

Bringing the Low NOx Diesel Under Control

John Pinson August 22, 2006 DEER Conference, Detroit

Dispersion management is the greatest challenge facing the low-NOx diesel

GM

Slide 2

<u>GM</u>

Roadmap to Low-NOx Combustion Premixed Charge Compression Ignition (PCCI)

- Reduce charge temperature with cooled EGR and reduced compression ratio
- Enhance premixing through injection strategy
 - Early PCCI for light loads
 - Late PCCI for heavier loads

Issue

 Minimum achievable NOx levels are limited by the combustion quality and robustness

Combustion Mode Map over FTP for Chassis Certification HD Truck (8500 lb)

Combustion Feedback Control – The Promise

- Aggressive low-NOx calibration
- Extended PCCI calibrations
- Compensate for ageing and variation
- Early & accurate problem detection

Major Sources of Dispersion

Major players:

- Mass Air Flow Sensor (global)
- Injector variability (timing and quantity esp. pilot)
- Compression ratio
- EGR distribution
- Fuel quality (cetane)
- Environmental factors
- Wear on everything

Tuning:

- Global EGR level (slow)
- Charge temperature control with sophisticated EGR system (slow)
- Individual injection quantity and phasing (fast)

Derived combustion quantities like the 50% burn rate provide good control parameters but require

- a powerful engine ECU
- robust sensors

Simple Phasing and Fuel Balance Control Using Pressure Feedback Control

Great! - But does it work?

 No NOx, HC or Smoke benefit observed due to linear emission response to the base engine cyl-to-cyl imbalance

MAF Correction with Phasing Control Late-PCCI 1400 rpm, 400 kPa BMEP

Procedure

<u>GM</u>

- Ran open and closed loop at each EGR
- For each EGR error, swept phasing target under C/L control
- C/L phasing uses "no EGR error" target as baseline

♦ 0% MAF Cntrl OFF 20 7% MAF Cntrl OFF ○ 7% MAF Cntrl ON Tradeoff 15 **Cntrl OFF** 10% MAF Cntrl OFF HC (mg/sec) O 10% MAF Cntrl ON 10 -7% MAF Cntrl OFF phasing ***** O -7% MAF Cntrl ON advance 5 -10% MAF Cntrl OFF rich error lean error -10% MAF Cntrl ON 0 1.0 1.5 2.0 3.0 3.5 2.5 NOx (mg/sec)

HC vs. NOx with MAF error and phasing control

- HC and NOx emissions resulting in rich/lean shift due to EGR can be partially recovered through phasing correction
- Requires individual cylinder pressure sensing

Global EGR Correction with Phasing Control Early-PCCI at 1400 RPM, 250 kPa BMEP

GM

- Simulate EGR error through MAF error (+/- 11%)
- Closed-loop correction based on average combustion phasing
 - Feedback to EGR valve
- Effective in this case (but not in all cases)

Slide 12

Combustion Feedback Control Shows Promise for PCCI Operation

- Premixed combustion offers the potential to significantly reduce engine out emissions
- Comb feedback may be required due to production fleet variations and environmental factors
- Individual cylinder control combustion feedback shows potential for effective load balance and phasing control
 - Not all recoveries result in emission benefits
 - Works best in non-linear tradeoff regions

Thank you for your attention

