
Geometric Optimization

Paul Hinker Charles Hansen

Advanced Computing Laboratory Advanced Computing Laboratory

Los Alamos National Laboratory Los Alamos National Laboratory

Los Alamos, NM 87545 Los Alamos, NM 87545

hinker@acl.lanl.gov hansen@acl.lanl.gov

Abstract

An algorithm is presented which describes an ap-
plication independent method for reducing the num-
ber of polygonal primitives required to faithfully rep-
resent an object. Reducing polygon count without a
corresponding reduction in object detail is important
for: achieving interactive frame rates in scienti�c vi-
sualization, reducing mass storage requirements, and
facilitating the transmission of large, multi-timestep
geometric data sets. This paper shows how coplanar
and nearly coplanar polygons can be merged into larger
complex polygons and re-triangulated into fewer sim-
ple polygons than originally required. The notable con-
tributions of this paper are: 1) a method for quickly
grouping polygons into nearly coplanar sets, 2) a fast
approach for merging coplanar polygon sets and, 3) a
simple, robust triangulation method for polygons cre-
ated by 1 and 2. The central idea of the algorithm is
the notion of treating polygonal data as a collection of
segments and removing redundant segments to quickly
form polygon hulls which represent the merged copla-
nar sets.

1 Introduction

This paper describes how an optimized object1 can
be generated from the initial polygonal description of
the object. The idea of reducing the polygon count of
a geometric object has received increased attention in
current computer graphics and image processing re-
search. Achieving this goal bene�ts not only object
rendering, but has direct impact on storage and com-
munication costs as well. It is these bene�ts which
supplied the initial motivation for the work presented
in this paper. Another bene�t which appeared dur-
ing the course of this work was the discovery that the
algorithm is highly parallel in nature and maps well
to both Single Instruction Multiple Data (SIMD) and
Multiple Instruction Multiple Data (MIMD) parallel
architectures. This last issue will be further discussed
in the future work section of this paper.

1Herein the terms geometry optimization,and object opti-

mization are used to describe the process of reducing the num-

ber of polygonal primitives required to faithfully represent an

object

Due to current commercial hardware and software
o�erings, the polygon remains the most used form
of object description. Since the polygon is a planar
primitive, highly detailed, complex objects can only
be faithfully represented by thousands or even mil-
lions of polygons. Unfortunately, even state-of-the-art
visualization systems are overwhelmed by these num-
bers since rendering speed, mass storage and memory
requirements are directly proportional to the sum of
polygons in the objects which make up a scene. These
facts motivate the search for an e�cient, automatic
method of object optimization

Polygonal models exhibit a wide variety of char-
acteristics depending on the type of real or simulated
object they represent. This implies that no single, gen-
eral purpose method of optimization is best suited for
all types of objects. The characteristics of a three di-
mensional hydrodynamics data set di�er widely from
those found in medical Magnetic Resonance Imaging
(MRI) data and it would be unreasonable to expect
one method to produce optimum results for all cases.
The geometric optimization method described in this
paper performs best on geometries made up of large
objects. For instance, iso-surfaces generated from
three dimensional hydrodynamics simulations and ter-
rain data. Geometries consisting of many, small sur-
faces; such as turbulence simulation data, do not con-
tain large groups of coplanar primitives and, therefore,
do not yield signi�cant reduction.

A short section follows describing previous
work published in the related areas of polygon
decimation[7], surface re-tiling[8]and hierarchical ob-
ject representation[1, 5]. The remainder of the paper
describes the optimization algorithm and lists results
obtained by its use. The paper concludes with a dis-
cussion of the results and a description of the antici-
pated direction that future work may take.

2 Related Work

Clark presents the bene�ts of hierarchical methods
in using more than one representation of a model for
geometric rendering [1]. Typically this class of meth-
ods is used to guarantee frame rate performance in
applications such as ight simulators. These meth-

1



ods can be somewhat arbitrary when reducing poly-
gon count because creating a reduced surface by de-
creasing grid resolution can easily cause small detail
to be lost. Ning has developed another hierarchical
method which rigorously quanti�es error bounds and
creates an 'ideal' surface by interpolation using a sinc
function.[5].

Turk describes a surface re-tiling method which re-
distributes fewer vertices over an existing surface and
positions them by repulsion [8]. The new vertices are
then connected forming a surface made up of fewer
graphical primitives. This method uses a local greedy
algorithm to handle such di�culties as: points which
are neighbors in a three dimensional sense but widely
separated on the surface; surface bubbles created by
two sets of polygons which tile the same area; and
polygonal groups which meet at a sharp corner. Be-
cause new vertices are used in the creation of the �nal
surface, the original shading information is unusable
and must be recalculated or the reduced surface must
be rendered with a at shading model.

Schroeder et al. have developed a method, known
as polygon decimation, which characterizes the local
topology and geometry for a given vertex and de-
termines if the vertex is a potential candidate for
deletion[7]. If a vertex meets the deletion criterion, re-
triangulation occurs on the remaining vertices in the
immediate region. This method also identi�es sharp
edges and sharp corners that must be retained to en-
sure that the resulting geometry closely resembles the
original data. An important feature of this method
allows the user to specify the size of the resulting ge-
ometry.

3 Geometric Optimization

The primary goal of any polygon reduction algo-
rithm is to reduce the number of primitives required
to faithfully represent an object. Any of the meth-
ods described in the related work section perform this
function adequately but experience has shown there
are several other considerations. First, it is useful
to retain, as opposed to recalculating, auxiliary ver-
tex information such as normals, texture coordinates
and gradients. Vertex removal methods like the one
described by Schroeder meet this requirement. Sec-
ond, it is imperative that the algorithm perform the
reduction quickly due to the large number of poly-
gons involved. The geometric optimization algorithm
described by this paper displays an O(n logn) time
complexity, where n is the number of original primi-
tives in a near coplanar set. Finally, the largest data
sets are currently being produced on parallel and mas-
sively parallel computer hardware so the most bene�t
can be gained by applying the polygon reduction on
the massively parallel processor before the polygonal
data is moved. The algorithm presented by this pa-
per will run well on both SIMD and MIMD parallel
architectures.

Figure 1: Basic Polygonal Flow

3.1 Overview

The geometric optimization algorithm performs the
polygon reduction by �rst, grouping all the polygons
into nearly coplanar sets. A segment list is created for
each of these sets and the list is sorted. Next, redun-
dant segments are removed from the list. This results
in a segment list which contains only those segments
that form the boundary of a polygon. These polygons
are constructed and then re-triangulated to form the
reduced object [See Figure 1].

The four main steps in the algorithm are:

� Construct nearly-coplanar sets

� Create segment list and remove duplicate seg-
ments

� Retrace polygons

� Triangulate resultant polygons

3.2 Creating Near-Coplanar Sets

Three methods of planar set construction were an-
alyzed during algorithm development. The �rst ex-
hibits linear time complexity, with respect to the num-
ber of polygons in the surface, and involves a bucket
sort of the polygons on their respective normals. A
unit sphere describes the sum of all possible unit nor-
mals and this sphere can be divided into 129,600 dis-
creet partitions each of which can be described by two
angles. Polygons are then placed in the buckets dic-
tated by the polygon normal. This method generates
near coplanar sets with a one degree resolution and is
easy to implement and understand. Unfortunately,
this method may produce inconsistent and/or non-
optimal coplanar sets because of the �xed coplanar
set boundaries. For example, the normals describing
two polygons can be arbitrarily close to one another
and still end up in di�erent buckets. This would pre-
vent the merge of the two polygons even though they
are more nearly coplanar then other polygonal pairs
which do get merged.

Another method considered involves building a rep-
resentative tree [6] to form nearly coplanar sets. The
idea is to choose a representative normal from the list
of possible polygons and group subsequent polygons if
they fall within some angular criterion (�) where � is a
user speci�ed angle describing the maximum angular



2ε

2ε

CBA

Figure 2: Choosing Representative Normals

di�erence between the representative normal and the
normal of any other polygon in the same nearly copla-
nar set. This means that the angular di�erence be-
tween any two normals contained in the nearly copla-
nar set is, at most, 2�. Choosing a representative nor-
mal removes the �xed boundary condition and can
increase optimization e�ciency however, poor repre-
sentative polygon choice can miss candidates for near-
coplanar set inclusion [See Figure 2]. Even though
the polygons with normals A, B, and C fall within
the (2�) angular criterion, only choosing normal B as
the representative normal will cause the three poly-
gons to be members of the same nearly coplanar set.
Multiple instances of similar cases in a single object
could cause inconsistent behavior from the optimiza-
tion algorithm. The representative tree method has a
time complexity of O(n logn) where n is the number
of polygons in the original surface.

An improved method involves a reformulation of
the representative tree concept which improves group-
ing e�ciency. A representative normal is chosen as
before but each subsequent polygon is added to the
near-coplanar group as long as adding it will not cause
the range of normals in the group to exceed the user
speci�ed angular acceptance criterion. After a poly-
gon is added to the group, the representative normal
is adjusted to be the average normal of all polygons
in the group. This modi�cation ensures greater con-
sistency in the range of normals represented between
near-coplanar groupings. This method demonstrates
the same time complexity as the unmodi�ed represen-
tative tree method.

3.3 Building Segment List

The two step process of building a segment list and
deleting duplicate segments e�ectively deletes all seg-
ments which are not part of a merged-polygon bound-
ary. Using this segment based approach, redundant /
unnecessary segments are removed in O(n logn) time
where n is the number of segments created from the
near-coplanar set of polygons.

The segment list can be constructed in linear time
for any group of arbitrary polygons. Segments are

constructed so that the greater2 of the two endpoints
is listed �rst. Once the segment list is sorted by co-
ordinate it is a linear time operation to remove du-
plicate segments since they will appear sequentially in
the sorted list.

3.4 Retrace Polygons

After duplicate segments are deleted, remaining
segments form boundaries that describe the globally
merged polygons since only boundary segments will es-
cape deletion in the preceding step. A second, sorted
segment list is created by copying the remaining seg-
ments and swapping endpoints so that the least3 of the
two endpoints appears �rst. Polygons are constructed
by choosing a segment and using a binary search to
�nd another segment with a common endpoint in one
of the two lists. This process is repeated until there are
no segments remaining that can be added to the cur-
rent polygon, in which case a new polygon is started,
or there are no segments left in the list. The retrace
process is accomplished in O(n logn) where n is the
number of segments not deleted by the duplicate dele-
tion routine.

A choice must be made at this stage to decide
whether or not to delete co-linear vertices. If they
are deleted, optimization is increased but any gradi-
ent information associated with the remaining vertices
may not accurately reect the optimized surface and
may cause severe streaking if used when rendering the
resultant polygons. If, however, co-linear vertices are
removed on the basis of the rate of change in their
gradient, streaking can be controlled and optimization
can be maximized. Co-linear vertices can be removed
in O(n) time where n is the number of vertices.

A problem that can arise involves a merged region
that contains holes4 [See Figure 3]. After the retrace
stage, these holes will appear to be separate polygons.
Discovering if one polygon contains another can be ac-
complished in linear time, O(n) where n is the num-
ber of polygons generated by the retrace step, but the
operation must be performed on each of the O(n) re-
traced polygons so the entire operation has O(n2) time
complexity. By this point in the algorithm, however,
the number of polygons is greatly reduced and many
cases can be decided quickly using simple tests such
as bounding boxes.

When a hole is added to the description of a poly-
gon, care must be taken to ensure that polygon traver-
sal order remains consistent to prevent the creation of
loops, bow-tie polygons and similar degenerate cases.

2Greater in the sense that the x-coordinate is more signi�-

cant than the y-coordinate which is more signi�cant than the

z-coordinate.
3Least in the sense that the x-coordinate is more signi�-

cant than the y-coordinate which is more signi�cant than the

z-coordinate.
4These holes are actual discontinuities in the surface being

optimized and are not to be confused with errors that some

iso-surface extraction methods may introduce into a surface.



Figure 3: Handling Polygons With Holes

If these cases are prevented, the merged polygons can
be easily triangulated.

It is possible to write out polygons at this stage of
the algorithm. It should be noted, however, that poly-
gons created by the preceding stages can contain hun-
dreds or even thousands of vertices along with interior
holes and most hardware renderers perform poorly, at
best, on such complex polygons.

3.5 Triangulate Polygons

The triangulation step must deal with a compli-
cated but well de�ned class of polygons. While the
polygons might be complex, many of the usual degen-
erate cases will not exist. Bow-ties, recursive loops,
redundant segments and co-linear segments are spe-
cial cases that will not appear if the initial phases of
the algorithm are correctly implemented. It has been
noted that the polygons may contain holes, however,
which means any triangulation scheme adopted must
handle this class of polygons.

An important consideration in choosing a triangu-
lation method is the type of triangles generated. Since
the optimization method is, e�ectively, a point dele-
tion method, additional information about vertices,
such as gradient information, can be retained through-
out the optimization process for the resulting geom-
etry. Preliminary results indicate that, unless care is
taken, triangles with poor aspect ratios can be gener-
ated yielding shaded objects that demonstrate a vari-
ety of problems including streaked shading and zbu�er
rounding errors.

Methods analyzed and discarded include a local
greedy triangulation and a museum view5 triangula-
tion method. The primary reason these two methods
were discarded is because of their tendency to pro-
duce long thin triangles which can cause shading and
z-bu�er errors due to out-of-proportion aspect ratios.

The same polygon is triangulated using the three
methods described [See Figure 4]. All algorithms start
at the vertice of greatest concavity in the polygon and
traverse the polygon in a clockwise rotation.

The museum view method chooses a vertex and cre-
ates all possible triangulations from that point. This
not only has the tendency to generate long thin tri-
angles, but can also create a fan pattern of triangles

5A museum view describes the set of points which are within

the line-of-sight of the selected point

A B C

Figure 4: Triangulation Methods

that is visible when rendering the complex polygon
[See Figure 4 triangulation A].

The local greedy algorithmworks much the same as
the museum view method but only considers creating
triangulations using vertices which appear in the list
of vertices near the starting vertex. The nearness con-
sideration has no correlation to vertice proximity in
3-space but depends solely on the location of the ver-
tices in the connection list which describes the polygon
[See Figure 4 triangulation B].

A better method of triangulating the polygons in-
volves simply traversing the polygon and storing tri-
angles as they are discovered. For example, if we label
the starting vertice 0, the triangle formed by 0, 1 and
2 is analyzed. If the segment created by the endpoints
0 and 2 does not intersect any other segment of the
polygon and the segment is contained by the polygon,
it is written out and vertice 1 is removed from the ver-
tice list. The starting vertice 0 is then set to 2 and
the process is repeated. If the proposed segment isn't
valid, the starting vertice is incremented by one and
the process repeats. This method can produce poorly
proportioned triangles and fan shaped triangulations
but it is easy to implement, fast and produces trian-
gulations that are at least as good as the other two
methods considered [See Figure 4 triangulation C].

Application Polygons Reduced % Reduction

Oil Well Perf 304,841 66,029 78.34%

Porous Flow 1,019,373 642,204 47.37%

Turbulent Flow 315,812 295,636 6.40%

Table 1: Polygonal Reductions

Application Reduction � Time(sec)

Oil Well Perf 78.34% 0.1 86.73

Porous Flow 47.73% 0.0 538.41

Turbulent Flow 6.40% 2.0 95.70

Table 2: Timings



Figure 5: Original Oil Well Perferator

4 Results

The algorithm described in this paper has been ap-
plied to di�erent scienti�c data sets. This section
presents the results of three of these data sets chosen
to be representative of many problems encountered in
scienti�c visualization. The run-time of the algorithm
is highly dependent on the number of overall polygons
since the �rst step is to sort the entire polygon list.
Also, run-time will vary widely due to the number of
polygons found to be in a given coplanar or nearly
coplanar set. This, again, is due to the sort that is
performed on the segment list built from the coplanar
set. Even though there are portions of the algorithm
with quadradic time complexity, the run-time is dom-
inated by these two O(n logn) functions [See Table 1
and Table 2].

4.1 Oil Well Perforator

The three dimensional hydrodynamic model
PAGOSA[3] simulates high speed, high energy interac-
tion between materials with various properties. One
such simulation attempts to model the results of a
shaped explosive charge lowered into a well casing and
detonated to cause perforation in the well casing and
the surrounding oil bearing strata. The simulation
is conducted using approximately 10 million cells and
generated over 300,000 triangles [See Figure 5. Primi-
tive reductions of over 94% were achieved for the well
casing (large semi-cylinder) using � of 0.10 degree con-
straints for coplanar grouping. The carrier tube (small
semi-cylinder) showed 87% reduction with the same
grouping constraints while the charges (contained by
the small semi-cylinder) demonstrated only about 2%

Figure 6: Optimized Oil Well Perferator

Figure 7: Original Porous Flow



Figure 8: Optimized Porous Flow

Figure 9: Original Turbulent Flow

Figure 10: Optimized Turbulent Flow

reduction. Overall reduction for the �ve surfaces was
approximately 78% [See Figure 6].

4.2 Flow Through Porous Media

The porous ow application models uid ow
through a three dimensional digitized core sample. A
core sample is obtained by drilling into the porous,
oil-bearing material in an oil �eld. The core sample
is digitized at a 2563 resolution [See Figure 7]. Iso-
surfacing the core sample produced over 1 million tri-
angles using a massively parallel version of the March-
ing Cubes surface generation algorithm. Since this
particular data set contains large at areas, a 47% re-
duction was achieved specifying strictly coplanar sets
(� of zero) [See Figure 8].

4.3 Turbulent Flow

The turbulent ow model is currently running on
the CM-5 massively parallel supercomputer with a
grid resolutions of 2563 and 5123 (soon to become
10243) [See Figure 9]. The data set used in our ex-
periments was 2563. This 16 million cell model pro-
duces over 310,000 triangle primitives per surface per
time step. The surface created from this volume rep-
resents the magnitude of the vorticity found in the
simulated volume. Due to the many small surfaces of
high curvature this model exhibits, noticeable geome-
try degeneration occurs before a signi�cant reduction
in geometry size can be achieved. Choosing � of 2 de-
grees yielded reduction of slightly more than 6% [See
Figure 10].



5 Conclusions

The geometry optimization algorithm can signi�-
cantly reduce the amount of geometric primitive infor-
mation required to faithfully reproduce an object. By
reducing nearly coplanar polygonal sets to segments,
the algorithm can remove redundant segments in a
single pass and triangulate the remaining polygons to
achieve object optimization. This method has been
used successfully on many scienti�c applications with
results presented on three representative applications.
The results indicate that the algorithm described in
this paper works best when optimizing areas of grad-
ually changing orientation and is largely ine�ective
when faced with surfaces of high curvature.

6 Future Work

A similar, segment based approach to optimization
is being developed for the CM-5 MIMDmassively par-
allel computer located at the Advanced Computing
Laboratory at Los Alamos National Laboratory. The
resultant code will be coupled with a massively paral-
lel version of the Marching Cubes algorithm [2]. The
resulting geometry will be streamed via FDDI link to
an ONYX/RE-2 Silicon Graphics renderer for visual-
ization.

7 Acknowledgements

This research was performed in part using the re-
sources located at the Advanced Computing Labora-
tory of Los Alamos National Laboratory, Los Alamos,
NM 87544.

References

[1] James H. Clark, \Hierarchical Geometric Models
for Visible Surface Algorithms," In Communica-
tions of the ACM, volume 19, number 10, pages
547{554, 1976.

[2] Charles Hansen and Paul Hinker, \Massively Par-
allel Isosurface Extraction," In Proceedings Visu-
alization '92, pages 77{83, October 1992.

[3] D. B. Kothe, J. R. Baumgardner, J. H. Cerutti,
B. J. Daly, K. S. Holian, E. M. Kober,
S J. Mosso, J. W. Painter, R. D. Smith and
M. D. Torrey, \PAGOSA: A Massively-Parallel,
Multi-Material Hydrodynamics Model for Three-
Dimensional High-Speed Flow and High-Rate Ma-
terial Deformation" In Proceedings of the 1993
Simulation Multiconference on the High Perfor-
mance Computing Symposium, March 29, 1993,
pages 9{14, 1993.

[4] W. Lorensen and H. Cline, \A high resolution
3d surface construction algorithm," In Computer
Graphics, volume 21, pages 163{169, 1987.

[5] Paul Ning and Lambertus Hesselink, \Octree
Pruning for Variable-Resolution Isosurfaces," In

Proceedings of Computer Graphics International -
Tokyo, June 22-26, 1992.

[6] D. Salesin and F. Tampieri, \Grouping Nearly
Coplanar Polygons Into Coplanar Sets," In Graph-
ics Gems III, 1992, ISBN 0-12-409671-9.

[7] William J. Schroeder, Johnathan A. Zarge and
William E. Lorensen, \Decimation of Triangle
Meshes," In Computer Graphics, volume 26, num-
ber 2, pages 65{69, July 1992.

[8] Greg Turk, \Re-Tiling Polygonal Surfaces," In
Computer Graphics, volume 26, number 2, pages
55{64, July 1992.


	Abstract
	1 Introduction
	2 Related Work
	3 Geometric Optimization
	3.1 Overview
	3.2 Creating Near-Coplanar Sets
	3.3 Building Segment List
	3.4 Retrace Polygons
	3.5 Triangulate Polygons

	4 Results
	4.1 Oil Well Perforator
	4.2 Flow Through Porous Media
	4.3 Turbulent Flow

	5 Conclusions
	6 Future Work
	7 Acknowledgements
	References

