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Abstract. For a variety of structural finite element analyses on automotive body panels, 

aerospace wings and space satellite panels, high-quality, structured quadrilateral meshing is 

imperative. Transfinite meshing, the technique to produce such meshes is severely infringed 

by the presence of surface-interior point constraints. The present paper attempts to solve the 

inverse problem of transfinite meshing with interior point cointraints. A modified Newton 

Raphson based solution is proposed to inverse solve Coons bi-linear blending equation. The 

Coons parametric coordinates are thus determined for a set of face-interior points from their 

global coordinates. The boundary of the surface is next seeded with “soft-points” at 

reflected locations and smart-discretized to result in high fidelity, high-quality transfinite 

meshes.

Keywords: Point constraint, mesh, transfinite, mapped, structured, Coon's Equation, 

Newton-Raphson

1. Introduction 

Mapped meshing or transfinite meshing is an important mesh generation 

technique, especially with quads, used frequently in a wide gamut of finite 

element anaysis problems. These meshes are structured and hence have a 

higher solution reliability. These meshes are also economical and if stress-

sensitive regions of the outer surface are pre-meshed with such meshes, a 

lighter tetrahedral mesh is usually produced. However, interior mesh 

points are hard to honor for transfinite meshes. Usually the nearest node is 

snapped to the interior point. This depletes element quality often. In the 
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present paper,  an attempt is made to solve the inverse problem of 

transfinite meshing with interior point cointraints. The inverse problem is 

solved to evaluate Coons parametric coordinates of the interior point 

constraints from their global world coordinates. A conventional modified 

Newton- Raphson based solution is proposed to inverse solve Coons’ bi-

linear blending equation. The boundary of the surface is next seeded with 

“soft-points” at reflected locations and smart-discretized. 

2. Past Research 

Mapped or transfinite meshing techniques with both quadrilateral and 

triangular elements remain to be one of the earliest automatic mesh 

generation algorithms in the world of surface mesh generation. 

Zienkiewicz and Phillips [1] report probably one of the earliest papers in 

this area. They proposed a 2D automatic mesh generation scheme based on 

isoparametric mapping for flat and curved surfaces. Gordon and Hall [2] 

defined the transfinite interpolation on the rectangle two years later in 

1973. In 1974, Cook [3] used it to construct C0 continuous 

quadrangulations of deformed quadrangles. Cook's method induces of C0

continuous structured meshes on C0 continuous transfinite patches. Haber 

et al. [4] discuss a general purpose transfinite mapping technique  for a 

wide range of surfaces. Alain Peronnet [5–7] did several in-depth 

investigations on transfinite interpolation techniques on both C1 and G1

continuous domains for both 2D and 3D surfaces. Mitchell [8–9] and 

Armstrong [10] reported approaches to automatically identify the corners 

of a mapped meshable domain and discuss techniques to assign intervals 

on surface boundaries. However, even after an exhaustive research, no 

research work was found on the transfinite mesh generation problem with 

interior point constraints.

3. Problem Statement 

The present paper attempts to solve the problem of generating a transfinite 

mesh on a face geometry such that the grid lines pass through a set of face 

interior point constraints. When that is attained, a nice smooth structured 

mesh is produced that has high quality surface elements that are not 

distracted by the interior constraints. Fig. 1 shows a regular mapped mesh 

where the interior point constraints are ignored. 
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Fig. 1.  A mapped mesh with interior constraints ignored 

Figure 2 depicts the same geometry with the same mesh, where the interior 

mesh nodes are snapped to the constraints that are nearest to them. No 

mesh node is allowed to snap to more than one point constraint, else the 

topology of the mesh will collapse at that location. The boundary 

discretization remains unchanged. 

Fig. 2.  Mapped mesh with mesh nodes snapped to the nearest interior constraints 

When nearest nodes are snapped to the interior mesh points, the element 

shapes distort resulting in highly skewed elements that are unreliable for 

stress and dynamic structural analysis. Automobile car body panels need to 

model arrays of spot-weld points which represent potential high stress 

areas hence requiring good -quality (low skew) structured meshes 

connecting them. Most part of the industry accomplishes such meshes 

through tedious, inefficient, manual techniques. 

Face-interior 

point constraint 

Nodes snapped 

to face-interior 

point constraints 
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Figure 3 depicts a typical 4 sided area that needs to be transfinite meshed. 

The area is four-sided and require nodes to match up on each pair of 

“logical” sides. 

Fig. 3.  A 4-sided Coons space 

4.1 Coons Blending 

Given an area bounded by three or four curves (B-Spline/Bezier) , a 

surface patch can be created by blending the boundaries using suitable 

blending functions [11]. The theory of patches and blending was first 

developed by Coons [12]. Coons blending functions are traditionally used 

to generate transfinite or mapped meshes on 2D and 3D representation of 

surfaces or mesh-domains. A 2D four-sided area bounded by four curves 

(B-spline, Bezier or discrete) as shown in Fig.3.  Let P,Q,R,S be functions 

representing the boundary curves in any cartesian 2D space. Thus, 

P  Q  R  S  f(x,y)                (1) 

and the rail points are 

P(x,y)  r(u,0),   Q(x,y)  r(u,1), R(x,y)  r(0,v) and S(x,y)  r(1,v)       (2) 

where r(a,b) is a generic parametric function that represents each boundary 

curve in the range of a to b. Also at any point on the boundary curves the 

cartesian functions can be written as 

A

B

CD

S

P

Q

R

E

P(x,y)  (Px, Py)                 (3) 

4. Transfinite Interpolation in 2D Space 
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The corners of the area are denoted by A,B,C,D where

  A(x,y)  r(0,0), B(x,y)  r(1,0), C(x,y)  r(1,1) and D(x,y)  r(0,1)       (4) 

Thus, for any interior node E(x,y) r(u,v), Coons bilinear blending function 

can be written as a bullean sum. 

Ex = (1 – v)Px + vQx + (1 – u)Rx + uSx  –  [(1 – u)(1 – v)Ax

+ (1 – v)uBx +v(1 – u)Dx +uvCx];

Ey = (1 – v)Py + vQy + (1 – u)Ry + uSy  –  [(1 – u)(1 – v)Ay

+ (1 – v)uBy +v(1 – u)Dy +uvCy];             (5) 

In a matrix form, equation (5) can be rewritten for the abscissa as

(1 u)(1 v)

u(1 v)

uv

v(1 u)
Ex = { }=[B]{ }

(1 u)

u

v

(1 u)

           (6) 

where

{ } = { Ax,Bx,Cx,Dx,Px,Sx,Qx,Rx }
T            (7) 

A similar companion equation exists for the oordinate Ey.

4.2 Presence of Interior Point Constraint 

If an interior point constraint F(x,y)  r(u',v') exists in the domain closest 

to node E, (as exhibited in Fig. 1) node E will have to be snapped to 

location F. The deviation of mesh node E from point constraint F can  thus 

be expressed as

f(u,v) = [B]{ } – Fx  and g(u,v) = [B] { }  –  Fy          (8) 

As explained before, the aim of this exercise is to minimize the the 

functionals f,g with respect to u,v as described in eqn. (8). For  n interior 

mesh-points, the problem can be globally described by 
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n n

(u,v) i i

i i

b = Min f , g ,                    (9) 

The minimization problem can further be expressed as

T
T T11 12

i i i i
21 22

J J
f g = s t

J J
         (10) 

Although, this approach has an easy and logical extention in 3D,  the 2D 

approach is mostly used. A 2D domain of the curved surface is developed 

(or parameter space used) and the mesh is generated in 2D using the 

improved algorithm. Once the mesh is generated in 2D, a transformation 

mechanism is used to get the 2D mesh on the 3D surface. This is a 

standard procedure for generating 2D meshes on developable surfaces and 

is done no differently for this case.

5. The Inverse Problem and Its Solution 

The present scenario leads to an inverse problem as posed by equation (9). 

During transfinite meshing, Coons equation (6) is used to locate a mesh 

interior point in the cartesian 2D domain, when its boundary parametric 

([B]) and cartesian coordinates ({ } are known. With the interior point 

constraint this problem is reversed. The parametric coordinates (u',v') need 

to be determined while its cartesian location F(x,y) is known.

In order to solve eqn. (10), a modified Newton-Raphson procedure may 

be adopted. 

Using a modified Newton-Raphson, the solution is given by 

[J] Z + F = 0              (11) 

where [J] = Jacobian =
11 12

21 22

J J

J J
           (12) 

   Z  = { s , t } T ;             F = {f, g} T;             (13a) 

The elements of the Jacobian can be expressed as

J11 = f/ s;   J21 = g/ s          (13b) 

J12 = f/ t;   J22 = g/ t            (13c) 
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Finally, the change in the parametric coordinates during the ith iteration 

step can be written as

Iteratively solve the following equation, till it converges 

(s, t)i = (s, t)i-1 + ( si, ti)           (15) 

6. Solution Convergence 

The solution to eqn. (9) is usually quite speedy and usually converges for 

an error norm | i| <= 1e-05. The error norm | | is a root-mean-square of the 

collective differences of the evaluated coordinates across successive 

iterations and can be expressed as

| i| = (si – s i-1)
2 + (ti – ti-1)

2   for the ith iteration.       (16) 

However, the convergence of the solution depends on the geometry of the 

boundary. If the rail curves are represented by higher order rational 

splines, the solution could slow down a bit; it could slow down a little 

futher if the face is represented by facets (implying the boundary curves 

are represented by poly-lines). However, for all practical purposes the 

solution time is insignificant compared to the mesh generation time on 

these surfaces. 

 7. Boundary Reflection 

Once the inverse problem is solved, the parametric coordinates of the 

interior points are known in the Coons’ domain. These parametric 

coordinates are now used to create reflected locations on the boundaries of 

the domain. Figure 4 shows two face interior constraints E and F whose 

parametric  locations in the Coon’s space are given by E (s1,t1) and F 

(s2,t2). The solution to the inverse problem gives us the Coon’s parametric 

locations of these points. 

si  = ( –J22 f i – 1 + J12gi – 1)/|J|         (14a) 

ti  = (J21 fi – 1   –  J11gi – 1)/|J|          (14b) 
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Fig. 4.  Interior point constraints reflected on the boundary via “soft-points" 

7.1 Soft Points and Pseudo-Edges 

The Coons space parametric coordinates of interior points E & F are next 

used to create 4 temporary nodes on the rail curves at parametric locations 

s1, s2, t1 and t2. These nodes act as “soft-points” or soft-constraints. These 

soft points need to be honored during boundary discretization. i.e. mesh 

nodes need to be created at these locations. As a result, it is ensured that 

the interior points are always reflected on the boundary. The resulting 

transfinite mesh lines thus flow through the interior point contraints.  It is 

important to note that when 2 or more soft-point locations are close enough 

on a given pair of sides, they are merged into one.

For every interior point constraint, 4 such soft-points need to be created 

on the 4-sides of the area. Each side of the 4-sided area is called a 

“Pseudo-Edge”. It is important to remind here that each pseudo-edge is 

actually a collection of one or more CAD edges. When the pseudo-edge is 

discretized, the soft-point acts like a “pseudo-vertex". A node is always 

created on it. This ensures, that when a pseudo-edge with a given element 

count is discretized, these “soft” locations are guranteed to get a node. The 

resulting mesh, gets interior nodes that are very close to the face-interior 

constraints. These nodes are now snapped to the constraint location.

Conventional mesh relaxation methods try to solve the same problem, 

but they would hold the boundary nodes fixed. The present algorithm, in 

contrast, determines apriori suitable boundary node locations so as to  

Face-interior 

point constraints 

s

t s2

t2

s1

t1

F(s2,t2) E(s1,t1)
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minimize the distortion of the mesh. Because there is more freedom on the 

boundary, with the present algorithm, the chances of producing a better 

structured mesh is stronger.

7.2 Boundary Discretization 

When face-interior point constraints are present, boundary discretization 

changes in a two-fold manner. Firstly, it creates a non-uniform seeding in 

most cases, secondly it alters the element count on a given pair of sides. 

The maximum element count on a side or a Pseudo-Edge can be given by

mi = | (Li/s) , (n + 1) | max           (17) 

where

m = element count on pseudo-edge i 

Li = length of pseudo-edge i 

n = number of unique boundary reflections on a side 

s = meshing size 

A pseudo-edge is an assembly of p edges. However, when this pseudo-

edge is pre-discretized with q soft-points (reflected location of face-interior 

constraints), the edge is assumed to be logically composed of r = (p + q) 

sub-edges. The 3D coordinates of node j to be placed at parametric 

location sj can be expressed as

where this node is found to lie on the l-th sub-edge; slj represent its local 

parametric co-ordinate on the l-th sub-edge; Pls and Ple signify the start and 

end locations of the l-th sub-edge. The local parametric location is given 

by

l-1

lj j tot k

k =1

s = s . l l 1/ l where ltot = length of the r sub-edges       (19)

 ll   = length of the l-th sub-edge that contains this node 

7.3 Boundary Blending 

We have already observed that presence of interior point constraints affects 

the boundary discretization of the face. Because interior points are  

Nj (x,y,z) = (1 – slj).Pls(x,y,z) +  slj.Ple(x,y,z)         (18) 
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reflected on the boundary, the boundary discretization becomes non-

uniform. When boundary node distribution becomes non-uniform, a 

boundary blended bi-linear transfinite interpolation becomes necessary to 

make sure that the mesh line flow is smooth and boundary effects are well 

reflected in the interior of the space. Coons eqn. (5) now changes to 

Thus, for any interior node E(x,y)  r(u,v), Coons bilinear blending 

function can be written as a bullean sum. 

Ex = (1 – v´)Px + v´Qx + (1 – u´)Rx + u´Sx  –  [(1 – u´)(1 – v´)Ax

+ (1 – v´)uBx + v´ (1 – u´)Dx +u´v´Cx];         (20a) 

Ey = (1 – v´)Py + v´Qy + (1 – u´)Ry + u´Sy  –  [(1 – u´)(1 – v´)Ay

+ (1 – v´)u´By +v´ (1 – u´)Dy +u´v´Cy];         (20b) 

where the boundary modified parametric coordinates can be written as 

u´ = {(1 – )u1 +  u2}/{1 – (u2 – u1)(v2 – v1)}     (21a) 

v´ = {(1 – )v1 + v2}/{1 – (u2 – u1)(v2 – v1)}     (21b) 

where  u1, u2 represent the parametric coordinates of the pair of guide 

nodes on the u-rail curves and v1, v2 represent the corresponding 

parameters on the v-rail curves.  and  represent the u and v-directional 

coordinate for this (u,v) Coons space location assuming a uniform 

boundary distribution. 

8. Examples and Discussion 

Figure 5 depicts a flat semi-annular surface with 6 interior point 

constraints. In automobile body panels, such point constraints usually 

represent spot-welds. A transfinite mesh of size 5 length units is generated 

on the surface. The mesh nodes nearest to the point-constraints are snapped 

to them. As a result, the quad element quality, especially around the spot-

welds deplete. The only work-around is to reduce the element size and 

create a finer mesh so as to reduce element distortion.
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Fig. 5. Unconstrained transfinite (mapped) mesh with interior points. After the mesh is 

generated, nearest interior nodes are snapped to the point constraints. 

Figure.6 shows an improved transfinite mesh that honors the point 

constraints. Although the element size is same, the interior point 

constraints are reflected on the boundary. Consequently, the number of 

elements in the t direction change (from 4 to 6). Since the number of face-

interior points is less than the element count in the s direction, the final 

element count in the s direction does not change (13).  It is interesting to 

note here, that although the elements produced by the algorithm in Fig. 6 

are structured compared to the elements around the constraints in Fig. 5, 

the mesh aspect ratio becomes non-uniform. In most structural analyses, 

especially of such seam/spot welded body panels, the accuracy of stress 

computation is most sensitive to element distortion. This, distortion (D) is 

usually measured as a positive ratio of the minimum to the maximum 

Jacobian measured at the Gauss points as 

D =  | Jmin/Jmax |            (22) 

The distortion D, thus, depends little on the aspect ratio of the element, as 

long as the element shape is rectangular. However, elements too thin (high 

aspect ratio) tend to have a negative impact on the assembly stiffness 

matrix. A 5:1 aspect ratio is usually used as a limit. Within this limit, a 

mesh with a better element distortion (Fig. 6) is deemed more reliable than 

the unstructured pattern (Fig. 5).

     Interior point constraints 
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Fig. 6. Improved transfinite (mapped) mesh with interior point constraints. 

The following example has 6 interior point constraints, but Fig. 6 shows 

only 5 soft-points in the radial (t) direction on each pseudo-edge. This is 

because, two soft-points per psuedo-edge in the t-direction, were merged 

into an average location because they were two close. As a result, those 

two point constraints lie on the same nodal rail-line as shown in Fig. 6. 

This is an example of a practical compromise that needs to be made when 

one or more constraints are “equi-potential". 

Figure 7 shows a quarter section of a structural bearing which is being 

analyzed for stress variations under dynamic loads. A swept hexahedral 

mesh is generated on the volume, where one of the wall faces has 3 interior 

point constraints. The hex mesh nodes are snapped to the point constraints. 

2D transfinite meshes are first generated on all wall faces before the 

interior is filled. The point constraints, in this case, represent concentrated 

radial dynamic loads. The mesh nodes of the transfinite mesh on the wall 

face are snapped to the point constraints, thus resulting in bad quality 

hexahedral elements in the vicinity of the load application point.
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Fig. 7. Swept mesh with face interior point constraints. One wall face shows an 

unconstrained transfinite (mapped) mesh where the nearest interior nodes are snapped to the 

point constraints. 

Figure 8 shows a much improved hex meshed volume, where the 

transfinite mesh on the wall face is perfectly structured even though it 

honors the point-constraints. The resulting mesh has an admirably high 

mesh quality compared to the mesh in Fig. 7. 

Fig. 8. Improved Swept mesh with face interior point constraints. The transfinite mesh on 

the wall face is immaculately structured. 

Wall face with 

interior point 

constraints. 
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9. Conclusion 

Structural analyses of automotive parts and body panels frequently require 

high quality, high fidelity structured meshes. Many of these meshes need 

to honor pre-defined face-interior and boundary point constraints that 

represent load application points or welded or joined spots. Conventional 

meshing techniques snap nearest nodes to these point constraints after 

meshing is done thus negatively impacting the mesh quality at critical 

zones of interest. The present paper proposes an apriori remedial approach, 

where an inverse solution of Coons bi-linear blending equation is 

performed to determine the parametric co-ordinates of the point 

constraints. Once the coordinates are known, a boundary correction step is 

taken, where the boundary of the face is pre-seeded at these parametric 

locations. The number of elements to be generated along each pair of sides 

is also influenced by the number and location of point constraints. With the 

new boundary discretization, a very high quality strutured mesh results as 

is evident from the two examples presented. 
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