level SDs are 
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typically much smaller than student-level SDs,4 ESs based on cluster-level SDs will be much
larger than, and therefore incomparable with, student-level ESs that are the focus of WWC
reviews. Second, the criterion for “substantively important” effects in the WWC Intervention
Rating Scheme (ES of at least 0.25) was established specifically for student-level ESs, and does 
not apply to cluster-level ESs. Moreover, there is not enough knowledge in the field as yet for 
judging the magnitude of cluster-level effects. A criterion of “substantively important” effects 
for cluster-level ESs, therefore, cannot be developed for intervention rating purposes. An 
intervention rating of potentially positive effects based on a cluster-level ES of 0.25 or greater 
(i.e., the criterion for student-level ESs) would be misleading.

In order to compute the student-level ESs, we need to use the student-level means and 
SDs on the findings. This information, however, is often not reported in studies with cluster-level
analyses. If the study authors could not provide student-level means, the review team may use 
cluster-level means (i.e., mean of cluster means) to compute the group mean difference for the 
numerator of student-level ESs if: (1) the clusters were of equal or similar sizes, (2) the cluster 
means were similar across clusters, or (3) it is reasonable to assume that cluster size was 
unrelated to cluster means. If any of the above conditions holds, then group means based on 
cluster-level data would be similar to group means based on student-level data, and hence could 
be used for computing student-level ESs. If none of the above conditions holds, however, the 
review team will have to obtain the group means based on student-level data in order to compute
the student-level ESs.

While it is possible to compute the numerator (i.e., group mean difference) for student-
level ESs based on cluster-level findings for most studies, it is generally much less feasible to 
compute the denominator (i.e., pooled SD) for student-level ESs based on cluster-level data. If 
the student-level SDs are not available, we could compute them based on the cluster-level SDs 
and the actual intra-class correlation (ICC) (student-level SD = (cluster-level SD)/sqrt(ICC)). 
Unfortunately, the actual ICCs for the data observed are rarely provided in study reports. 
Without knowledge about the actual ICC, one might consider using a default ICC, which, 
however, is not appropriate, because the resulting ES estimate would be highly sensitive to the 
value of the default ICC and might be seriously biased even if the difference between the default 
ICC and the actual ICC is not large.

Another reason that the formula for deriving student-level SDs (student-level SD = 
(cluster-level SD)/sqrt(ICC)) is unlikely to be useful is that the cluster-level SD required for the 
computation was often not reported either. Note that the cluster-level SD associated with the ICC 
is not exactly the same as the observed SD of cluster means that were often reported in studies 
with cluster-level analyses, because the latter reflects not only the true cluster-level variance, but 
also part of the random variance within clusters (Raudenbush & Liu, 2000; Snijder & Bosker, 
1999).

It is clear from the above discussion that in most cases, requesting student-level data, 
particularly student-level SDs, from the study authors will be the only way that allows us to 
compute the student-level ESs for studies only reporting cluster-level findings. If the study 
authors could not provide the student-level data needed, then we would not be able to compute

4 Cluster-level SD = (student-level SD)*sqrt(ICC).
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the student-level ESs. Nevertheless, such studies will not be automatically excluded from the 
WWC reviews, but could still potentially contribute to intervention ratings as explained below. 

How to handle studies with cluster-level analyses in intervention ratings if the student-level ESs
could not be computed

A study’s contribution to the effectiveness rating of an intervention depends mainly on 
three factors: the quality of the study design, the statistical significance of the findings, and the 
size of the effects. For studies that only reported cluster-level findings, the quality of their design 
is not affected by whether student-level ESs could be computed or not. Such studies could still 
meet WWC evidence standards with or without reservations and be included in intervention 
reports even if student-level ESs were not available.

While cluster-level ESs cannot be used in intervention ratings, the statistical significance 
of cluster-level findings could contribute to intervention ratings. Cluster-level analyses tend to be
underpowered, hence estimates of the statistical significance of findings from such analyses tend 
to be conservative. Therefore, significant findings from cluster-level analyses would remain
significant had the data been analyzed using appropriate multilevel models, and should be taken 
into account in intervention ratings. The size of the effects based on cluster-level analyses, 
however, could not be considered in determining “substantively important” effects in 
intervention ratings for reasons described above. In WWC’s intervention reports, cluster-level 
ESs will be excluded from the computation of domain average ESs and improvement indices,
both of which will be based exclusively on student-level findings.
ES Computation Based on Results from HLM Analyses in Studies with Cluster-Level
Assignment

As explained in the previous section, multilevel analysis is generally considered the preferred
method for analyzing data of from studies with cluster-level assignment. With recent 
methodological advances, multilevel analysis has gained increased popularity  in education and 
other social science fields. More and more researchers have begun to employ the hierarchical 
linear modeling (HLM) method to analyze data of a nested nature (e.g., students nested within 
classes and classes nested within schools) (Raudenbush & Bryk, 2002)5. Similar to student-level
ANCOVA, HLM can also adjust for important covariates such as pretest when estimating an 
intervention’s effect. Unlike student-level ANCOVA that assumes independence of observations, 
however, HLM explicitly takes into account the dependence among members within the same
higher-level unit (e.g., the dependence among students within the same class). Therefore, the 
parameter estimates, particularly the standard errors, generated from HLM are less biased than 
those generated from ANCOVA when the data have a multilevel structure.

Hedges’s g for intervention effects estimated from HLM analyses is defined in a similar 
way to that based on student-level ANCOVA: adjusted group mean difference divided by 
unadjusted pooled within-group SD. Specifically,

5 Multilevel analysis can also be conducted using other approaches, such as the SAS PROC MIXED procedure.
Although different approaches to multilevel analysis may differ in their technical details, they are all based on
similar ideas and underlying assumptions.
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Hedges’s g = /sqrt{[(n1-1)S1^2 + (n2-1)S2^2]/(n1+n2-2)}

Where  is the HLM coefficient for the intervention’s effect, which represents the group mean
difference adjusted for both level-1 and level-2 covariates, if any;6 n1 and n2 are the student
sample sizes, and S1 and S2 the unadjusted student-level SDs for the intervention group and the 
comparison group respectively. 

One thing to note about the denominator of Hedges’s g based on HLM results is that the 
level-1 variance, also called “within-group variance,” estimated from a typical two-level HLM 
analysis is not the same as the conventional unadjusted pooled within-group variance that should 
be used in ES computation. The within-group variance from an HLM model that incorporates 
level-1 covariates has been adjusted for these covariates. Even if the within-group variance is 
based on an HLM model that does not contain any covariates (i.e., a fully-unconditional model),
it is still not appropriate for ES computation, because it does not include the variance between
level-2 units within each study condition that is part of the unadjusted pooled within-group 
variance. Therefore, the level-1 within-group variance estimated from an HLM analysis tends to 
be smaller than the conventional unadjusted pooled within-group variance, and would thus lead 
to an overestimate of the ES if used in the denominator of the ES.

The ES computations for continuous outcomes explained above pertain to individual 
findings within a given outcome domain examined in a given study. If the study authors assessed 
the intervention’s effects on multiple outcome measures within a given domain, the WWC
computes a domain average ES as a simple average of the ESs across all individual findings 
within the domain.

II. Effect Size Computation for Dichotomous Outcomes 

Although not as common as continuous outcomes, dichotomous outcomes are sometimes used in 
studies of educational interventions. Examples include dropout vs. stay in school; grade 
promotion vs. retention; and pass vs. fail a test. Group mean differences, in this case, appear as 
differences in proportions or differences in the probability of the occurrence of an event. The ES 
measure of choice for dichotomous outcomes is odds ratio, which has many statistical and 
practical advantages over alternative ES measures such as the difference between two
probabilities, the ratio of two probabilities, and the phi coefficient (Fleiss, 1994; Lipsey & 
Wilson, 2001).

6 The level-2 coefficients are adjusted for the level-1 covariates under the condition that the level-1 covariates are 
either uncentered or grand-mean centered, which are the most common centering options in an HLM analysis 
(Raudenbush & Bryk, 2002). The level-2 coefficients are not adjusted for the level-1 covariates if the level-1
covariates are group-mean centered. For simplicity purposes, the discussion here is based on a two-level framework
(i.e., students nested with clusters). The idea could easily be extended to a three-level model (e.g., students nested
with teachers who were in turn nested within schools).
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The measure of odds ratio builds on the notion of odds. For a given study group, the odds 
for the occurrence of an event are defined as follows:

Odds = 
p

p

1
,         (11)

Odds = p/(1-p)
where p is the probability of the occurrence of an event within the group. Odds ratio (OR) is 
simply the ratio between the odds for the two groups compared:
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OR = Odds1/Odds2 = [p1(1-p 2)]/[p2(1- p1)]
where  and  are the probabilities of the occurrence of an event for the intervention group 
and the comparison group respectively.

1p 2p

As is the case with ES computation for continuous variables, the WWC computes ESs for 
dichotomous outcomes based on student-level data in preference to aggregate-level data for 
studies that had a multi-level data structure. The probabilities (  and ) used in calculating 
the odds ratio represent the proportions of students demonstrating a certain outcome among 
students across all teachers/classrooms or schools in each study condition, which are likely to 
differ from the probabilities based on aggregate-level data (e.g., means of school-specific 
probabilities) unless the classrooms or schools in the sample were of similar sizes.

1p 2p

Following conventional practice, the WWC transforms odds ratio calculated based on 
Equation (12) to logged odds ratio (LOR) (i.e., the natural log of the odds ratio) to simplify 
statistical analyses:

LOR = In(OR)         (13)

The logged odds ratio has a convenient distribution form, which is approximately normal with a 
mean of 0 and a SD of /sqrt(3), or 1.81. 

The logged odds ratio can also be expressed as the difference between the logged odds, or 
logits, for the two groups compared. Equivalent to Equation (13),

LOR = ,       (14))()( 21 OddsInOddsIn
LOR = In(Odds1) - In(Odds2)

which shows more clearly the connection between the logged odds ratio index and the 
standardized mean difference index (Hedges’s g) for ESs. To make logged odds ratio comparable
to standardized mean difference and thus facilitate the synthesis of research findings based on 
different types of outcomes, researchers have proposed a variety of methods for “standardizing” 
logged odds ratio. Based on a Monte Carlo simulation study of seven different types of ES 
indices for dichotomous outcomes, Sanchez-Meca, Marin-Martinez, and Chacon-Moscoso 
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(2003) concluded that the ES index proposed by Cox (1970) is the least biased estimator of the 
population standardized mean difference, assuming an underlying normal distribution of the 
outcome. The WWC, therefore, has adopted the Cox index as the default ES measure for 
dichotomous outcomes. The computation of the Cox index is straightforward:

LORCox = LOR/1.65         (15)

The above index yields ES values very similar to the values of Hedges’s g that one would
obtain if group means, SDs, and sample sizes were available—assuming that the dichotomous
outcome measure is based on an underlying normal distribution. Although the assumption may
not always hold, as Sanchez-Meca and his colleagues (2003) note, primary studies in social and 
behavioral sciences routinely apply parametric statistical tests that imply normality. Therefore,
the assumption of normal distribution is a reasonable conventional default.

III. Computation of the Improvement Index

In order to help readers judge the practical importance of an intervention’s effect, the WWC 
translates ES into an “improvement index.” The improvement index represents the difference 
between the percentile rank corresponding to the intervention group mean and the percentile rank 
corresponding to the comparison group mean (i.e., 50th percentile) in the comparison group 
distribution. Alternatively, the improvement index can be interpreted as the expected change in 
percentile rank for an average comparison group student if the student had received the 
intervention.

As an example, if an intervention produced a positive impact on students’ reading
achievement with an effect size of 0.25, the effect size could be translated to an improvement
index of 10 percentile points. We could then conclude that the intervention would have led to a 
10% increase in percentile rank for an average student in the comparison group, and that 60% 
(10% + 50%=60%) of the students in the intervention group scored above the comparison group 
mean.

Specifically, the improvement index is computed as follows: 

(1) Convert the ES (Hedges’s g) to Cohen’s U3 index.

The U3 index represents the percentile rank of a comparison group student who 
performed at the level of an average intervention group student. An effect size of 0.25, for 
example, would correspond to a U3 of 60%, which means that an average intervention group 
student would rank at the 60th percentile in the comparison group. Equivalently, an average 
intervention group student would rank 10 percentile points higher than an average comparison 
group student, who, by definition, ranks at the 50th percentile.

Mechanically, the conversion of an effect size to a U3 index entails looking up on a table 
that lists the proportion of area under the standard normal curve for different values of z-scores, 
which can be found in the appendices of most statistics textbooks. For a given effect size, U3 has 
a value equal to the proportion of area under the normal curve below the value of the effect 
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size—under the assumptions that the outcome is normally distributed and that the variance of the 
outcome is similar for the intervention group and the comparison group.

(2) Compute:

Improvement index = U3 – 50% (16)

Given that U3 represents the percentile rank of an average intervention group student in 
the comparison group distribution, and that the percentile rank of an average comparison group 
student is 50%, the improvement index, defined as (U3 – 50%), would represent the difference in
percentile rank between an average intervention group student and an average comparison group 
student in the comparison group distribution.

In addition to the improvement index for each individual finding, the WWC also 
computes a domain average improvement index for each study as well as a domain average 
improvement index across studies for each outcome domain. The domain average improvement
index for each study is computed based on the domain average effect size for that study rather 
than as the average of the improvement indices for individual findings within that study. 
Similarly, the domain average improvement index across studies is computed based on the 
domain average effect size across studies, with the latter computed as the average of the domain
average effect sizes for individual studies.

IV. Clustering Correction of the Statistical Significance of Effects Estimated with
Mismatched Analyses 

In order to adequately assess an intervention’s effects, it is important to know not only the 
magnitude of the effects as indicated by ES, but also the statistical significance of the effects.
The correct statistical significance of findings, however, is not always readily available,
particularly in studies where the unit of assignment does not match the unit of analysis. The most
common “mismatch” problem occurs when assignment was carried out at the cluster level (e.g., 
classroom or school level), whereas the analysis was conducted at the student level, ignoring the 
dependence among students within the same clusters. Although the point estimates of the 
intervention’s effects based on such mismatched analyses are unbiased, the standard errors of the 
effect estimates are likely to be underestimated, which would lead to inflated Type I error and 
overestimated statistical significance.

In order to present a fair judgment about an intervention’s effects, the WWC computes
clustering-corrected statistical significance for effects estimated from mismatched analyses and 
the corresponding domain average effects based on Hedges’ (2005) most recent work. As 
clustering correction will decrease the statistical significance (or increase the p-value) of the 
findings, non-significant findings from a mismatched analysis will remain non-significant after 
the correction. Therefore, the WWC only applies the correction to findings reported to be 
statistically significant by the study authors.

The basic approach to clustering correction is to first compute the t-statistic
corresponding to the ES that ignores clustering, and then correct both the t-statistic and the 
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associated degrees of freedom for clustering based on sample sizes, number of clusters, and the 
intra-class correlation. The statistic significance corrected for clustering could then be obtained 
from the t-distribution with the corrected t-statistic and degrees of freedom. In the remainder of 
this section, we detail each step of the process.

(1) Compute the t-statistic for the ES ignoring clustering

This is essentially the reverse of Equation (4) that computes Hedges’s g based on t: 

21

21

nn

nn
gt ,

 t = g*sqrt [n1n2/( n1 + n2)]       (17)

where g is the ES that ignores clustering, and n1 and n2 are the sample sizes for the intervention
group and the comparison group respectively for a given outcome. For domain average ESs, n1

and n2 are the average sample sizes for the intervention and comparison groups respectively 
across all outcomes within the domain

(2) Correct the above t-statistic for clustering 
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,       (18)

tA = t*sqrt{[(N-2)-2(N/m-1) ]/[(N-2)(1+(N/m-1) )]}

where N is the total sample size at the student level (N = n1+ n2), m is the total number of
clusters in the intervention and comparison groups (m = m1+ m2, m1 and m2 are the number of 
clusters in each of the two groups), and  is the intra-class correlation (ICC) for a given outcome.

The value of ICC, however, is often not available from the study reports. Based on 
empirical literature in the field of education, the WWC has adopted a default ICC value of .20 
for achievement outcomes and .10 for behavioral and attitudinal outcomes. The PIs and review 
teams may set different defaults with explicit justification in terms of the nature of the research
circumstances or the outcome domain.

For domain average ESs, the ICC used in Equation (18) is the average ICC across all 
outcomes within the domain. If the number of clusters in the intervention and comparison groups 
differs across outcomes within a given domain, the total number of clusters (m) used for 
computing the corrected t-statistic will be based on the largest number of clusters in both groups 
across outcomes within the domain (i.e., largest m1 and m2 across outcomes). This gives the 
study the benefit of the doubt by crediting the measure with the most statistical power, so that the 
WWC’s rating of interventions will not be unduly conservative.
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(3) Compute the degrees of freedom associated with the t-statistics corrected for clustering:
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h =  [(N-2)-2(N/m-1) ]^2/[(N-2)(1- )^2+ (N/m)(N-2N/m) ^2+2(N-2N/m) (1- )]

(4) Obtain the statistical significance of the effect corrected for clustering

The clustering-corrected statistical significance (p-value) is determined based on the t-
distribution with corrected t-statistic (tA) and the corrected degrees of freedom (h).  This p-value 
can either be looked up in a t-distribution table that can be found in the appendices of most
statistical textbooks, or computed using the t-distribution function in Excel: p = TDIST(tA, h, 2).

Further information on this topic is available in the WWC’s technical papers on the WWC
Tutorial on Mismatch Between Unit of Assignment and Unit of Analysis and the WWC
Intervention Rating Scheme.

V.  Benjamini-Hochberg Correction of the Statistical Significance of Effects Estimated with
Multiple Comparisons

In addition to clustering, another factor that may inflate Type I error and the statistical
significance of findings is when study authors perform multiple hypothesis tests simultaneously.
The traditional approach to addressing the problem is the Bonferroni method, which lowers the 
critical p-value for individual comparisons by a factor of 1/m, with m being the total number of
comparisons made. The Bonferroni method, however, has been shown to be unnecessarily 
stringent for many practical situations; therefore the WWC has adopted a more recently
developed method to correct for multiple comparisons or multiplicity—the Benjamini-Hochberg
(BH) method (Benjamini & Hochberg, 1995). The BH method adjusts for multiple comparisons
by controlling false discovery rate (FDR) instead of familywise error rate (FWER). It is less 
conservative than the traditional Bonferroni method, yet still provides adequate protection
against Type I error in a wide range of applications. Since its conception in the 1990’s, there has 
been growing evidence showing that the FDR-based BH method may be the best solution to the 
multiple comparisons problem in many practical situations (Williams, Jones, & Tukey, 1999)

As is the case with clustering correction, the WWC only applies the BH correction to 
statistically significant findings, because non-significant findings will remain non-significant
after correction. For findings based on analyses where the unit of analysis was properly aligned 
with the unit of assignment, we use the p-values reported in the study for the BH correction. If 
the exact p-values were not available, but the ESs could be computed, we will convert the ESs to
t-statistics (see Equation (4)), and then obtain the corresponding p-values.7 For findings based on 

7 The p-values corresponding to the t-statistics can either be looked up in a t-distribution table, or computed using
the t-distribution function in Excel: p = TDIST(t, df, 2), where df is the degrees of freedom, or the total sample size 
minus 2 for findings from properly aligned analyses.
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mismatched analyses, we first correct the author-reported p-values for clustering, and then use 
the clustering-corrected p-values for the BH correction.

Although the BH correction procedure described above was originally developed under 
the assumption of independent test statistics (Benjamini & Hochberg, 1995), Benjamini and 
Yekutieli (2001) point out that it also applies to situations where the test statistics have positive 
dependency, and that the condition for positive dependency is general enough to cover many
problems of practical interest. For other forms of dependency, a modification of the original BH 
procedure could be made, which, however, is “very often not needed, and yields too conservative 
a procedure” (p. 1183).8 Therefore, the WWC has chosen to use the original BH procedure rather 
than its more conservative modified version as the default approach to correcting for multiple
comparisons. In the remainder of this section, we describe the specific procedures for applying 
the BH correction in three types of situations: studies that tested multiple outcome measures in 
the same outcome domain with a single comparison group, studies that tested a given outcome
measure with multiple comparison groups, and studies that tested multiple outcome measures in 
the same outcome domain with multiple comparison groups. 

Benjamini-Hochberg Correction of the Statistical Significance of Effects on Multiple 
Outcome Measures within the Same Outcome Domain Tested with a Single Comparison 
Groups

The most straightforward situation that may require the BH correction is when the study authors 
assessed an intervention’s effect on multiple outcome measures within the same outcome domain
using a single comparison group. For such studies, the review team needs to first check whether 
the study authors’ analyses already took into account multiple comparisons (e.g., through a 
proper multivariate analysis). If so, obviously no further correction is necessary. If the authors 
did not address the multiple comparison problem in their analyses, then the review team will 
need to correct the statistical significance of the authors’ findings using the BH method. For 
studies that examined measures in multiple outcome domains, the BH correction will be applied 
to the set of findings within the same domain rather than across different domains.  Assuming
that the BH correction is needed, the review team will apply the BH correction to multiple
findings within a given outcome domain tested with a single comparison group as follows:

(1) Rank order statistically significant findings within the domain in ascending order of the p-
values, such that: p1  p2  p3  …  pm, with m being the number of significant findings within 
the domain.

(2) For each p-value (pi), compute:

'  = ip ,
*
M

i
        (20)

[pi = i* /M]

8 The modified version of the BH procedure uses over the sum of the inverse of the p-value ranks across the m

comparisons (i.e.,
m

i i1

1
/ ) instead of in Equation (20).
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where i is the rank for pi, with i = 1, 2, … m; M is the total number of findings within the domain
reported by the WWC; and  is the target level of statistical significance.

Note that the M in the denominator of Equation (20) may be less than the number of 
outcomes that the study authors actually examined in their study for two reasons: (1) the authors 
may not have reported findings from the complete set of comparisons that they had made, and 
(2) certain outcomes assessed by the study authors may be deemed irrelevant to the WWC’s 
review. The target level of statistical significance, , in the numerator of Equation (20) allows us 
to identify findings that are significant at this level after correction for multiple comparisons. The 
WWC’s default value of  is 0.05, although other values of  could also be specified. If, for 
instance,  is set at 0.01 instead of 0.05, then the results of the BH correction would indicate 
which individual findings are statistically significant at the 0.01 level instead of the 0.05 level 
after taking multiple comparisons into account.

(3) Identify the largest i—denoted by k— that satisfies the condition: pi  pi’. This establishes the 
cut-off point, and allows us to conclude that all findings with p-values smaller than or equal to pk

are statistically significant, and findings with p-values greater than  pk are not significant at the 
pre-specified level of significance (  = 0.05 by default) after correction for multiple comparisons.

One thing to note is that, unlike clustering correction, which produces a new p-value for 
each corrected finding, the BH correction does not generate a new p-value for each finding, but 
rather only indicates whether the finding is significant or not at the pre-specified level of 
statistical significance after the correction. As an illustration, suppose a researcher compared the 
performance of the intervention group and the comparison group on eight measures in a given 
outcome domain, and reported six statistically significant effects and two non-significant effects 
based on properly aligned analyses. To correct the significance of the findings for multiple
comparisons, we would first rank-order the p-values of the six author-reported significant
findings in the first column of Table 1, and list the p-value ranks in the second column. We then 
compute pi’= i* /M, using Equation (20) with M = 8 and =0.05, and record the values in the 
third column. Next, we identify k, the largest i, that meets the condition: pi  pi’. In this example,
k = 4, and pk = 0.014. Thus, we can claim that the four finding associated with a p-value of 0.014 
or smaller are statistically significant at the 0.05 level after correction for multiple comparisons.
The other two findings, although reported as being statistically significant, are no longer 
significant after the correction.

Table 1.  An Illustration of Applying the Benjamini-Hochberg Correction for Multiple Comparisons

Author-reported or 
clustering-

corrected p-value
(pi)

P-value
rank (i)

8
)05.0(*

'
i

pi

pi’= i* 
(0.05)/8

pi  pi’?
Statistical significance

after BH correction
(  = .05) 

0.002 1 0.006 Yes significant

0.009 2 0.013 Yes significant

0.011 3 0.019 Yes significant

0.014 4 0.025 Yes significant
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0.034 5 0.031 No n.s.

0.041 6 0.038 No n.s.

Note. n.s.: not statistically significant.

Benjamini-Hochberg Correction of the Statistical Significance of Effects on a Given 
Outcome Tested with Multiple Comparison Groups 

The above discussion pertains to the multiple comparisons problem when the study authors 
tested multiple outcomes within the same domain with a single comparison group. Another type
of multiple comparisons problem occurs when the study authors tested an intervention’s effect 
on a given outcome by comparing the intervention group with multiple comparison groups. The 
WWC’s recommendation for handling such studies is as follows:

1. In consultation with the PI and the study authors if needed, the review team selects a single 
comparison group that best represented the “business as usual” condition or that is 
considered most relevant to the WWC’s review. Only findings based on comparisons
between the intervention group and this particular comparison group will be included in the 
WWC’s review. Findings involving the other comparison groups will be ignored, and the 
multiplicity due to one intervention group being compared with multiple comparison groups 
could also be ignored. 

2. If the PI and the review team believe that it is appropriate to combine the multiple
comparison groups, and if adequate data are available for deriving the means and SDs of the 
combined group, the team may present the findings based on comparisons of the intervention 
group and the combined comparison group instead of findings based on comparisons of the 
intervention group and each individual comparison group. The kind of multiplicity due to one 
intervention group being compared with multiple comparison groups will no longer be an 
issue in this approach.

The PI and the review team may judge the appropriateness of combining multiple 
comparison groups by considering whether there was enough common ground among the 
different comparison groups that warrant such a combination; and particularly, whether the 
study authors themselves conducted combined analyses or indicated the appropriateness, or 
the lack thereof, of combined analyses. In cases where the study authors did not conduct or 
suggest combined analyses, it is advisable for the review team to check with the study 
authors before combining the data from different comparison groups.

3. If the PI and the review team believe that neither of the above two options is appropriate for a 
particular study, and that findings from comparisons of the intervention group and each 
individual comparison group should be presented, they need to make sure that the findings 
presented in the WWC’s intervention report are corrected for multiplicity due to multiple
comparison groups if necessary. The review team needs to first check the study report or 
check with the study authors whether the comparisons of the multiple groups were based on a 
proper statistical test that already took multiplicity into account (e.g., Dunnett’s test (Dunnet, 
1955), the Bonferroni method (Bonferroni, 1935), Scheffe’s test (1953), and Tukey’s HSD 
test (1949)). If so, then there would be no need for  further corrections.
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It is also advisable for the team to check with the study authors regarding the appropriateness 
of correcting their findings for multiplicity due to multiple comparison groups, as the authors 
might have theoretical or empirical reasons for considering the findings from comparisons of 
the intervention group and a given comparison group without consideration of other 
comparisons made within the same study. If the team decides that multiplicity correction is 
necessary, they will apply such correction using the BH method in the same way as they 
would apply it to findings on multiple outcomes within the same domain tested with a single 
comparison group as described in the previous section.

Benjamini-Hochberg Correction of the Statistical Significance of Effects on Multiple 
Outcome Measures in the Same Outcome Domain Tested with Multiple Comparison
Groups

A more complicated multiple comparison problem arises when a study tested an intervention’s
effect on multiple outcome measures in a given domain with multiple comparison groups. The 
multiplicity problem thus may originate from two sources. Assuming that both types of
multiplicity need to be corrected, the review team will apply the BH correction in accordance
with the following three scenarios.

Scenario 1: The study authors’s findings did not take into account either type of multiplicity.

In this case, the BH correction will be based on the total number of comparisons made.
For example, if a study compared one intervention group with two comparison groups on five 
outcomes in the same domain without taking multiplicity into account, then the BH correction 
will be applied to the 10 individual findings based on a total of 10 comparisons.

Scenario 2: The study authors’s findings took into account the multiplicity due to multiple 
comparisons, but not the multiplicity due to multiple outcomes.

In some studies, the authors may have performed a proper multiple comparison test (e.g.,
Dunnett’s test) on each individual outcome that took into account the multiplicity due to multiple
comparison groups. For such studies, the WWC will only need to correct the findings for the 
multiplicity due to multiple outcomes. Specifically, separate BH corrections will be made to the 
findings based on comparisons involving different comparison groups. With two comparison 
groups, for instance, the review team will apply the BH correction to the two sets of findings 
separately—one set of findings (one finding for each outcome) for each comparison group.

Scenario3: The study authors’s findings took into account the multiplicity due to multiple 
outcomes, but not the multiplicity due to multiple comparison groups.

Although this scenario may be relatively rare, it is possible that the study authors 
performed a proper multivariate test (e.g., MANOVA or MANCOVA) to compare the 
intervention group with a given comparison group that took into account the multiplicity due to 
multiple outcomes, and performed separate multivariate tests  for different comparison groups. 
For such studies, the review team will only need to correct the findings for multiplicity due to 
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multiple comparison groups. Specifically, separate BH corrections will be made to the findings 
on different outcomes. With five outcomes and two comparison groups, for instance, the review 
team will apply the BH correction to the five sets of findings separately—one set of findings
(one finding for each comparison group) for each outcome measure.

The decision rules for the three scenarios described above are summarized in the table 
below.
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Table 2. Decision Rules for Correcting the Significance Levels of Findings from Studies That had a
Multiple Comparison Problem due to Multiple Outcomes in a Given Domain and/or  Multiple 
Comparison Groups, by Scenario

Authors’ Analyses Benjamini-Hochberg Correction
1. Did not correct for multiplicity 

from any source
BH correction to all 10 individual findings

2. Corrected for multiplicity due 
to multiple comparison
groups only

BH correction to the 5 findings based on T vs. C1 comparisons
BH correction to the 5 findings based on T vs. C2 comparisons

3. Corrected for multiplicity due 
to multiple outcomes only 

BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O1
BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O2
BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O3
BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O4
BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O5

Note. T: treatment (intervention) group;
  C1 and C2: comparison groups 1 and 2;
O1, O2, O3, O4, and O5: five outcome measures within a given outcome domain.

On a final note, although the BH corrections are applied in different ways to the 
individual study findings in different scenarios, such differences do not affect the way in which 
the intervention rating is determined. In all three scenarios of the above example, the 10 findings 
will be presented in a single outcome domain, and the characterization of the intervention’s
effects for this domain in this study will be based on the corrected statistical significance of each 
individual finding as well as the magnitude and statistical significance of the average effect size 
across of the 10 individual findings within the domain.
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What Works Clearinghouse Tutorial on Mismatch between Unit of Assignment and 
Unit of Analysis 

The mismatch problem of concern here occurs when the units of assignment do not match 
the units of analysis in a study of an intervention and this feature of the study’s design is 
ignored in the study’s data analysis.  For instance, a study may have assigned entire 
classrooms (the unit of assignment) to the intervention and control conditions.  But the 
study analyzed data at the individual student level rather than at the classroom level or at 
both the classroom level and student level.   Such analyses are common, but they are 
incorrect on statistical grounds.

This kind of mismatch leads to statistics with greater apparent precision than they 
actually have, because students are treated as independent units when they are not.  By 
ignoring the design effect due to the clustering of students within classrooms (Kish, 
1965), such analyses are likely to yield misleadingly high levels of statistical significance 
(p values that are too small) and misleadingly narrow confidence intervals for an 
observed difference between intervention and control conditions.  In a well executed 
randomized trial, for example, the estimates of a difference will be statistically unbiased, 
but statements about statistical tests of hypotheses and about one’s confidence in results 
may not be correct.  

In particular, a difference found to be statistically significant under an incorrect mismatch 
analysis could, under a correct analysis, turn out to be not statistically significant.  A 
difference found to be not statistically significant under an improper mismatch analysis, 
on the other hand, would generally remain non-significant under a correct analysis. 

Calculating effect sizes, confidence intervals, p values for statistical tests, and 
standardized effect sizes correctly, when groups are the units of assignment, requires 
information that is often not available in original reports when study authors analyzed the 
data incorrectly.  In particular, to properly analyze the data, one needs to (a) know the 
intraclass correlation, which represents the degree to which individuals are dependent on 
each other within groups, or (b) employ methods such as hierarchical linear modeling that 
take this relationship into account.  This intraclass correlation is rarely reported in studies 
with the mismatch problem.  And hierarchical linear modeling and related approaches 
usually require access to and resources for reanalyzing original micro-record data. These 
are often not available.

Example: Consider a study in which 10 classrooms, each containing 20 students, were 
randomly allocated to an intervention and control conditions.  Classes were then the units 
of assignment, with five classes in each condition.  If students were independent of one 
another (i.e., intraclass correlation = 0), a statistical test that used students as the units of 
analysis would have an actual probability of rejecting the null hypothesis of .05. If the 
intraclass correlation among students was .05, the actual probability of rejection would be 
.16.  If the intraclass correlation was .10, the probability of rejection would be .26.



 Ignoring the intraclass correlation, therefore, will lead to specious declarations of 
statistical significance. The problem was recognized in the 1980s by Wolins (1982) 
among others, but its importance has become clear as a consequence of more recent 
work.   See Hedges (2005) for technical detail and discussion of contemporary work. 
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Teacher-Intervention Confound 

In some studies reviewed by the WWC, only one teacher is assigned to each condition. In 
particular, three different kinds of studies involve only one teacher per condition. The 
technical guidance discusses each case in turn. Some of these cases apply only to 
randomized controlled trials (RCT) while others apply to both RCTs and quasi-
experimental designs (QEDs). The final case applies not only to teachers, but to any 
aggregated units such as classrooms, schools, or districts.

1) RCTs with one teacher per condition, and students randomly assigned to 
teachers

2) RCTs and QEDs with one teacher teaching both conditions, and students 
assigned to conditions. 

3) RCTs with one teacher, school, or district randomly assigned to each 
condition and students are not randomly assigned, and similar QEDs 

Finally, this guidance focuses on one specific technical issue, the confound between 
teacher and intervention. The study’s ultimate disposition (i.e., meets evidence standards, 
meets evidence standards with reservations, does not meet evidence screens) also 
depends on how it fares on other criteria in the WWC Study Review Standards. 

RCTs with one teacher per condition and
students randomly assigned to teachers 

This part of the guidance focuses on RCTs only, and does not apply to QEDs.

1. In some studies, one teacher may teach curriculum A and a different teacher may teach 
curriculum B. Children are then randomly assigned to each teacher/curriculum
combination.

This is indeed a randomized trial. But the estimate of the intervention’s effect is 
problematic because the teacher and intervention are confounded. That is, the effect of 
teachers usually cannot be disentangled from the effect of the intervention; consequently,
the estimate of the intervention’s effect could be then subject to potentially serious bias.

2. The default for handling these studies is the following: 

Such an RCT study should generally be downgraded or even discarded if (a) the 
study does not demonstrate that the confounding problem is negligible and (b) the 
PI and Review Team regard the potential bias in estimating effect as non-trivial.

3. In certain domains and interventions, it is possible for teacher effects to be negligible. 
For instance, a computer instruction program may be relatively free-standing and require 
little teacher engagement in the actual programmatic instruction and measurement of 
outcomes. In a comparison of two such computer programs, teachers might have very
little effect on either condition. If the PI and Review Team agree that the study author 
demonstrates that teacher effects and the potential bias are negligible, then the study may
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be regarded as an RCT without a teacher confound problem (that is, the study is neither 
downgraded nor discarded).

If the teacher has some role in implementing the intervention, but that role is limited by
the nature of the intervention (e.g., predominantly computer-based), it is reasonable to 
assume some limited teacher effects. In this case, the study might be downgraded, but not 
discarded.

For interventions where the extent of teacher engagement (and therefore the possible 
teacher effect) is unclear, the burden of proof is on the study authors to demonstrate that 
teacher effects are negligible, are likely to have little or no impact on the study findings, 
and therefore the study should not be downgraded or discarded. 

RCTs and QEDs with one teacher teaching both conditions and
students assigned to conditions 

1. In some studies, one teacher may teach curriculum A in one class and the same teacher 
may teach curriculum B in a second class. Students are then randomly assigned to each 
class.

2. The study is a fair test of the intervention if the PI and Team believe it is reasonable to 
assume (a) that the teacher’s ability and motivation to teach curriculum A is the same as 
his or her ability and motivation to teach curriculum B or (b) that effects of the teacher 
are negligible for this intervention (e.g., as in the example above, an intervention may
require very little input on the part of a teacher). The study may provide evidence bearing 
on either assumption, and this should be recognized by the PI and Review Team. For 
instance, the study may tell the reader that the teacher is well trained in each curriculum.

This situation is analogous to some surgical trials in which the same surgeon uses two
different approaches in each arm of a randomized trial. Patients are randomly assigned to 
each arm of the trial, but the same surgeon performs the surgery in both arms.

3. The study is not a fair test of the intervention if the PI and Review Team do not feel 
there is adequate basis for making any of the above  assumptions. For instance, (a) the 
study may provide no information about the plausibility of the assumptions, and (b) the 
PI and Review Team regard the assumptions as implausible based on the study’s 
contents, and (c) the PI and Review Team regard the potential bias due to teacher 
confound in estimating the intervention’s effect as non-trivial. 

4. For RCTs in which a single teacher teaches both the intervention and the control
conditions, and students are randomly assigned to conditions, the WWC recommends the 
following default disposition. 

The study should be downgraded if: 
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The study author does not demonstrate equal ability and motivation of the teacher
in teaching both conditions

OR
The study author does not demonstrate negligible teacher effects for the
particular intervention (if counter evidence exists) 

OR
The PI and Review Team regard the potential biases in estimating the 
intervention’s effect as non-trivial . 

The study is not downgraded if there is a strong case that teacher ability and motivation
are equal in each condition or teacher effects are negligible for the particular intervention
(and consequently there are no serious potential biases in the estimate of the 
intervention’s effect). However, the PI and team should explain in the intervention report 
that the teacher is assumed to be equally skilled and motivated to teach in each condition.

5. QEDs are handled similarly. The study should be downgraded (i.e., discarded) if: 

The study author does not demonstrate equal ability and motivation of the
teacher in teaching both conditions

OR
The study author does not demonstrate negligible teacher effects for the
particular intervention (if there is counterevidence)

OR
The equating procedures are absent or inadequate,. 

The reasons for discard should be documented and explained in the intervention report. 

QEDs in which a single teacher teaches both conditions can be included in the WWC’s
review if the study author demonstrates that the teacher ability and motivation are equal 
in both conditions or teacher effects are negligible for the particular intervention. Again, 
this should be made explicit in the intervention report .

RCTs with one teacher, school or district randomly assigned to each condition, and 
students are not randomly assigned, and similar QEDs

1. A study may be based on  two intact classrooms and their teachers, where one intact 
class and its teacher may be assigned randomly to condition A, and the second intact 
class and teacher assigned to condition B. 

More generally, a study involving two aggregated intact units (e.g., classrooms, schools, 
or districts) may randomly assign one aggregated unit to the intervention condition and a 
second aggregated unit to a second condition. In the technical jargon, the aggregates are 
often called “clusters,” “groups,” or “places.” 
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2. In each case, the unit of randomization is at the cluster (aggregate or place) level. In 
each case, only one unit (the teacher and her classroom, an entire school, etc.) out of two 
such units is randomly assigned to each treatment condition. 

3. A correct statistical analysis at the level of the unit of randomization (schools or 
districts or classes) cannot be done without invoking untestable assumptions. This is 
because the number of degrees of freedom associated with statistical tests (such as t or F), 
confidence intervals, etc. is zero. Put another way, neither statistical significance tests nor 
confidence intervals can be calculated at the proper level of analysis (i.e. the level of 
randomization) if the study is viewed as a randomized trial. In addition, any estimate of 
the intervention’s effect is confounded with the teacher’s effect. 

This design, with N=1 unit of randomization in each arm of a randomized trial, is not a 
good randomized design. 

4. The study author may have analyzed the data at a level of units lower than the level of
random assignment. For instance, the study may report an analysis based on data at the 
level of individual students within the randomly assigned classes, or students within the 
randomly assigned schools in an attempt to adjust for difference between students in 
different classes or schools. The study can be construed as a QED if the analysis was 
done this way.

5. The default disposition for such RCTs is as follows: 

Such a study should generally be downgraded by the PI and Team. Depending on 
the study design, analysis, and the assumptions, the study may have been 
analyzed as a QED. If it does not meet the standards for a QED, it should be 
discarded. The PI and Review Team should document the reason for the discard. 

6. QEDs in which schools (or other entities, such as classes or districts) are confounded 
with interventions are problematic in that the effects of schools and effects of the 
intervention usually cannot be disentangled, and the assumption that the school effects 
are equal is usually not plausible. Further, post facto matching of students or 
(equivalently) statistically equating is often suspect. For instance, if the schools differ 
appreciably in their location and characteristics of students (New York City versus rural 
Iowa), no amount of matching or statistical equating is likely to assure that the groups of 
children that are finally selected as being comparable within schools will indeed yield a 
statistically unbiased estimate of the effect of the intervention.

The WWC regards the assumption as patently implausible in the study context (or regard 
the equating as patently inadequate) and should then downgrade the study and discard it. 
Reasons for the discard must be given. However, the PI and Review Team may include a 
study of this type if they can provide compelling evidence that the required assumptions
have been met. 
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