
Table of Contents
1. Introduction Of Sonification..10

1.1 Definition Of Sonification...10
1.2 The History Of Sonification..11
1.3 MOTIVATION...14

General Aspects For Sonification...14
Space Science Specific Aspects For Sonification...15
Accessibility..15

2. Existing Space Science Applications...16
2.1 Magnetosphere Introduction..17
2.2 TIPSOD...19
2.3 VISBARD..20
2.4 CDA Web +..22

3. Employed Technologies And Standards...24
3.1 Java 1.5.0...24
3.2 Java Sound API..25

3.2.1 Java Sound History..25
3.2.2 Class Overview..26

3.3 Java WebStart ...27
3.3.1 Introduction Of Java Web Start..27
3.3.2 JNLP Technology...28
3.3.2.2 Step By Step..29
3.3.2.3 Updates And Caching...31
3.3.2.4 Security...31
3.3.3 JNLP API...31
3.3.4 JNLP's Main Services..32

3.4 SOAP...33
3.4.1 Introduction..33
3.4.2 SOAP Message..34
3.4.3 SOAP Envelope...36
3.4.4 SOAP Remote Procedure Call...37
3.4.5 SOAP Example..38
3.5 MIDI...39
3.6 The Common Data Format ..42

4. xSonify – The Application...44
4.1.1 Functional Survey – How xSonify Works..45
4.1.2 How To Work With xSonify...45
4.2 Technical Architecture...47

4.2.1 Module Overview..47
4.2.2 Sonification Core Module..48
4.2.2.1 Class: Sonification_Core..48
4.2.2.2 Class: Sonification_ObjectBuilder...49
4.2.2.3 Class: Sonification_Object...50
4.2.2.4 Class: Sonification_Object_Value..51
4.2.3 Data Import Module ..52
4.2.3.1 Interface: DataImport..52
4.2.3.2 Class: DataImportVisbard...52
4.2.3.3 Class: DataImportTextfile...53

4.2.3.4 Package: visbards_resourcetoolkit ..53
4.2.3.5 Package: textfile..53
4.2.4 GUI (Graphical User Interface) Module ...54
4.2.4.1 Class: Sonification_MainWindow..54
4.2.4.2 Class: Sonification_DataObjectPlotPanel...55
4.2.4.3 Class: Sonification_DataObjectPlotGraphPanel.....................................55
4.2.4.4 Class: Sonification_DataObjectPlotOptionsPanel..................................56
4.2.4.5 Class: Sonification_DataObjectOptionsPanel..57
4.2.4.6 Class: Sonification_PlayerControlPanel...57
4.2.5 Sonification/Sound Module...58
4.2.5.1 Class: SonificationSound..58
4.2.5.2 Class: SonificationSound ...59
Design Pattern in Sonification/Sound Module: Observer Pattern......................59
4.2.6 Data Transformation Module ...60
4.2.6.1 Functionality “Standard”..60
4.2.6.2 Functionality “Inverse”...61
4.2.6.3 Functionality “Square”..61
4.2.6.4 Functionality “Logarithm”..61
4.2.6.5 Functionality “Average” ..61
4.2.7 Speech Module...62
4.2.8 Data Export Module ..63
4.3 Implementation of xSonify as a module into existing applications..............64
4.3.1 Implementation in TIPSOD and CDAWeb+..64
4.3.2 Implementation in ViSBARD..64

5. Sonification Details..66
5.1 Sonification Modus: Pitch..68
Judgments of pitch will vary somewhat from person to person.68
5.2 Sonification Modus: Volume/Loudness..68
5.3 Sonification Modus: Rhythm..69
5.4 Sonification Process..70
5.5 Delivering Of Information Through Sound And The Difficulties................71

Literature Directory..72
Appendix A...73

xSonify Class Diagram..73
Appendix B..74

xSonify Sequence Diagrams..74
xSonify Start:..74
xSonify DataImport:...74
xSonify Generate Sound: ..74

B1. xSonify Start...74
B2. xSonify DataImport..75
B3. xSonify Generate Sound...77

Chapter 1

1. Introduction Of Sonification

1.1 Definition Of Sonification

Sonification in one sentence described is the use of non-speech audio to convey
information. The expression Sonification comes from the two latin syllables “sonus”
which means sound and the ending ”fication” which forms nouns out of verbs which
are ending with '-fy'. To “sonify” means therefore to convey the information via
sound.

A more detailed definition of Sonification can be split into two important parts: A
technique and an intent.

• The technique is the process of mapping numerical data, presumable embodying
some relationships in the physical world (in our case space physics) or a model
world, to sound.

• The intent is to understand or communicate something about that world.

Both parts of the definition are necessary in order to distinguish the field of
Sonification from other fields that involve sound computation.

As a very basic example for Sonification can be seen a Geiger detector which
“conveys” information about the level of radiation or even more basically a church
bell which “conveys” the current time.

The best known example in space physics was the use of sound for detecting
micrometeoroids impacting Voyager 2 when traversing Saturn’s rings; these impacts
were obscured in the plotted data but were clearly evident as hailstorm sounds1.

Especially in this example there can be seen the high significance of using audio to
display data.

Alone or in combination with visual imaging techniques, Sonification offers a
powerful tool of transmitting information. It can improve and increase the bandwidth
of the interface “human-computer” and can find a lot of applications in the wide range
of information technology.

J. Keller2 defined in 2003, that Sonification can be categorized in three ways:

• Iconic Sonification: This type of Sonification is when someone maps data to
sounds that are associated with certain phenomena. For example, if we gathered
weather data, such as cloud cover, temperature, and humidity, to calculate the
probability of rain tomorrow, then using the sound of rain to indicate when there is
a high probability of rain would be an iconic Sonification.

• Direct Conversion Sonification: This type of Sonification is when someone maps
data to sound to listen for patterns that are represented in the data. For example,
space scientists map data of waves made up of magnetic and electric fields called
electromagnetic waves to sound waves. This direct conversion Sonification can be
as simple as taking the frequencies of the waves and making sound waves with the
same frequencies, which is most useful as long as the frequencies are at pitches that
our ears can hear. Earth's whistler wave is such an electromagnetic wave that
scientists have been sonifying for over 30 years.

• Musical Sonification: This type of Sonification is when someone maps data to
sound in a musical way. For example, we have created a computer software
program that will convert data of very fast particles that have come from the Sun
and are captured by an instrument on one of 2 satellites in space, called Helios 1
and Helios 2, to bell-like sounds. Several musicians have used musical Sonification
of space data to create quartet or orchestra music pieces.

1 NASA: http://voyager.jpl.nasa.gov
2 J. Keller's Definitions, 2003, Private Communication

http://cse.ssl.berkeley.edu/impact/vos/beginners.html

According to Gregory Kramer[2] Sonification is also very often associated with
Audification which is not absolutely correct. In comparison to Sonification,
Audification is in detail the direct translation of a data waveform into the audible
domain for reasons of monitoring and comprehension. Examples for an appliance of
Audification can be found on the website of NASA's Voyager project1.

1.2 The History Of Sonification
The whole field of auditory display and Sonification seems on the first view very
young and new but the roots can be found earlier.

The history of auditory representations of data could be said to include actually the
research by Pythagoras, Ptolemy, Kepler, Mozart, and Dufay – Sonification in music.

For years data structures have been perceived in sound and these structures have
become a basis for musical systems. Predating Pythagoras, who analyzed the structure
of harmonics and applied them to musical scales, we see the application of natural law
to human-generated sound-producing systems. Pythagoras, referred to his results as
“sounding members”. Refinements and extensions of this law defined the
development of the musical scales in use all over the world, from the Shakuhachi
(bamboo flute) of Japan to the diatonically tuned music synthesizers of global popular
music. Manipulating sound for musical ends based upon data or mathematically
derived structures arises from a distinguished tradition. Early in the Christian era, the
astronomer Ptolemy remarked on the elements of musical modulation and wrote
widely studied book on harmonics, as did Kepler and Newton.

1914 the development of the first reading machine with audible output from Fornier
D'Albe was designed as an interfaces for blind users and was a next big step in the
history of Sonification. The “Optophone” had a six-tone code and was significantly
improved in 1922.

If i talk about the history of Sonification I have also to include the exploration of the
wide fields of sonar which will not be explained here furthermore.

The first pioneers of Sonification however who started with Sonification the way we
understand it nowadays were Pollack and Ficks[3] in 1954. They published a paper
detailing research into the use of abstract auditory variables to convey quantitative
information. Using tone and noise bursts, they designed a display that presented eight
binary variables encoded as the pitch area of the noise, the loudness of the noise, the
pitch of the tone, the loudness of the tone, the pitch/noise alternation rate, the
temporal ratio of tone to noise, the total duration of the display, and the stereo location
of the display. They also created a display without the noise bursts which yielded six
binary variables.

Not later than 1961, Speeth[4] reported the results of experiments that used
Audification of seismic data to determine if subjects could differentiate earthquakes
from underground bomb blasts. Because of their complexity, seismograms that
resulted from these events were difficult to understand and categorize. By speeding up
the recordings of the seismic data, the complex wave was shifted into the audible
range. For over 90% of the trials, subjects were able to correctly classify seismic
records as either bomb blasts or earthquakes. Additionally, by speeding up the
playback of the data, analysts could review 24 hours of data in about five minutes.

In 1974 three scientists, Chambers, Mathews, and Moore[5] designed a three-
dimensional auditory display at AT&T Bell Laboratories. In an auditory enhancement
of a scatter plot, they encoded three data variables as pitch, timbre and amplitude
modulation. While no formal testing was conducted, they found that the auditory
representation did assist in the classification of the data.

1982, chemist Edward Yeung[6] developed a Sonification technique for displaying
experimental data from analytical chemistry. Like most researchers in the field of
Sonification he looked for auditory variables that had some degree of independence.
He selected two pitch ranges, loudness, decay time, stereo location, duration, and
silences between events. Using these variables and no more than two training sessions
per subject, Yeung asked the subject to classify detected levels of metals in a given
sample. A given data point could belong to none of four categories and Yeung's
subjects attained a 98% correct classification rate.

Also in the car industries Sonification became an issue. 1986, a team of engineers,
working at Fiat Auto[7], developed and patented a Sonification system for continuous
monitoring of various automobile parameters. A plurality of sensor devices were used
as control signals for a group of tone generators. Once again the task was real-time,
not analysis, and psychometric tests were not conducted to determine the efficacy of
the display system.

With the enhancement of the computer hardware at the end of the 80's the slow pace
of development in Sonification began to accelerate.

Stuart Smith began to work with a team on Exvis[8] at the University of
Massachusetts/Lowell. Exvis is a auditory/visual display tool for representing
multidimensional (up to seven dimensions) data. The data variables were encoded
simultaneously as the geometric attributes of graphic elements and as the attributes of
a synthesized sound. The graphic elements produced data-driven visual textures and
the auditory display was triggered by moving the mouse cursor through the graphical
representation.

At about the same time, Gregory Kramer[9][10] began work at the Santa Fe Institute
on Sonification of complex systems and Clarity's Sonification Toolkit. In searching
for ways to enable our perceptual systems to more fully contribute to comprehending
complexity, Kramer's work, meanwhile, was pushing the limits of dimensionality.
Using data supplied by the mathematician Mayer-Kress, Kramer attempted to
represent nine-dimensional chaotic systems (ten-dimensions including time) in an
auditory display[11]. He also worked with Apple Computer's ACOT group to produce
Sonifications of predator/prey models for education purposes, using both realistic and
abstract sounds to represent the dynamic system.

Kramer is also one of the founder of the International Community for Auditory
Display (ICAD)[12] which coordinates since the foundation in 1992 the research in
the field of Sonification. In October 1992, the first International Conference on
Auditory Display (ICAD92) convened in Santa Fe, New Mexico under the
sponsorship of the Santa Fe Institute. The ICAD92 brought together 36 researchers,
nearly all working with issues of how non-speech audio can be used to convey
information. Since 1992 the ICAD has been taken place once a year at several places
on this globe and many scientists have been contributed to a steadily growing
knowledge base for Sonification.

1990, Scaletti and Craig[13], working at the National Center for Supercomputing
Applications, produced a series of Sonifications to accompany scientific
visualizations developed there. Their work added Sonification to create a
sophisticated sonified data visualization. The data represented both aurally and
visually included ozone levels, swinging pendula, and forestry data. By displaying
these video tapes to the robust computer graphics community, a new and broader
audience became aware of Sonification.

At the same time, Rabenhorst[14] was working with some colleagues at IBM's
Watson Labs on an auditory and visual representation of three scalar fields associated
with electron density, hole density, and potential throughout the volume of a
semiconductor. Like the application Exvis, the user could use a mouse to select the
region to be displayed. In the IBM work, two volumetric variables were visualized in
high resolution while one was sonified.

As current project i would like to introduce the “Sonification Sandbox“[15]. It is a
project of the Psychology Department's Sonification laboratory at Georgia Institute of
Technology. Bruce Walker, PhD. is the chairman of this project which is motivated by
a need for a simple, multi-platform, multipurpose toolkit for sonifying data. This
toolkit can map data to multiple auditory parameters and add context using a graphical
interface. It supports visual and auditory renderings of the data and the auditory
results can also be exported as MIDI files for archiving the results.

1.3 MOTIVATION

General Aspects For Sonification

The human ears provide a very good alternative and supplementation to the visual
way of reception information for visualization and understanding complex scientific
data. With Sonification it is possible to display effectively large and multidimensional
datasets which could help in finding otherwise hidden correlations and patterns. This
will provide users with alternative and additional ways of identifying and extracting
physical signatures represented in the data, including selection and inter comparison
between datasets.

In addition to improving data exploration and analysis for most researchers, the use of
sound is beneficial as an supporting technology for visually impaired people and non-
visually-oriented people. And as a third big advantage it can also make science and
math more exciting especially for young students because people learn in many
different ways.

Further examples of the usefulness of Sonification additionally to visualization are:

• uncovering patterns masked in visual displays
• identifying new phenomena current display techniques miss
• improving data exploration of large multi-dimensional and multi-dataset
• exploring in frequency rather than spatial dimensions
• analyzing complex, rapidly, or temporally changing data
• complementing existing visual displays

• monitoring data while looking at something else (background event-finding)
• improving visual perception when accompanied by audio cues

Space Science Specific Aspects For Sonification

Complex datasets (e.g., particle measurements varying in energy, look direction, time,
and particle species (such as electrons and ions)) have more parameters to be
displayed than there are visual ways to distinguish them and are usually examined in a
subset of dimensions at a time, thus forcing the researcher to build up a picture in her
mind of the whole dataset. The capability of looking at some dimensions while
listening to other dimensions allows one to process more information at once and
make better correlations. Alternatively, looking and listening to the same data at one
time provides two different views, perhaps exposing patterns hidden in only visual
displays. The use of sound will allow identification of otherwise “difficult-to-see”
patterns, including dynamic outliers such as leading and lagging indicators. Dynamic
outliers differ from the rest of the dataset in their dynamics rather than their actual
values and are difficult to discover. Also, auditory accompaniment (e.g. movie music)
clearly leads to improved visual information reception.

Sonification is in a similar situation to scientific visualization a decade ago but now
the progressed computer audio technology makes auditory data representation viable
for large number of users. Although there is a rich visualization literature, only a few
researchers have published on the use of sound for data exploration and many were
limited by the technologies at the time.

Accessibility

Sonification will provide greatly-improved accessibility to space science data for
visually-impaired scientists, perhaps even making possible insights not available
through visual displays. Current methods for examining data non-visually are
inherently inferior and intrinsically more costly. Reading data values is a tough way to
analyze data. Raised plots (whether simple time-series “lines” or “maps” to mimic
spectrograms) inevitably require very specialized and expensive hardware and are not
readily tied to web services. Since most current workstations have sound generation
capabilities, Sonification allows effective data browsing for the visually impaired.
With Sonification a large fraction of the CDAWeb data collection will be opened to a
completely new and now excluded audience. Both, professional and public. In
addition to visually-impaired users many people are aurally- rather than visually-
oriented and Sonification provides a powerful new tool for all. Sonification also
appeals to the educational community, making science more exciting to students and
the general public.
Using sound in exploratory data visualization adds to the scientific research
capabilities in NASA, especially in complex multi-dimension and multi-dataset
research such as for Earth and space sciences. It is cost effective to add Sonification

tools to extract more knowledge from existing and future data sets and missions and
new missions will have even larger and more complex datasets to analyze. Supporting
and encouraging the visually-impaired and education communities are important
NASA goals.

Chapter 2

2. Existing Space Science
Applications

The Sonification application xSonify can be used as mentioned in the introduction as
an independent stand alone program as well as an additional software module for one
of the following described space science applications. How to implement exactly
xSonify as an additional module into one of them will be explained in one of the
technical chapters later. In this chapter I would like to give an overview of the
considered applications.

Before I start with the introduction of the existing space science applications I think it
is necessary to familiarize the reader of this thesis a little bit with the field of research

of the Earth's magnetosphere. All the tools are working with the data of this field of
space science.

2.1 Magnetosphere Introduction
The magnetosphere is a region around an astronomical object, for instance the Earth's
magnetic field. It is confined by the solar wind plasma blowing outward from the Sun.
The magnetosphere can extend to distances in excess of 60,000 kilometers from the
Earth.

It is formed from two essential components. One of them is the Earth's magnetic field
which is basically generated by currents flowing in the Earth's core. The form of this
field outside the Earth has the same form as that of a bar magnet – a dipole field
aligned approximately with the Earth's spin axis.

Figure 2.1: Magnetosphere

The other component is the solar wind which is a fully ionized hydrogen/helium
plasma that streams continuously outward from the Sun into the solar system. This
wind is therefore composed of protons and alpha particles, together with electrons.

The Earth's ionosphere is the third component and plays also an important role. The
upper atmosphere is partially ionized by far-ultraviolet and X-rays from the Sun above
altitudes of about 100 kilometer. The resulting ionosphere forms a second source of
plasma for the magnetosphere.

To enhance the perceptions in research of this and other fields of space science, NASA
has send out several spacecrafts in Sun's and Earth's orbit collecting data which are
processed and archived in the NSSDC3.

These data are the base of modern research and can be accessed for example via the
CDAWeb4 which offers the scientists Java and web interfaces to access the data in a
database.

3 NSSDC: National Space Science Data Center, NASA GSFC
http://nssdc.gsfc.nasa.gov/
4 CDAWeb: Coordinated Data Analysis Web, NASA GSFC
http://cdaweb.gsfc.nasa.gov/

Figure 2.2: Spacecrafts In Orbit

2.2 TIPSOD
As the name TIPSOD5 (Tool for Interactive Plotting, Sonification, and 3D Orbit
Display) already describes, this software application is designed for interactive,
animated, 4D (3D + time) visualization of satellite orbits.

It utilizes the SSCWeb6 services programming interface to communicate with SSC
logic and database over the open protocols of the Internet. TIPSOD is implemented in
Java 3D and makes it possible to display satellite orbits. In addition to satellite orbits,

5 http://sscweb.gsfc.nasa.gov/tipsod/
6 SSC: Satellite Situation Center
http://sscweb.gsfc.nasa.gov

Figure 2.3: TIPSOD

the software computes and displays the Sibeck's magnetopause and Fairfield's Bow
Shock surfaces. The displays are time-dependent through user activity. The program is
used as a projection or interpretation tool by the scientific community.

The requested spacecraft(s) can be chosen in the “Satellite Chooser” window.
Additionally to the selection of spacecraft(s) this window can also be used to specify
the search by changing parameters like the time range and to change the display
attributes of the satellites like the shape.

Another window called “Position” display the current position of the spacecraft
dependent on the type of the selected coordinate system.

2.3 VISBARD
ViSBARD7 displays data in three dimensions along the orbits which may be displayed
either as connected lines or as points. The application provides a way of visualizing
multiple vector and scalar quantities as measured by many spacecraft at once.

The data display allows the rapid determination of vector configurations, correlations
between many measurements at multiple points, and global relationships. Things such
as vector field rotations and dozens of simultaneous variables are very difficult to see
in panel plot representations. The data are displayed 3D along the orbits which may be
displayed either as connected lines or as points. ViSBARD is linked to the NSSDC's
CDAWeb repository via a SOAP interface for direct access to space physics data.

In future it will be linked to a Virtual Space Physics Observatory to allow direct
access to a wide variety of datasets. The data may be read into ViSBARD as file
formats like ASCII or CDF.

The application is platform independent since it is written in Java. It also supports
stereoscopic hardware for 3D viewing.

7 ViSBARD: Visual System for Browsing, Analysis, and Retrieval of Data
http://windsor.gsfc.nasa.gov/selected_software/visbard/

Figure 2.4: ViSBARD

The dialog “Resource Toolkit” is the data import module of ViSBARD to retrieve the
data from a local file or a SOAP connection via the Internet. I would like to emphasize
this part of the ViSBARD application because it found its reincarnation in xSonify.

As soon as the file(s) are loaded either via the Internet or from a local file the header
information of the file(s) is displayed in the “Currently Selected Resource” area.
Further specifications of the desired spacecraft data can be made like the time range
and the variables. Finally the data can be retrieved by clicking the “Load” button.

Figure 2.5: ViSBARD's Resource Toolkit

2.4 CDAWeb +

CDAWeb Plus is a Java based interface for integrated access to all existing SPDF8

services and public data including CDAWeb itself, SSCWeb, OMNIWeb,
COHOWEB, ATMOWeb, ModelWeb as well as the file-level holdings on the NSSDC
and selected other FTP sites.

In the “Sources” area the spacecrafts of interest can be selected. As second step every
spacecraft has a variety of instruments which can be chosen in the “Instruments” area.
After the time range is specified and the button “Show Datasets” was clicked the
“Dataset” panel lists the results for the previous selections. The results are a list of
datasets, beginning with the name and additional information like the “Date” and
“Author” and furthermore “Important Links”. It also lists the “Variables” for each
result dataset if they are available. This depends on the previous selection of
spacecraft, instrument and time range. The “Variables” can be selected and the four
options in the lower right panel can be applied on it. They can be downloaded as files
if the option “Download Files” was selected and appear after the download as CDF
files. The option “Plot Data” opens after the selection an additional window or

8 SPDF: Space Physics Data Facility, NASA GSFC
http://spdf.gsfc.nasa.gov/

Figure 2.6: CDAWeb Plus

dependent on the chosen option a HTML browser window instead and displays the
data as a plot within the created window. “List Data” creates a list of the chosen
variables within a new created window with all the detailed header information at top.
The last option “Create CDFs” out of the variables opens a dialog box with the
request for downloading the created CDF file.

Chapter 3

3. Employed Technologies And
Standards

This chapter should provide the reader with some fundamental knowledge of
technologies and standards which are used in xSonify. It starts with the motivation of
why I chose Java 1.5.0 and will be followed immediately by the introduction of the
Java Sound API. The whole xSonify application should be executable via the Internet.
The tool which supports us in this issue is the Web Start technology from Sun. The
application will retrieve the data via the Internet as well and needs therefor a reliable
way to achieve this. SOAP will cover this task and will be explained in detail in
chapter 3.4. MIDI is the standard which will be used for the sound generation and
handling. Since chapter 3.2 covers mainly the Java Sound API in chapter 3.5 MIDI
will be introduced more in detail. To finish this chapter we will have a deeper look in
the Common Data Format in which most of the space science data are handled.

3.1 Java 1.5.0
For xSonify the main reason for choosing Java Version 1.5.0 was mainly the enhanced
Java Sound API beside all the the other goodies which came with Java Tiger.

• Ports are now available on all platforms

• MIDI device i/o is now available on all platforms

• Optimized direct audio access is implemented on all platforms.

• The new real-time Sequencer works with all MIDI devices and allows unlimited
Transmitters

• The sound.properties configuration file allows choice of default devices

• MidiDevices can query connected Receivers and Transmitters

• The Sequencer interface is extended with loop methods for seamless looping of
specific portions of a MIDI sequence

• Java Sound no longer prevents the VM from exiting

3.2 Java Sound API

3.2.1 Java Sound History

A long time ago before MP3 & Co. was invented when Sun Java Version 1.02 was
state of the art, the Java technology only had the capability to play simple AU format
sounds with a sampling rate of 8 kHZ. In these days the Java applet demos still came
with such classic hits like spacemusic.au and yahoo.au.

In Sun Java 2 Version 1.2, Sun Microsystems improved the quality of Java audio by
implementing the Headspace Audio Engine by Beatnik Corporation9. Java
programmers could now use the same audio interfaces but with the additional
capability of playing more formats like AU, WAV, AIFF, MIDI, and RMF sounds.
Although the sound quality was improved to CD audio levels which has a sampling
rate of 44 kHz. But there still was no programmatic way to pause and resume a sound,
display a progress bar, or get a notification that your sound was completed.

Only with Sun Java 2 Version 1.3 the Java Sound API introduced many new
capabilities for the audio software developers including pause and resume, progress
bars, and sound completion events. Java Sound offered also the software mixer which
could mix up to 64 channels of sampled or synthesized audio. The MIDI synthesizer
supports since then wave table synthesis that programmers can access by loading the
programmable sound bank. The API has also an interface to record and save sampled
or MIDI files. With this step in the development of the Java Sound API it has become
more mature and therefore more attractive for sound applications developers.

Unfortunately, until today with Sun Java 2 Version 1.5 the Java Sound engine can not
take advantage of a very enhanced audio board since the audio hardware acceleration
is limited. The synthesis and mixing are software based, so playing MIDI audio with
Java technology will have more of an effect on your CPU usage than if you play the
MIDI file with a native audio program. This is similar to how Java 2D performs great
graphic manipulations but does not take advantage of a hardware accelerated video
board. By doing the work in software, Java technology gives you cross-platform
portability but at the expense of high performance and low CPU utilization.

9 http://www.beatnik.com/

3.2.2 Class Overview

The Java Sound API10 includes support for both digital audio and MIDI data. These
two major modules of functionality are provided in separate packages:

10 http://java.sun.com/j2se/1.5.0/docs/guide/sound

Figure 3.2: Java Sound API

Figure 3.1: Java 2 Components

In the left area of figure 3.2 you can see the two “sampled” packages which are
handling digital audio. Java Sound API refers to it as sampled audio. Samples are
successive snapshots of a analog signal. I will not explain the use of this package
further since it is not used in this software application. In the right area there are the
two “midi” packages for MIDI synthesis, sequencing and event transport.

The two lower packages “spi” in figure 3.2 permit service providers to create custom
software components that extend the capabilities of an implementation of the Java
Sound API. “spi” stands for service provider interface.

The Java Sound API does not assume a specific audio hardware configuration; it is
designed to allow different sorts of audio components to be installed on a system and
accessed by the API. The Java Sound API supports common functionality such as
input and output from a sound card (e.g. for recording and playback of sound files) as
well as mixing of multiple streams of audio.

3.3 Java WebStart

3.3.1 Introduction Of Java Web Start

Java's Web Start is actually the reference to the implementation of the specification of
JNLP11 which stands for Java Network Launching Protocol and API. The JNLP can be
defined as a protocol that enables Java clients to deploy themselves on the client and
run as if they were local applications. This reminds the Java developer at the
beginning probably first of what Java introduced earlier as applet.
Java applets have basically a big size and are slow in execution. Users generally are
not patient enough to wait for an applet to load from the network, check security
permissions and then see the information. If an applet comes up with swing
components the wait is doubled. JNLP has overcome many of the difficulties of
applets.
Java Web Start is a JNLP client that allows Java applications with a single click to be
downloaded onto the client machine and runs them in the “Java security Sandbox”.
Java Web Start is therefor a reference implementation provided by Sun to show the
features of JNLP which allows a developer to create Java applications that can be run
on a client without any installation procedures.

Java web start brings in all the security of the “Java sandbox” which means that you
can run an application with the confidence that it will not over step and meddle with
files on the client machine. It also brings the flexibility of using Java applications with
swing or AWT without the hassle of downloading huge swing jar files each time the
application is run. Java web start is designed to download all the files required the
first time it is invoked from a Web page. After the first download the user has even the
option to include a shortcut to the application directly on the windows start menu if he
uses Microsoft Windows. Subsequent runs of the application can be done using the
shortcut which would then run locally. The application can be designed to check for
updates on the server to refresh the existing local copy with the changes made since
the last access.

11 http://java.sun.com/developer/technicalArticles/Programming/jnlp/

The important features12 of JNLP are:
• It is a Web-based Application Architecture where applications can run locally using

resources spread over the web.
• It provides for an installation free client application that can keep itself in sync

with the updates on the server.
• It also provides for a facility to make incremental downloads and updates over a

period of time.
• It offers the flexibility to run Java applications on different versions of JRE. The

JRE can be can be downloaded if the version is not present on the machine.
• It offers a caching facility which can cache the application locally on the client

which saves time the next time the application is run on the client.
• Applications can be run offline on the client machine after they are initially

downloaded thereby decoupling them from the server.
• It offers a secure environment to execute applications like applets but it also

provides flexibility within the API to do potentially insecure actions with a warning
to the user.

The JNLP API and Java Web Start have been part of the J2SE since version 1.4.

3.3.2 JNLPTechnology13

JNLP is a XML based specification. The heart of JNLP technology is a JNLP file. It is
a XML file that describes the different attributes used to describe the application.
Shown below is a JNLP file with a few attributes:

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+"codebase="http://server.com">

<information>
<title>Title</title>
<vendor>MY company</vendor>
<description>Demo Application</description>
<icon href="icon.jpg"/>
<offline-allowed/>

</information>
<security>

<all-permissions/>
</security>
<resources>

<j2se version="1.3"/>
<jar href="lib/SwingSet2.jar"/>

</resources>
<application-desc></application-desc>

</jnlp>

The jnlp element is the root element that has a set of attributes that are used to specify
information that is specific to the JNLP file. The information element describes meta-
information about the application like title, description, vendor etc. The security
element is used to request a trusted application environment, why applications need to

12 http://javaboutique.internet.com/tutorials/WebStart/
13 http://javaboutique.internet.com/tutorials/WebStart/

be trusted will be discussed later in the security section.

The resources element specifies all of the resources that are part of the application,
such as Java class files, native libraries, and system properties. The last part of the
JNLP file defines the kind of application. It could be one of the following four
options: application-desc, applet-desc, component-desc, or installer-desc.

If an application-desc is defined in a JNLP file then it's an application descriptor. The
application-desc element describes the application and the attributes required to
invoke it.

<application-desc main-class ="SampleApplicationClass">

<agrument> arg1</agrument>

</application-desc>

The main-class is the Java class file which contains the main method that needs to be
run. Any arguments that might be required may be passed in the argument element.

When the applet-desc is defined in the JNLP file then it's an application descriptor for
an applet. The applet-desc tag takes the normal parameters an applet would take.

Similarly when a Component-desc is defined in the JNLP file it represents a
component extension. A Component extension is used to represent common
components that can be shared between applications.

The last type is a installation file. Its called a installer extension and it contains a
installer-desc tag. This is used when a application needs to be downloaded and
installed for the first time.

3.3.2.2 Step By Step

• Step 1: Build your application
Your application must be available as a jar file.

• Step 2: Sign the jar file
You must sign the jar file in order that people can verify its origin (and decide if
they trust the application or not). The JDK contains a tool which allows signing of
jar file with a certificate. If you don't have your own certificate, you can use the
tool also to build one.

Create new certificate:

keytool -genkey -keystore yourKeystore -alias YourName

You will be prompted several questions. At the end, your personal certificate will
be in your keystore "yourKeystore". You can check it by calling:

keytool -list -keystore yourKeystore

•

Now you can sign the jar file:

jarsigner -keystore yourKeystore test.jar YourName

The jar file includes know your signature and people can decide if they trust it.

• Step 3: Creating the JNLP file
The JNLP file describes mainly which file(s) are included in the application (only
one jar file in our case), which is the main class, which JRE version to use and the
network location. The JRE version is used for update checks.

Here is an example file called webstart.jnlp file:

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+"
codebase="http://www.autexier.de/jmau/dev/webstart"
href="webstart.jnlp">

<information>
<title>WebStart Demo</title>
<vendor>Jean-Marc Autexier</vendor>
<homepage href="http://www.autexier.de/jmau" />
<description>A Java Webstart test</description>
<offline-allowed />

</information>
<resources>

<j2se version="1.4+" />
<jar href="JnlpTest.jar" />

</resources>
<security>

<all-permissions />
</security>
<application-desc main-class="jnlptest.Main" />

</jnlp>

• Step 4: Web server installation
Both the jar and the JNLP file must be available on a HTTP server. The web server
must return a special MIME type for JNLP files:

application/x-java-jnlp-file

If you have an apache webserver, the easiest way is to place a .htaccess file in the
same directory than the application.

AddType application/x-java-jnlp-file .jnlp
AddType application/x-java-archive-diff .jardiff

• Step 5: Test
Now when you call the Url of the JNLP file and your browser is configured
correctly, Java Webstart client will open, download the application, ask for security
reasons if you trust the certificate owner and execute it.

3.3.2.3 Updates And Caching14

The JNLP application provides three different download protocols by which the
application on the client can be made current. The first is the Basic download Protocol
which downloads resources without any version information. The second is a Version
based Download protocol which identifies all resources by a URL and version Id. In
this case when the JNLP client starts up an application it sends the current version to
the server as part of the request. If the server has a newer version it would download
the newer version. The third protocol pertains to extensions where a URL or a URL
and version id can be specified to download the Extension Descriptor. If only a URL
is specified the extension is downloaded using the Basic download protocol. If a URL
and a version is specified the version based download protocol is used with a few
additional parameters. The extra parameters are used to identify the extension type
and the platform for which it is needed.

JNLP also provides a facility of providing incremental updates. When the server finds
that the client already has a version on the local machine and all it requires is a new
version it sends an incremental upgrade instead of the whole application thereby
reducing download time.

A JNLP client can cache the application to make it run faster in the subsequent runs. If
an application is downloaded using the basic download protocol it would download
the application without a version. When the application is downloaded a time stamp is
downloaded on the client to keep track of updates. In the version based download
protocol timestamps are not stored but the version would be part of the request.

When the request is made the JNLP client checks for the version already existing in
the cache and the version in the request. If they match no download needs to be done.

3.3.2.4 Security

The Java Web Start enforces the strict security rules of the Java language. Like Java
applets all Java Web Start applications execute within the Java Sandbox. By default
all applications are deemed to be malicious and access to local resources is restricted.
However applications can be signed using security certificates to allow limited access
to system resources and files. This may not be of great benefit to Intranet users who
want to capitalize on the power of Java Webstart in a secure intranet. The JNLP API
provides for some basic operations which can be done without securing or signing the
application. Some of them are discussed in the next section.

3.3.3 JNLPAPI

Sun has included the Java Web Start in the download for J2SE 1.4. It has introduced a
new extension package to include all the JNLP specific files called the javax.jnlp.*.

The JNLP API contains a few important services that would be helpful for
applications that would want to do some operations on the client that are not allowed
by the security manager. This does not mean that the security manager is bypassed by

14 http://javaboutique.internet.com/tutorials/WebStart/

the JNLP API. It provides for a platform independent mechanism to interact with the
client resources after obtaining the permission of the client. Java Web Start displays a
warning window when a operation outside the control of the sandbox is requested.

An object of the service required can be obtained using the static lookup method of
the ServiceManager Class. The lookup method takes a String parameter which is the
string representation of the service name and returns a handle to the service requested.

3.3.4 JNLP's Main Services

BasicService
This is a mandatory service and does operations similar to the AppletContext from the
Applet class. The getCodeBase method provides access to the codebase of the
application. The isOffline method which can be used to determine if the application is
running offline or online. Finally the isWebBrowserSupported method can help in
finding the browsers supported by the JNLP client. The class is
javax.jnlp.BasicService

DownloadService
This is a mandatory service that needs to be provided. It allows the application to
control the resources being downloaded and cached on the client. It can check for
already existing resources, load new resources, force caching of resources and remove
resources from the client machine. Only resources available for the application can be
downloaded. They need to be specified in the JNLP file. The class is
javax.jnlp.DownloadService.

FileOpenService
This service provides the flexibility to access the files on the client machine even if
they are in a untrusted environment. The openFileDialog or openMultiFileDialog can
be used to access the file required. The contents of the file are returned in a
FileContents object which provides access to the contents of the file. This service
cannot be used to find the directory structure of the client machine. The JNLP client
needs to show the security dialog box to warn the user of the operation. The class is
javax.jnlp.FileOpenService.

FileSaveService
This service provides a mechanism for storing files on the client machine, even if they
are in a untrusted environment. The file save dialog box is displayed by invoking the
saveFileDialog or saveAsFileDialog methods. This method returns a FileContents
object representing the file that was saved. The class is javax.jnlp.FileSaveService.

ClipboardService
This service provides an interface to access the contents of the Clipboard even when
running in a untrusted environment. It consists of two methods, setContents and
getContents, that help set or retrieve the contents of the clipboard. The service has to
warn the user of the potential dangers of letting a untrusted application access
clipboard data. The class is javax.jnlp.ClipboardService.

PrintService
This service provides access to printing from an untrusted application. The application

submits a request to the JNLP client for a print job which is in turn passed to the client
machine for permission. If accepted the print job is executed. The class is
javax.jnlp.PrintService.

PersistanceService
This service provides a mechanism to store data on the client side even in a untrusted
environment. The service is similar to the service provided by the cookies in HTML.
Unlike cookies there is no maximum limit on the data that can be stored on the client.
The maximum limit is decided by the JNLP client implementing this service. The
class is javax.jnlp.PersistanceService.

ExtensionInstallerService
This is a mandatory service that provides methods to provide an extension installer to
manipulate the progress bar shown during installation. It provides methods like
updateProgress and hideProgressBar to update the progress bar during installation. It
also provides information on native libraries. The class is
javax.jnlp.ExtensionInstallerService.

3.4 SOAP

3.4.1 Introduction

SOAP stands for Simple Object Access Protocol and is a communication protocol for
the communication between applications. It can be also considered as a format for
sending messages and is designed to communicate via the Internet. SOAP is a XML
based protocol and therefor platform and programing language independent for the
information exchange in a decentralized, distributed environment. SOAP consists of
three parts:

• an envelope that defines a framework for describing what is in a message and how
to process it

• a set of encoding rules for expressing instances of application-defined datatypes
• a convention for representing remote procedure calls and responses

The Internet has become one of the most important medium for the worldwide
information exchange and it is meanwhile for the development of applications very
important to allow Internet communication between programs. Today's application
communicate using Remote Procedure Calls between objects like DCOM and
CORBA. HTTP however was not designed to support these services. Remote
Procedure Call represents a compatibility and security problem. The proxy and
firewall servers will normally block this kind of traffic. Therefor it was necessary to
develop a way to communicate between applications via HTTP. A consortium of the
big companies like UserLand, Ariba, Commerce One, Compaq, Developmentor, HP,
IBM, IONA, Lotus, Microsoft, and SAP proposed to W3C, in May 2000, the SOAP
Internet protocol. December 2001 the first public working draft on SOAP was
published from the W3C. The latest version of SOAP which is SOAP V1.215 was

15 http://www.w3.org/TR/soap12-part1/

recommended at June 24 2003 by the W3C. At present, SOAP has been implemented
in over 60 languages on over 20 platforms.

3.4.2 SOAPMessage

A SOAP message is an ordinary XML document containing the following elements:

• A required Envelope element that identifies the XML document as a SOAP
message

• An optional Header element that contains header information

• A required Body element that contains call and response information

• An optional Fault element that provides information about errors that occurred
while processing the message

All the elements above are declared in http://www.w3.org/2001/12/soap-envelope

The SOAP message exchange process16:

1. The client application builds a SOAP message which is an XML document. It can
now perform the desired request/response operation.

2. The client sends the SOAP message to a JSP, PHP or ASP page on a Web server
listening for SOAP requests.

3. The SOAP server parses the SOAP package and invokes the appropriate method of
the object in its domain, passing in the parameters included in the SOAP document.
Optionally, intermediate processing nodes may have performed special functions as
indicated by SOAP headers prior to receipt of the message by the SOAP server.

4. The request object performs the indicated function and returns data to the SOAP
server, which packages the response in a SOAP envelope. The server wraps the
SOAP envelope in a response object, such as a servlet or a COM object, which is
sent back to the requesting machine.

5. The client receives the object, strips off the SOAP envelope and sends the response
document to the program originally requesting it, completing the request/response
cycle.

16 http://java.sun.com/developer/technicalArticles/xml/webservices/

Figure 3.3: SOAP Message Exchange Process

3.4.3 SOAPEnvelope17

<SOAP-ENV: Envelope
xmlns:

SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>

<t:Transaction xmlns:t="some-URI">
SOAP-ENV:mustUnderstand="1"

5
</t:Transaction>

</SOAP-ENV:Header>
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="some-URI">
<symbol>DEF</Symbol>

</m: GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-Envelope>

In this example a GetLastTradePrice request is being sent to a stock-quote service
somewhere on the Web. The request takes a string parameter, a ticker symbol, and
returns a float in the SOAP response.

The SOAP envelope is the top element of the XML document that represents the
SOAP message. XML namespaces are used to disambiguate SOAP identifiers from
application specific identifiers. XML namespaces are used heavily in SOAP to qualify
or scope elements in the message to a specific domain. To understand SOAP
namespaces, it helps to be familiar with the namespace spec for XML. If you're not,
simply think of namespaces as neighborhood identifiers that help uniquely identify
SOAP elements by associating them with specific locations, real or imagined.

Namespaces

The first namespace in the example references the SOAP schema which defines the
elements and attributes in the SOAP message. The second namespace refers to SOAP
encodings, the "Section 5" data types discussed earlier. Since no additional per-
element encoding is specified, this encoding applies to the whole document.

Header

The first element identified in this sample SOAP envelope header is a transaction
element, accompanied by a namespace attribute and by the mustUnderstand
attribute with a value of 1. Since mustUnderstand is set to 1, the server accepting
this message must perform intermediate processing on this transaction node. You can
interpret this to mean that the server and client have previously agreed upon the
semantics that govern the processing of this header element, so that the server knows
exactly what to do with the contents of the element, in this case 5.

If the server receiving this message doesn't understand the semantics of the
transaction header, it is required to reject the request completely and throw a fault. A
fault element is a special part of the SOAP body and a well-defined mechanism to
ship error information back to the client.

Intermediate processing nodes like this are an example of SOAP's extensibility.
Clients include such nodes in a SOAP message to indicate that special processing

17 Example from: http://java.sun.com/developer/technicalArticles/xml/webservices/

needs to take place before the contents of the message body can be processed.
Ensuring backward compatibility with existing servers not capable of providing such
processing is simply a matter of setting the mustUnderstand attribute to 0 which
makes the action optional.

In addition to defining transaction nodes like the one described above, a SOAP
message may optionally contain header entries specifying nodes that perform
authorization processing, encryption, persistence of state, business logic processing
and so on. Headers help make SOAP a modular, extensible packaging model. Just
keep in mind that header processing is entirely independent of the SOAP message
body.

Body

The SOAP body in the example contains an XML payload, which we can surmise,
without really seeing it spelled out for us, does RPC. SOAP is not only a modular
packaging model, it's also a fairly cryptic packaging model.

Nothing here explicitly shows that RPC is begin done. All we see in the body are a
couple of XML elements, one qualified by a namespace. It's up to the SOAP server to
understand the document semantics and do the right thing. The server, in effect,
provides a framework for dealing with the XML payload in a meaningful way.
"Meaningful" here implies that the server invokes a remote procedure call on some
back-end database to receive the stock price for the stock-symbol element contained
in the message body. All the magic takes place behind the SOAP Remote Procedure
Call curtain.

3.4.4 SOAPRemote Procedure Call18

SOAP messages are fundamentally one-way transmissions from a sender to a receiver,
but SOAP messages are often combined to implement request/response mechanisms.
To do RPC using SOAP, a few conventions must be followed. First of all, request and
response messages must be encoded as structures. For each input parameter of an
operation, there must be an element (or member of the input structure) with the same
name as the parameter. And for every output parameter, there must be an element (or
member of the output structure) with a matching name.

Here's a foreshortened, Remote Procedure Call based view of the SOAP message
presented earlier. Only the body portions of the SOAP request and response envelopes
are shown.

Request
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="some-URI">
<symbol>DEF</Symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

18 Example from: http://java.sun.com/developer/technicalArticles/xml/webservices/

Response
<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="some-URI">
<price>22.50</price>

</m: GetLastTradePriceResponse>
</SOAP-ENV:Body>

The request invokes the GetLastTradePrice method. Notice the response defines a
GetLastTradePriceResponse operation. A convention common to SOAP calls for
appending Response to the end of a Request operation to create a Response
structure. This output structure contains an element called price which returns the
results of the method invocation presumably as a float.

It's important to note that nowhere in the SOAP envelope are data types explicitly
delineated, so we really don't know the type of the symbol or the type of the result
parameter price just by looking at the SOAP message. Client applications define data
types either generically through "Section 5" encodings, or privately via agreed-upon
contracts with servers. In either case, these definitions are not explicitly included in
the SOAP message.

Finally, in order to do Remote Procedure Call, a lower-level protocol like HTTP is
needed. Although the SOAP 1.0 specification mandated the use of HTTP as the
transport protocol, SOAP 1.1 1 (and its sister specification "SOAP Message with
Attachments") permit the use of FTP, SMTP or even (possibly) raw TCP/IP sockets.
All the serialization and encoding rules general to SOAP apply to RPC parameters as
well.

3.4.5 SOAPExample

In the example below a GetStockPrice request is sent to a server. The request has a
StockName parameter and a Price parameter will be returned in the response. The
namespace for the function is defined in "http://www.stock.org/stock" address.

The SOAP request:
POST /InStock HTTP/1.1

Host: www.stock.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.stock.org/stock">
<m:GetStockPrice>

<m:StockName>IBM</m:StockName>
</m:GetStockPrice>

</soap:Body>
</soap:Envelope>

A SOAP response:

HTTP/1.1 200 OK
Content-Type: application/soap; charset=utf-8
Content-Length: nnn
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.stock.org/stock">
<m:GetStockPriceResponse>

<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>

</soap:Body>
</soap:Envelope>

3.5 MIDI

Unlike sampled audio MIDI is an indirect representation of a sound itself. MIDI data
can be imagined like a recipe for creating a sound especially a musical sound. It
describes events that affect the sound a synthesizer is making. MIDI data is analogous
to a graphical user interface's keyboard and mouse events.

In the case of MIDI the events can be thought of as actions upon a musical keyboard
along with actions on various pedals, sliders, switches, and knobs on that musical
instrument. These events need not actually originate with a hardware musical
instrument. They can be simulated in software and they can be stored in MIDI files.

Figure 3.5: MIDI Message

A program that can create, edit, and perform these files is called a sequencer.

Many computer sound cards include MIDI-controllable music synthesizer chips to
which sequencers can send their MIDI events. Synthesizers can also be implemented

Figure 3.6: MIDI Sequence

Figure 3.7: MIDI Sequencer

entirely in software. The synthesizers interpret the MIDI events that they receive and
produce audio output. Usually the sound synthesized from MIDI data is musical
sound (as opposed to speech, for example). MIDI synthesizers are also capable of
generating various kinds of sound effects.

Some sound cards include MIDI input and output ports to which external MIDI
hardware devices, such as keyboard synthesizers or other instruments, can be
connected. From a MIDI input port an application program can receive events
generated by an external MIDI-equipped musical instrument. The program might play
the musical performance using the computer's internal synthesizer, save it to disk as a
MIDI file, or render it into musical notation. A program might use a MIDI output port
to play an external instrument, or to control other external devices such as recording
equipment.

The following diagram shows the functional relationships between the major
components in a possible MIDI configuration based on the Java Sound API. The flow
of data between components is indicated by arrows. The data can be in a standard file
format, or (as indicated by the key in the lower right corner of the diagram), it can be
audio, raw MIDI bytes, or time-tagged MIDI messages.

The application program prepares in this example a musical performance by loading a
musical score that's stored as a standard MIDI file on a disk. A Standard MIDI file
contains tracks, each of which is a list of time-tagged MIDI events. Most of the events
represent musical notes which are pitches and rhythms. This MIDI file is read and
then "performed" by a software sequencer. The sequencer performs its music by

Figure 3.8: MIDI Overview

sending MIDI messages to some other device like an internal or external synthesizer.
The synthesizer itself may read a soundbank file containing instructions for emulating
the sounds of certain musical instruments. If not, the synthesizer will play the notes
stored in the MIDI file using whatever instrument sounds are already loaded into the
synthesizer.
As illustrated the MIDI events must be translated into raw, non-time-tagged MIDI
before being sent through a MIDI output port to an external synthesizer. Similarly,
raw MIDI data coming into the computer from an external MIDI source like a
keyboard instrument in the diagram. They are translated into time-tagged MIDI
messages that can control a synthesizer or that a sequencer can store them for later
use.

3.6 The Common Data Format19

Common Data Format (CDF) is a self-describing data format for the storage and
manipulation of scalar and multidimensional data. It is platform-independent and
provides programming interfaces for C, Java, Perl and Fortran applications to
guarantee a device-independent view of the CDF data model.

The current version is CDF V3.0 and was released on February 10, 2005.

The CDF software, documentation, and user support services are provided by NASA
and available to the public free of charge. There are no license agreements or costs
involved in obtaining or using CDF.

The CDF software package is used by hundreds of US government agencies,
universities, and private and commercial organizations as well as independent
researchers on both national and international levels. CDF was adopted by the
International Solar-Terrestrial Physics (ISTP) project as their format of choice for
storing and distributing key parameter data.

Here are some examples listed where CDF has been accepted in public software
projects:

• Interactive Data Language (IDL)

• MathWorks MATLAB Language (MATLAB)

• Application Visualization System (AVS)

• Weisang GmbH & Co. KG Data Analysis and Presentation (FlexPro)

• IBM Visualization Data Explorer (DX)

There is also software which can convert non-CDF data files into CDF files. For
example MakeCDF is a CDF application that reads flat data sets in both binary and
text and generates a IST CDF data set from that data. The other way around there is
CDFexport which is a tool that can generate an ASCII text file of the selected

19http://cdf.gsfc.nasa.gov

variables from a CDF file.

Chapter 4

4. xSonify – The Application

This chapter describes the functionality of xSonify followed by the detailed structure
and technical inner life.

Figure 4.1: xSonify Main Window

1

3

2

6

7

4

5

8

4.1.1 Functional Survey – How xSonify Works
Before I explain the handling of xSonify I would like to give a general overview how
the application works. As mentioned in the beginning of this thesis the program
provides basically the opportunity to display numerical data as sound with the help of
three different kind of sound attributes. Attributes like the pitch, the volume and the
rhythm of sound.

In order to start the Sonification process the numerical values have to be converted
into values of the internal data structure. The data values of this structure are floating
point variables in the range from 0.0f to 1.0f.

0.0f represents therefore the smallest and 1.0f the largest value of the original data.

To realize the idea of Sonification, xSonify takes advantage of the MIDI support from
JAVA. To display the information of numerical data for instance by dint of the pitch of
a played music instrument the smallest value (0.0f) represents the lowest frequency
and the largest value (1.0f) the highest frequency according to the settings. Each tone
represents one value and the whole sequence of different tones accordingly the whole
dataset.

The user can also assign different Sonification modi or different instruments to each
dataset. This option is necessary if the user wants to distinguish the different datasets
while listening to them at the same time.

Sonification provides naturally also a chance for blind scientists to work with data and
needs speech support. xSonify provides the user optionally with its own speech
support software – independent from commercial screen reader software.

4.1.2 How ToWorkWith xSonify

Figure 4.1 shows the main window of xSonify. Basically the application is based on
different software modules and the GUI Module is one of them. It would be even
possible to operate xSonify from the console without the GUI support or to replace it
with another GUI by paying attention to the interfaces. The main window is separated
in different sections. Beginning with the menu bar (1), the “Sonification Object” (3)
section and the “Player Control” (5) section.

To work with the application the user has to import the data he wants to sonify. In
order to do that he has two options:

• He can use the function “File => Import Data” which is based on a resource toolkit
from the application ViSBARD. With this function he can access a remote database
or a local file in order to retrieve the data. Both ways handle files with the formats
like *.cdf and *.vba.

•
• The second option to retrieve data is with the function “File => Import Data

Textfile”. This option simply reads a text file with the data according to the file
structure explained in Chapter 4.2.3.5 Package: textfile.

After the data are successfully imported the Sonification procedure can begin. The
new imported data create for each Sonification object one panel (3). The “Quick
Object Selector” (2) provides an overview of the existing data objects and the user can
select the requested data object directly without scrolling to it.

Each Sonification object panel exists of a data plot (4) which plots the data as a
simple diagram. Later on during the play-back a cursor displays the current position in
the sequence. It is also possible to define bounds of the displayed object.

xSonify provides also a pool of functions (5) which can be applied to the
corresponding object.

On the right side of each Sonification object (3) a tabbed field (6) with the choice of
three Sonification modi including their appropriate settings (7) enables the user to add
the specific Sonification object to the sequence.
It is only possible to apply one modus for one Sonification object. If none of the three
modi is selected (7) the whole Sonification object will not be considered for the
Sonification procedure.

The sequence will be created and played after a click on the “Play” button in the
“Sonification Control” panel (8). The play-back can be interrupted or changed into an
endless loop. It is also possible to change the playback-speed and to move the current
position directly by moving the sliders.

The GUI components and their actions can be optionally read by xSonify.
Independent from screen reader software this feature opens up visually impaired
people the usage of this application.

The following Chapter 4.2 Technical Architecture will deal with the detailed technical
background of xSonify.

4.2 Technical Architecture
During the design phase of the application I focused on modularization which has the
following advantages:

– easy to understand
– easy and quick replacement of existing modules
– structured and clearly arranged

Additionally to this chapter I would like to refer to the Java documentation of xSonify
which is available as HTML files and the Appendix A and B which comprises the
UML diagrams.

4.2.1 Module Overview

For the abstraction of the modules I chose a very simple meta view to display the
different modules and classes while displaying the direct relationships between the
individual modules as the overlapping areas.

Every single module can be considered as its own package in the program hierarchy
and contains at least one class or interface. The single modules will be introduced in
the following chapters and the detailed class information can be found in the HTML-
Documentation.

Figure 4.1: Module Overview

4.2.2 Sonification Core Module

As the name already describes, this module is the core piece of xSonify which
includes also the main function in the Sonification_Core class. Beside this main class
the module contains also other classes which are representing the internal data
structure of xSonify. This data structure keeps internally the data after the data import.

4.2.2.1 Class: Sonification_Core

The Sonification_Core class is the entry point into xSonify. Beside the main function
it also has several functions to control the data import, create the GUI(Graphical User
Interface) and an instance of the Sonification/Sound Module. It also provides an user
interface consisting of a specific list of functions which can be invoked by typing in
letters into the I/O-console in case the GUI module is not included.

The start procedure with all the creation and initializations activities are described in
detail in the appropriate UML diagrams.

The to most important variables in this class are the:

– llSonification_Object_original

– hSonification_Object_original.

They contain the original data objects thru the whole program duration in the structure
which will be described in the next chapters. There are two structures where the
references to the data objects are kept. The first is a LinkedList which is preferably for
appliances concerning the whole data. The second is a HashMap which is for the
appliance of functions on selective data objects.

Figure 4.2: Sonification Core Module

4.2.2.2 Class: Sonification_ObjectBuilder

Sonification_Object_Builder is the foundation or base class for xSonify's internal data
structure. It organizes and keeps the original data right after the import for the whole
time the application is running. It builds initially the internal data structure of xSonify.
It creates instances of the class Sonification_Object. Every instance of the
Sonification_Object represents a combination of an original variable from the source
datasets and the corresponding time. The detailed body of the Sonification_Object
class however will be explained more in detail in the following two subchapters.

The instances of the Sonification_Object classes are stored in two different kind of
data structures. The first is a LinkedList and the second is a HashMap. The reason for
this is easy. For functions (e.g. BuildStandardTransformedList() in class
Sonification_Object_Transform) that want to access all the Sonification_Objects
sequentially, the fastest way to do this is to run thru all the elements of a Linked List.
But if a function needs to access a certain Sonification_Object directly by delivering
the name of the object a data collection like a HashMap could be very useful (e.g.
doStandardTransformation(String sobjectname) in class Sonification_Object_Trans
form).

Before the user quits the application the two data objects llSonification_ObjectList
and hSonification_ObjectList are stored automatically in a persistent external file
called “lastsession.obj”. During the program start it checks if such a file exists and if
so it will be used and the data from the last session will be recovered as default
values. If not, the data object panel is empty and can be filled by importing data.

Figure 4.3: Class - Sonification_ObjectBuilder

4.2.2.3 Class: Sonification_Object

As mentioned before this class is an important part of the internal data structure of
xSonify. Every Sonification_Object represents a certain variable, attribute or
measurement parameter of an space science file. Each single Sonification_Object is
added into the LinkedList and HashMap data structures as a reference.

All the single Sonification_Object_Value instances are stored in an array list which is
represented as the green symbols.

Every Sonification_Object has beside the object name also very important parameters
like the minimum and maximum of all the x and y variables and additionally
information about bounds which are initially set to the minimum and maximum
respectively. The Sonification takes place only within the valid bounds.

Figure 4.4: Class - Sonification_Object

4.2.2.4 Class: Sonification_Object_Value

The object which contains the actual data values of a certain Sonification object is an
instance of the class Sonification_Object_Value (Figure 4.5: Class -
Sonification_Object). It holds two value of the data type Double. The first value
represents the corresponding time (Double: dX_Value) of a measurement and the
second contains the acquired value itself (Double: dY_Value).

4.2.3 Data Import Module

As mentioned before xSonify should be used as a standalone program as well as a
additional software module for already existing space science applications. In the
second case it is necessary to have an interface to retrieve the data from the
applications internal data structure.

4.2.3.1 Interface: DataImport

As a result of the variety of data import opportunities(e.g. import from a textfile) it is
necessary to build a kind of standard of allowed functions which can be called by the
class Sonification_ObjectBuilder access the data from the appropriate data import
class like DataImportVisbard and DataImportTextfile. Classes like the mentioned have
to implement this interface DataImport which defines the necessary functions. This
interface makes sure that the necessary function will be implemented.

4.2.3.2 Class: DataImportVisbard

The purpose of this class and all of the DataImport-classes is to request data from
outside the application xSonify and prepare them for an easy and standardized access
from inside the application by objects of the classes like Sonification_ObjectBuilder.
The class creates an object of the class visbards_resourcetoolkit_main and has thus
access to the internal data structure of the visbards_resourcetoolkit.

Figure 4.5: Data Import Module

4.2.3.3 Class: DataImportTextfile

This class looks from inside the application xSonify the same like the class DataIm-
portVisbard does. It offers the same selection of functions as the interface Data-
Import which both classes are implementing. Inside the functions of course the
implementation looks different since they have to communicate with an instance of
the class TextfileParser created in the constructor of DataImportTextfile.

4.2.3.4 Package: visbards_resourcetoolkit

This package is a very complex data retrieval module from another application
(friendly supported by the ViSBARD team) which allows the application to retrieve
space science data stored for example in CDF files locally or from remote databases
via the Internet.

4.2.3.5 Package: textfile

The class TextfileParser from this package provides an opportunity to access text files
for the data retrieval. It includes the selection of the file by a FileChooser and is
basically a text parser which takes advantage of Java's StreamTokenizer class. The
data are stored in a data structure similar to the xSonify's internal data structure
consisting of an ArrayList which has as elements LinkedList's for the amount of single
values. Each LinkedList represents one column of values of the text file. The first
element (index 0) is the name of the column if available or an automatically created
name like “Time, Value_1, Value_2”.

The text file is basically organized in columns. Each column represents one data
object whereas the first column needs to represent the time axis. Optionally the first
line of every column can also be a text describing/naming the object whose values
follow the lines underneath.

In order to read the data from a file it needs to be structured like the following Backus
Naur Form:

<file> ::= [<header_line>] {<data_line>} <EOF>

<header_line> ::= {<header_text><TABULATOR>} <EOL>
<header_text> ::= {<letter> | <digit> | <special>}

<data_line> ::= {<data_value><TABULATOR>} <EOL>
<data_value> ::= {<digit> | <special>}

<letter> ::= a | b | . . . | z | A | B | . . . | Z
<digit> ::= 0 | 1 | 2 | . . . | 9
<special> ::= .

4.2.4 GUI (Graphical User Interface) Module

To ease the user interaction with xSonify the application provides of course a
graphical user interface. The main class of this module is the class
Sonification_MainWindow and comprised of the following classes.

4.2.4.1 Class: Sonification_MainWindow

An instance of the class Sonification_MainWindow is created by the main class or
rather core class Sonification_Core. It receives a reference to an object of the
Sonification_Object_Transform class and another reference to an object of the
SonificationSound class. The Sonification_MainWindow builds the GUI together with
the following classes in this chapter. The GUI can be split up in several sections.
Sections like the menu, Sonification object area which contains a list of all loaded
data objects and the third section which represents the Sonification player control. The
Sonification object area itself contains again some subareas. Each area is realized by
a subclass of JPanel.

Figure 4.6: GUI Module

4.2.4.2 Class: Sonification_DataObjectPlotPanel

This panel unites the two panels of the following two classes in this chapter. It was
created to separate the objects of the two classes since the class Sonification_Data
ObjectPlotGraphPanel contains the graphical plot based on Java 2D technology. A
repaint or rather a refresh of this panel can be made independently to the other panel.
Another reason is also to keep it more structured and easier to understand.

4.2.4.3 Class: Sonification_DataObjectPlotGraphPanel

Objects from this class display the data graphically in a 2D plot. As mentioned before
the applied technology is Java 2D. To accomplish the graphical display it was
necessary to prepare the data by mapping all the values in a range from 0 to 1 in a
parallel data structure which is explained in detail in Chapter 4.2.6 Data
Transformation Module.

Beside the graphical display of data the graph gives also information about the current
position in the played Sonification sequence in form of a vertical, red line and bounds
of the area which is supposed to be sonified. The bounds appear as green lines and can
be set in the panel which is described in the following chapter.

Figure 4.7: Class - DataObjectPlotGraphPanel

4.2.4.4 Class: Sonification_DataObjectPlotOptionsPanel

To modify the data in the plot and also later on for the Sonification this panel provides
some functions to limit the area which has to be sonified. Limits like an upper and
lower bound of the x- and y-values. It also offers to apply an inversion and square of
the y-values and of course the standard function which brings the values back into the
original state.

Another function is to build the average over y-values. The criteria how to build the
average can be defined in the by choosing between the three radio buttons. The result
can be seen in the plot immediately after the selection.

Figure 4.8: Class - Sonification_DataObjectPlotOptionsPanel

4.2.4.5 Class: Sonification_DataObjectOptionsPanel

To select and to configure a data object for the Sonification procedure this class offers
functions for the choice of the Sonification modus, instrument and strength of the
played instrument. The different Sonification modi are represented in the
JTabbedPanel and can be selected and configured.

4.2.4.6 Class: Sonification_PlayerControlPanel

The main goal of this software solution is to explore the data as mentioned in the
summary. The scientist should be able to “play” with the data by using the user
interface. Therefore it is necessary to provide the user with extended control functions
additionally to a simple “Play” and “Stop” button.

Functions like setting the current sequence position or the speed of the sonified data
sequence.

Figure 4.9: Class - Sonification_DataObjectOptionsPanel

Figure 4.10: Class - Sonification_PlayerControlPanel

4.2.5 Sonification/Sound Module

This module of the application represents the technical conversion of the data into
sound. For the general technical background of the Java Sound API I would like to
refer to Chapter 3.5 MIDI. For the better understanding of the activity there is also an
UML diagram in Appendix B.

4.2.5.1 Class: SonificationSound

The class SonificationSound identifies the selected Sonification objects, chosen
Sonification modi and instruments. It creates with classes of the Java Sound API,
which is described in Chapter 3.5 MIDI a MIDI sequence which can be played and
navigated by the functions of the PlayerControlPanel class in the GUI.

The core of this class builds the function createSequence() which puts the single MIDI
events according their mapped values of the data structure together to tracks and
finally to a sequence.

The different variations of Sonifications like

– pitch

– volume/loudness

– rhythm

are generated in the SonificationSound class as well.

Figure 4.11: Sonification/Sound Module

4.2.5.2 Class: SonificationSound

Design Pattern in Sonification/Sound Module: Observer Pattern

Unfortunately the development of the Java Sound API from Sun seems in comparison
to other Java technology packages a little bit neglected. Especially the limited range
of functions of the sequencer class implied to create solutions like the graphical
update of the current position of the sequence which was solved by a popular design
pattern: The Observer Pattern.

This observer pattern shows that there are two observer objects which are waiting for
the invocation of their update(sequencePosition) function as the current sequence
position as parameter. As soon as the sequence is started in the sequencer, a thread in
the class SequenceProgressReporter will be set into the state “running”. The thread
checks every 400 milliseconds the current position of the played sequence and calls
the notifyObservers(sequencePosition) function in the class SequenceProgress
Reporter which is a subclass of the class Observable. This invocation forces the
observable object to call the function update(sequencePosition) to set the current
sequence position in the two Observer objects.

Figure 4.12: Class - SonificationSound

4.2.6 Data Transformation Module

The raw data as they are stored in xSonify's internal data structure (Objects:
llSonification_Object_original, hSonification_Object_original) can be considered as
the initial point of the data operatorability. This data structure is used to build a
transformed data structure similar to the original data structure but with transformed
values. Transformed means the values are mapped into a value range between 0 and 1.
The advantage of this procedure is to make the data available in an independent form
regarding their ranges and scales.

In order to support the researchers in gaining better results from the scientific aspect
the application needs to have the ability to transform or rather to change the data for
their purposes. For the execution of transformations xSonify provides the user with a
selection of different functions introduced in the following sub chapters.

Every result of the appliance of such a function can be seen immediately in the 2D
plot and later on heard during the play of a sequence. Technically there is only the
public function objectTransformation() which invokes the appropriate private
functions need for the requested transformation.

This function can be considered as a relay function which receives certain parameters
and decides which functions inside the class Sonification_Transform need to be
called.

4.2.6.1 Functionality “Standard”

The function “Standard” is the initial function which is invoked right after the start of
the application the first time. After every appliance of a function the initial state can

Figure 4.13: Data Transformation Module

be reached by calling this function again.

4.2.6.2 Functionality “Inverse”

Sometimes it is just useful to see thing inverse. The function “Inverse” displays every
y-value upside down. It just inverts every standard value which is basically in the
range of 0 < y < 1.

4.2.6.3 Functionality “Square”

The function “Square” builds the square of every single y-value in the transformed
data structure. To square every value is for certain variables important to compute
power from energy.

4.2.6.4 Functionality “Logarithm”

The function “Logarithm” builds the logarithm of every single y-value in the
transformed data structure. This function makes sense if some of the values are tight
together. After the function the values are stretched which improves the identification.

4.2.6.5 Functionality “Average”

The function “Average” combines the single values to groups and builds the average
of all y-values inside a group. The size of the groups depends on the values in the
appropriate JSpinner box of the Sonification_DataObjectPlotOptionsPanel. The
visual result of this function can be seen in the plot as a kind of histogram and be
heard as sound with a longer duration.

4.2.7 Speech Module

To enhance the user interface especially for visual impaired people the Speech
Module will give xSonify the ability to talk. The class Sonification_Speech is based
on the Java Speech API.

The creation of an object of this class takes place in the Sonification_Core class and
the reference to this instance will be passed to instances of the GUI module. Wherever
an event occurs (e.g. FocusEvent for a SWING component) which requires an verbal
output the function speak(Text) can be called with the spoken text as the function
parameter.

Figure 4.14: Speech Module

4.2.8 Data Export Module

After the Sonification sequence was generated successfully and the result seems
promising to the scientist it is very useful to archive this sequence as a sound file. It
could be also very useful to exchange this result with other colleagues or as material
for a presentation for example. Hence it is necessary to provide this sequence in a
common sound format.

The class Sonification_Export should provide methods to deploy the Sonification
results as common sound formats. Beginning with the *.mid format in future the class
should be extensible for more sound file formats like *.wav and *.mp3.

Figure 4.15: Data Export Module

4.3 Implementation of xSonify as a module into existing applications

As mentioned in Chapter 2 – Existing Space Science Applications, xSonify can also
be added into applications as a module.

4.3.1 Implementation in TIPSOD and CDAWeb+

The appearance of xSonify in the applications TIPSOD and CDAWeb+ will be limited
to a simple button or menu item. As soon as this component is activated a new
instance of the application xSonify will be created and a new independent window
containing the application pops up at the screen. Unfortunately the two applications
TIPSOD and CDAWeb+ don't have an internal data structure of the focused data so
that the data retrieval and access needs to be managed autonomously by xSonify.

4.3.2 Implementation in ViSBARD

In comparison to the first two applications, xSonify can be fully implemented in
ViSBARD. One way of xSonify's data import is based on ViSBARD's “Resource
Toolkit” and xSonify accesses consequently the internal data structure of ViSBARD.

The following sequence diagram should illustrate how the invocation of the
Sonification module takes place.

The class DataImportVisbard in the Data Import Module needs to be adapted. In order
to do this it is necessary to add further constructors into the classes Sonification_Core
and DataImportVisbard with VisbardMain as parameter. The first instruction within
the new constructor of the class Sonification_Core should be the initialization of the

Figure 4.16: Implementation Of xSonify

reference dDataImport like:

try{

dDataImport = new DataImportVisbard(visbardmainobject);

}

catch(Exception e){}

It is also necessary to remove the original DataImport functionality from xSonify.

Chapter 5

5. Sonification Details

Sound has many attributes that can be used for representing various data dimensions,
including pitch, loudness, rhythm, damping or attack/decay rate, direction, duration
and repetition, timbre and harmonics, phase, and rest periods. The preferred attributes
provide independence, resolution, continuity, and ease of perception by untrained
users.

• Location: The location of a sound in a two or three dimensional sound space.

Figure 5.1: Sound Attributes

Location is analogous to location in the two dimensional plane of the map. As a
sound variable location requires stereo or three-dimensional sound displays. Two-
and three-dimensional sound allows for the mapping of left/right, up/down, (and in
3-D) forward/backward locations. Location can represent nominal and ordinal data.
For example, a two-dimensional stereo sound map could use location to direct
attention to a specific area of the graphic map display where the fastest change is
occurring in a spatial data set over time.

• Register: The relative location of a pitch in a given range of pitches. Register
describes the location of a pitch or set of pitches within the range of available
pitches. Register is a more general case of pitch, where one can specify a high,
medium and low register, each retaining a full set of chromatic pitches. (note 4) It
can add to pitch as a broader ordinal distinction. An application which uses register
and pitch is discussed later in this paper.

• Timbre: The general prevailing quality or characteristic of a sound. Timbre
describes the character of a sound and is best described by the sound of different
instruments: the brassy sound of the trumpet, the warm sound of the cello, the
bright sound of the flute, etc. Timbre, then, implies nominal differences (Risset and
Wessel 1982, Kramer and Ellison 1992). For example, a brassy sound could be
used to represent an urban phenomena while a warm or mellow sound could be
used to represent a rural phenomena. Such an example draws attention to the
evocative nature of sound.

• Order: the sequence of sounds over time. The order in which sounds are presented
over time can be "natural" - such as the progression from a low pitch to a high
pitch - and this means that it should be easy to detect general trends (patterns) in
data presented with sound variables such as pitch or loudness. The "natural order"
of sounds can be manipulated to represent data "disorder" or different orders. For
example, if a natural order of sounds (say pitch from low to high) is matched to
chronological temporal order, any non-ordered sound will be recognizable as an
indication that data are out of chronological order. An example will be discussed
later in this paper.

• Attack/Decay: the time it takes a sound to reach its maximum/minimum. The
attack of a sound is the time it takes for a sound to reach a specific level of
loudness; the decay is the time it takes to reach quiet. Attack has been found to be
much more successful in conveying information than decay (Lunney and Morrison
1990, 144). Attack/decay could be used to represent the spread of a specific data
variable in a given unit: for example, pitch may represent an average value for the
income in a county and attack/decay the spread of values; a long attack and decay
would represent, then, a wide range of incomes in that county. Attack/decay may
also be used to represent rates of diffusion or recession.

The sound attributes according to the sound attribute overview which haven't been
explained yet are issued in the following sub chapters. They are emphasized in
separate chapters because they are part of the application xSonify.

5.1 Sonification Modus: Pitch

The probably most famous way to display information in an acoustic way is to choose
the pitch attribute of sound. The lowness and highness of a sound (the frequency)
respectively contains in that case the information. Pitch is highly distinguishable and
is one of the most effective ways of differentiating order with sound. On average,
individuals can easily distinguish 48 to 60 pitches over at least four or five octaves,
and this implies that pitch, divided up by octaves can be used to represent more than a
single variable in a sonic display (Yeung 1980, 1121).

But beside all the positive aspects of this Sonification method there are also things
which have to be considered.

– Judgments of pitch will vary somewhat from person to person.

– Western music has traditionally employed a scale of eight octaves comprised of
twelve pitches each; extreme pitches, however, are hard to distinguish.

– Mapping with pitch is appropriate for ordinal data. In addition, pitch may imply
direction, where, for example, an increasing pitch represents upward movement.

– Tonal sharps and flats can be used to some effect also, possibly to represent a
second variable such as variations in data quality. Every twelfth pitch has the same
pitch color (chroma) and this may serve to represent nominal or ordinal data
(Weber 1993b). Pitch, then, can represent quantitative data, primarily ordinal. Time
can be added to pitch to create a sound graph which tracks ordinal change in data
over time.

5.2 Sonification Modus: Volume/Loudness

The second parameter of sound which is used to hear the data is the volume of a
certain tone. According to the current values in the data sequence the volume/
loudness is measured in terms of the decibel and implies an ordinal difference. The
average human can just detect a one decibel sound, can detect differences in loudness
of about three decibels, and can tolerate up to approximately 100 decibels (e.g. the
loudness of a jet taking off). Loudness is inherently ordered and thus seems
appropriate for representing ordinal level data. Loudness may be used to imply
direction and can be varied over time to represent ordinal change in data over time
(e.g. to alert one to important but infrequently occurring phenomena).

It is known that humans usually become unconscious of constant sounds (Buxton
1990, 125). For example, although the hum of a computer's fan in becomes inaudible
soon after switching it on, even a slight variation in the fan will be instantly noticed.
This effect can be used to represent information where a quiet tone represents a steady
state and any variation represents change.

5.3 Sonification Modus: Rhythm

The last modus in our software application is the idea to use a certain rhythm of a beat
instrument to display the information. During this modus the whole range of data
values are fragmented into a certain number of groups. Default amount of groups are
20 but can be changed in the average panel. The idea is that every group has the value
of the average of all values inside a group and the value represents a certain rhythm.

According to the sound attribute overview in the introduction of this Chapter this
modus covers the sound attributes “Duration” and “Rate Of Change”.

• Duration: The length of time a sound is (or isn't) heard. Duration refers to the
length of a single sound (or silence) and can represent some quantity mapped to
that duration. Silence must be used in tandem with duration if one is to distinguish
the duration of multiple sounds (Yeung 1980, 1122). Duration is naturally ordinal.

• Rate of Change: The relation between the durations of sound and silence over
time. Rate of change is primarily a function of the varying (or unvarying) durations
of sounds/silences in a series of ordered sounds over time and can represent
consistent or inconsistent change in the phenomena being represented.

5.4 Sonification Process

Ed Chi [16], worked on a way how to display a visualization process and named it the
“Data Pipeline”. Analogously to this process Sylvain Daude[17] and Laurence Nigay
presented a Sonification process which transforms and prepares the raw data to be
finally sonified.

The single points of this process will be explained in the following steps:

From Data To Data View: Data Transformation
In this step the raw data will be mapped value by value into a range of values between
0 < x < 1. This process can be considered as a kind of standardization of values which
is necessary to make the data available independent from their unit and scale.

From Data To Abstract Sound Space: Sonification Transformation
During this step the data are prepared according to the chosen Sonification modus.
Every value will be assigned to a certain position at a “time line”. This “time line” is
represents the time line of the Sonification sequence which will be played in xSonify

Figure 5.2: Sonification Process

in the MIDI player.

From Abstract Sound Space To Sonic: Auditory Display Transformation
This is the part where the signal is finally displayed on a physical device. In xSonify
this is the part where the MIDI sequence will be transmitted to the MIDI player and
played.

5.5 Delivering Of Information Through Sound And The Difficulties

Beside all the tempting opportunities and chances of the usage of the different sound
attributes for Sonification I would also like to point to difficulties and challenges
which can appear during the design phase of an application for Sonification.

Some complications are the direct result of how our nervous system processes sound,
while other problems can be associated with the task presented or the environment in
which the Sonification is used.

The following aspects which are representing some difficulties of Sonification should
only give an idea of the problems which have to be faced during the design of an
application:

• low resolution of some auditory variables

• limited spatial precision

• lack of absolute values

• absence of persistence

• no printout

Naturally the kind of application automatically determines if the usage of Sonification
is appropriate at all and if so what kind of sound attributes or rather Sonification
modus should be applied in the program.

Literature Directory

[1] Barrass Stephen, “Sonification Design Patterns”. Proceedings of the 2003
International Conference on Auditory Display, Boston, MA, USA
[2] Kramer, Gregoy, “Auditory Display”. Santa Fe Institute (1994) 186-188
[3] Pollack, I., and L. Ficks. “Information of Elementary Multidimensional Auditory
Display”. J. Acoustic Society America (1954)
[4] Speeth, S. D. “Seismometer Sounds”. J. Acoustic Society America (1961)
[5] Chambers, J. M., M. V. Mathews, and F. R. Moore. “Auditory Data Inspection”.
Technical Momorandum no. 74-1214-20, AT&T Bell Laboratories (1974)
[6] Edward Yeung, “Auditory Display”. Santa Fe Institute (1994) 38
[7] Fubini, E, A. De Bono and G. Ruspa. “System for Monitoring and Indicating
Acoustically the Operating Conditions of a Motor Vehicle.” U.S. Patent #4,785,280,
U.S. Patent and Trademark Office (1986)
[8] Smith, S. “An Auditory Display for Exploring Visualization of Mutlidimensional
Data.” In Workstations for Experiment, edited by G. Grinstein and J. Encarnacao.
Berlin: Springer Verlag
[9] Kramer, G. “Audification of the ACOT Predator/Prey Model.” Unpublished
research report prepared for Apple Computer's Advanced Technology Group, Apple
Classrooms of Tomorrow (1990)
[10] Kramer, G. “Audification: Using Sound to Understand Complex Systems and
Navigate Large Data Sets.” Proceedings of the Santa Fe Institute Science Board, Santa
Fe Institute (1990)
[11] Kramer, G. “Audification: The Use of Sound to Display Multivariate Data.” In
Proceedings of the International Computer Music Conference, 214-221. (1991)
[12] Official Website of ICAD, http://www.icad.org/
[13] Scaletti, C., and A. Craig “Using Sound to Extract Meaning from Complex
Data.” In Extracting Meaning from Complex Data: Processing, Display, Interaction II,
edited by Edward J. Farrell, SPIE 1459, 207-219 (1991)
[14] Rabenhorst, D. A., E. J. Farrel, D. H. Jameson, T. D. Linton, and J. A.
Mandelman. Complementary Visualization and Sonification of Multi-Dimensional
Data, Extracting Meaning from Complex Data: Processing, Display, Interaction,
edited by E. J. Farewell, SPIE Vol. 1259, 147-153 (1990)
[15] Official Website of the project “Sonification Sandbox”,
http://sonify.psych.gatech.edu/research/sonification_sandbox/sandbox.html
[16] Ed Chi, J. Riedl, “An Operator Interaction Framework for Visualization
Systems”, Proceedings Info Vis '98.
[17] Sylvain Daude, Laurence Nigay, “Design Process For Auditory Interfaces”,
Proceedings ICAD 2003

[18] http://www.wikipedia.de

Appendix A

xSonify Class Diagram
This UML Class Diagram illustrates the classes and interfaces. It also shows the
classes aggregation relationships marked with an arrow.

Appendix B

xSonify Sequence Diagrams
The sequence diagrams should help to understand xSonify and the applications inner
life better. The following chosen standard processes in the program are the most
common sequences and also the sequences with the most interactions between the
relevant objects.

• xSonify Start:

This sequence represents the initial start of the application.

• xSonify DataImport:

This sequence diagram actually contains to individual sequences. The data import
via the ViSBARD Resource Toolkit and the data import from a regular local file
via a text parser.

• xSonify Generate Sound:

This display of a sequence shows the process after the “Play” button was clicked.

B1. xSonify Start

B2. xSonify DataImport

B3. xSonify Generate Sound

