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ABSTRACT 

This paper describes an interior surface generation method and a strategy for
all-hexahedral mesh generation. It is well known that a solid homeomorphic to a ball 
with even number of quadrilaterals bounding the surface should be able to be partitioned
into a compatible hex mesh, where each associated hex element corresponds to the
intersection point of three interior surfaces. However, no practical interior surface
generation method has been revealed yet for generating hexahedral meshes of
quadrilateral-bounded volumes. We have deduced that a simple interior surface with at
most one pair of self-intersecting points can be generated as an orientable regular
homotopy, or more definitively a sweep, if the self-intersecting point types are identical, 
while the surface can be generated as a non-orientable one (i.e. a Möbius band) if the
self-intersecting point types are distinct. A complex interior surface can be composed of 
simple interior surfaces generated sequentially from adjacent circuits, i.e.
non-self-intersecting partial dual cycles partitioned at a self-intersecting point. We 
demonstrate an arrangement of interior surfaces for Schneiders’ open problem, and show 
that for our interior surface arrangement Schneiders’ pyramid can be filled with 146 
hexahedral elements. We also discuss a possible strategy for practical hexahedral mesh 
generation. 
Keywords: all-hexahedral mesh generation, interior surface arrangement,
Schneiders' pyramid 
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1. INTRODUCTION 

Product development in every industrial field is in a severe competitive phase,
and FEM analysis plays an important role in product development. It is known 
that, in many FEM applications, hexahedral meshes give better and more 
effective results than tetrahedral ones. However, due to the difficulty in
generating hexahedral meshes, industrial interests are shifting to hex-dominant 
meshes [Ow-99][Ow-01], even though all-hex meshes are still demanded
because they give better results than hex-dominant ones in FEM analysis. 

It is desirable to generate an all-hexahedral mesh for a model of arbitrary
topological type, rather than generating a sweep-type hexahedral mesh, as is 
more commonly done. However, a generalized algorithm for creating such 
meshes does not currently exist. Techniques such as plastering [BM-93], 
whisker weaving [TM-95][TMB-96][FM-98], and dual cycle elimination
[Mh-98] have been developed, in attempt to realize such an algorithm.
Unfortunately, none of them are considered to be reliable in heavy practical use,
because they can handle only a limited class of solids, and have no guarantees on 
the quality of the resulting meshes. 

In 1995, Mitchell proposed a hexahedral mesh existence theorem based on an 
arrangement of dual-cycle-extending surfaces in the interior of solids
[Th-93][Mi-95][Ep-96]. This theorem states that any simply-connected
three-dimensional domain, with an even number of quadrilateral boundary faces, 
can be partitioned into a hexahedral mesh respecting the boundary. 

However, no practical interior surface generation method has been revealed
yet, and despite the proof we (and many others) have encountered several severe 
deadlocks in creating the topology of hexahedral mesh that conforms to a given 
quadrilateral boundary mesh. In this paper we present an interior surface 
classification theory, along with a method, that could be utilized to create actual
interior surfaces, with some discussion as to how these surfaces represent a 
hexahedral mesh. As our later examples show, even if a topological solution
exists, it may not always be an acceptable solution. Therefore, we will also
discuss strategies to avoid inappropriate quadrilateral meshes when generating a 
hex mesh for practical analysis. 

In this paper we focus on interior surfaces' properties, and leave the 
representation of interior surface arrangement as a future problem. The 
remainder of this paper is organized as follows. In Section 2, we review interior 
surfaces and their arrangements, and deduce the requirements for these interior 
surfaces for sound hexahedral mesh generation. In section 3, the classification of 
self-intersecting point types is discussed. In section 4 we describe a method for
generating simple interior surfaces that have at most one pair of self-intersecting 
points. Section 5 contains a discussion of a method for composing more general 
interior surfaces using the simple ones. In section 6, we demonstrate a dual space 
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solution of Schneiders' open problem based on the methods described in the 
previous sections. In Section 7, we conclude with a brief discussion of some 
future developments needed in order to generate acceptable hex meshes.

2. INTERIOR SURFACE ARRANGEMENT

2.1 Dual representation 

In this paper we propose a technique using the notion of an interior surface 
arrangement [Mi-95] following the developers of the whisker weaving 
technique. For simplicity, we discuss hex meshing of solids homeomorphic to a 
ball, hereafter.

We denote a set of vertices, edges, quads and hexes as V={v}, E={e}, Q={q} 
and H={h}, respectively.

For a planar graph G of a quad mesh MQ, a dual graph G*=G*(V*,E*) is 
composed as follows. A dual vertex v* is placed in each quad q, and a dual edge 
e* is placed in each edge e incident to the adjacent two dual vertices. A vertex v
of a primal graph G is represented as a dual face q* surrounded by dual edges in 
dual graph G*. An edge e of a primal graph corresponds to a dual edge e* (Fig. 
1a). A sequence of dual edges connecting opposite edges in a quad (Fig. 1 b) is 
always closed, since the opposite edge of a quad is uniquely determined and the 
number of edges is finite. Thus the sequence of dual edge is called a dual cycle
[Mh-98] (Fig. 1b). A dual cycle may self-intersect. A dual vertex is the 
intersection of two (local) dual cycles (Fig. 1a). 

Fig. 1. (a) A Dual graph and (b) a dual cycle Fig. 2. Dual representation of a hex mesh

Similarly for a graph G=G(V,E) of a hex mesh MH, a dual graph 
G*=G*(V*,E*) is constructed as follows. A dual vertex v* is placed in each hex
h, and a dual edge e* is placed through each quad q incident to the adjacent two
hexes. A hex h, quad q, edge e and vertex v of a primal graph G corresponds 
respectively to a dual vertex v*, dual edge e*, a dual face q*, and dual polygon 
h* enclosed by dual faces in dual graph G*. A topological representation by a 
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dual vertex v*, dual edge e*, dual face q*, and dual polygon h* is called a dual 
representation MH *of a hex mesh MH.

A layer of hexahedra corresponds to an interior surface [Ep-96]. A line, or 
column, of hexahedra corresponds to the intersection of two interior surfaces. A 
hexahedron is the dual to a vertex at the intersection of three interior surfaces in
the dual representation of the hex mesh (Fig. 2). 

2.2 Hex mesh existence theorem 

The hexahedral mesh existence theorem is described as follows [Ep-96]: 
Any simply connected three-dimensional domain with an even number of 

quadrilateral bounding faces can be partitioned into a hexahedral mesh
respecting the boundary.

In an all-hex mesh, quads on the surface are always coupled with another quad 
on the surface. Therefore, a necessary condition for an all-hex mesh is that the 
surface be covered with even number of quads. Thus it can be shown that the 
number of self-intersections of dual cycles must also be even, since the
intersection of distinct two dual cycles makes a pair of quads. 

The proof steps of the hex mesh existent theorem are as follows [Mi-95]: 
1. The surface mesh of the object is mapped onto a sphere preserving the

quadrilateral mesh connectivity,
2. The quadrilateral mesh on the spherical surface forms an arrangement of dual

cycles, 
3. The arrangement of dual cycles is extended to an arrangement of 2D 

manifolds through the interior of the ball, using the theorem on "regular curve 
on Riemannian manifold" based on the homotopy theory [Sm-58].

4. Additional manifolds that are closed, and completely within the solid are 
inserted, if necessary, 

5. The arrangement of 2D manifolds is dualized back to induce a hexahedral 
mesh.
The hex mesh existence theorem, however, addresses only the existence and

does not describe how to extend dual cycles to the interior surfaces in the 
above-mentioned step 3. This paper attempts to propose a method to create an 
arrangement of interior surfaces from dual cycles, and provide a novel guideline 
to generate all hex meshes that attempts to use not only topological information
but also geometric information. We give a solution for Schneiders’ open 
problem as an example of utilizing an arrangement of interior surfaces. 
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2.3 Requirements for interior surfaces 

2.3.1 Boundary 

An interior surface can be bounded by one or more dual cycles, or the interior
surface can also be entirely closed with no dual cycle boundary.

2.3.2 Regularity 

For a collection of continuous mappings, F(u,v)=fv(u), u∈I=[0,1] is called
homotopy if F(u,v)=fv(u) is continuous. A parametric regular homotopy, F, is a 
homotopy where at every parameter location F is a regular curve (F(u,v)=fv(u),
u∈I), and keeps end points and direction fixed and such that tangent vector 
moves continuously with the homotopy [Sm-58]. Regularity is a necessary
condition to create a hex element at any point on the interior surface, and we will
endeavor to create interior surfaces based on regular homotopies. If there is a 
singular point in a 3D space, a hex element layer cannot be formed, and the
resulting topological structure of the hex mesh is not valid. 

This can be illustrated by a simple example. If two circles C1 and C2, which
are oriented to different directions: one is clockwise and another is 
counter-clockwise, on two parallel planes π1 and π2 are given, then a 
non-orientable homotopy H formed between the planes π1 and π2 cannot be
regular (Fig. 3a), because there exists a self-intersecting curve L with the end 
points P1 and P2 on the homotopy H, and the end points P1 and P2 are singular. 
The self-intersecting curve L and an arbitrary surface ω will form a dual vertex
ν*, at the intersection point. The singular points P1 and P2 cannot be dual
vertices. Thus, there exists at least one dual vertex connected to the singular
points P1 and P2 with a self-intersecting curve. Therefore, one intersecting curve 
from a dual vertex is not connected with any other vertex (Fig. 3a), resulting in 
an invalid topology of a hex mesh. 

Fig. 3. A singular point makes the mesh topologically invalid.

Figure 3b depicts an orientable surface created by sweeping the curve C. The 
top point P is a singular point, where the tangent becomes discontinuous. 

L: Self-intersecting curve 
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Assume that the point P is a triple point and, thus, is a dual vertex. The number of
the dual edges emanating from the dual vertex P is 2, which is invalid. 

2.3.3 Self-intersecting point pair connectivity 

Two self-intersecting points on the boundary of an interior surface should
always be paired, and connected by a self-intersecting curve. This feature is 
called self-intersecting point-pair connectivity.

Regular homotopies are compatible with self-intersecting point-pair
connectivity. Some self-intersecting curves of regular homotopies, however,
have complicated structure. For example, the self-intersecting curve of Fig. 4 
disappears from the scope at the arrow, continuing to the ‘back’. The sectional
transition of the regular homotopy on the left of Fig. 4 is illustrated on the right 
in Fig. 4, where the self-intersecting curve is represented by a dotted line. The 
advancing direction changes several times. Such an interior surface will
undoubtedly reduce the quality of the hex mesh, especially when the radius of
curvature is small. These kinds of homotopies should be avoided. 

Fig. 3. A self-intersecting curve of a regular homotopy goes out of the view. 

2.4 Requirement for interior surface arrangement 

2.4.1 Convexity 

Hex elements used in FEM must be convex, and the hexes shown in Fig. 5 are 
not allowed. A hex mesh is topologically convex, if any two quads are not 
incident to common edges (Fig. 5). The condition that a hex mesh MH is convex
can be described by showing the dual graph GF*(F*,E*) between the dual face 
set F* and the dual edge set E*of MH is simple. In Fig. 6 examples of
convexity-lost elements in a dual space, where two dual faces f1*,f2* incident to 
two common dual edges e1*,e2* are illustrated. 
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Fig. 4. Non-convex hexes Fig. 5. Convexity recovery

Note that the simplicity of a dual graph GV*(V*,E*) between the dual vertex
set V* and the dual edge set E* of MH does not always ensure the simplicity of
the dual graph GF*(F*,E*), where simple means that a graph has no self-loops or
multi-edges. A convexity recovery operation is depicted in Fig. 6. It should also
be noted that an all-hex mesh bounded by a convex quad mesh is not always
topologically convex.

2.4.2 Hex element existence and connectivity

There must be at least one dual vertex on an intersecting curve between
interior surfaces. Any two hex elements in a hex mesh must be connected
through quads. In other words a dual graph of a hex mesh must be connected.

3. SELF-INTERSECTING POINT TYPE

Two curves with even number of self-intersecting points on a sphere are
topologically deformable (Fig. 7). However, the two surfaces bounded by a
curve with even number of self-intersecting points (for example in Fig. 7 the
surface bounded by the first is orientable and one by the last curve is
non-orientable) are not always deformable into each other. In this section the
identity of self-intersecting point types are discussed in order to classify interior
surface generation methods. Not only orientable surfaces but also
non-orientable1 surfaces such as a Möbius band can be interior surfaces [SZ-03],
and in actuality, the identity of self-intersecting point types is closely related to
orientability of interior surfaces.

1 While orientability is basically defined for only a closed surface, we can inherit and 
consequently define the 'orientability' of an open surface by gluing topological disks 
along the circles that bound the open surface to refer to the orientability of its
corresponding closed surface. 

f1*

f2*

e2*e1*

(a) (b) 
f1*

f2*

e2*
e1*
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Fig. 6. Two curves with even number of self-intersecting points are deformable. 

The vertices and edges of a convex polyhedron can be mapped onto a plane
through a face, which is called a window (Fig.8), and can be transformed into a 
plane graph G and its dual graph G*.

Fig. 7. Mapping to a plane graph Fig. 8. Order of a point for a curve

Suppose that a planeπ contains a closed curve C and a point P as shown in
Fig. 9. The order o(P,C) of the point P for the curve C is defined as the (signed) 
number of the vector PQ's rotation around the point P along the curve C in the 
predefined direction by the parameter (Fig. 9). A dual cycle mapped on a plane 
divides the plane into several regions. There are 4 regions around a 
self-intersecting point partitioned by the curve, and the order of any point in a
region is identical. 

Fig. 10 and Fig. 11 show dual cycles with a pair of self-intersecting points and 
the orders of the regions around the self-intersecting points. The orders of the 
points in the regions around a self-intersecting point can be represented as (i, i+1,
i+2, i+1), where i is called the minimum order. If the minimum orders of the 
paired self-intersecting points are equal, then the self-intersecting point-type of
the (simple) dual cycle is said to be identical (Fig. 10), otherwise distinct (Fig. 
11).

Fig. 9. Identical self-intersecting point-type Fig. 10. Distinct self-intersecting point-type

There are three important points to note. A portion of a dual cycle can "jump"
over the two self-intersecting points without crossing over it on the surface (see 
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Fig. 10,11). This does not change the self-intersecting point-type. Secondly, a
dual edge "jumps" if the window crosses over the edge composing the dual 
cycle. This also does not change the self-intersecting point-type. Thirdly, the 
self-intersecting point-type is changed if an edge crosses over one of the 
self-intersecting points (see Fig. 12). 

Fig. 11. Edge crossing causes a point-type change. 

Fig. 12. Two dual cycles bounding an identical interior surface should be connected. 

Two dual cycles, having a self-intersecting point respectively bounding an 
identical interior surface, should be connected in order to determine the 
self-intersecting point-type. This is due to the fact that the point-type is 
determined for the dual cycles respectively, and thus if the selection of the 
window is not appropriate, potentially erroneous results may be obtained,
because an inappropriate window may "jump" only one dual cycle. A correct
result will be obtained if the two dual cycles are connected into one (Fig. 13).

4. SIMPLE INTERIOR SURFACES 

In this section we will describe a technique to create "simple" interior surfaces 
from the dual cycles containing, at most, a single pair of self-intersecting points.
In the next section we will describe a technique to generate interior surfaces of
two or more pairs of self-intersecting points by sequentially connecting the
"simple" interior surfaces described in this section. 

4.1 Simple interior surfaces bounded by a single dual cycle 

In this subsection, we describe a technique to create a simple interior surface
bounded by a single dual cycle. We define an interior surface as ‘simple’ if its 

Window

No change Change

Window
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bounding dual cycle(s) has (have) at most a single pair of self-intersecting
points.

If the boundary of a simple interior surface is comprised of a single dual cycle,
then the number of the self-intersecting points of the dual cycle has to be 0 or 2. 
The self-intersecting point-type is classified according to the following criteria
into the following (a), (b), or (c). 

(a) No self-intersection, 
(b) Identical self-intersecting point type, or 
(c) Different self-intersecting point type.

Based on Smale's 1958 theorem [Sm-58], Mitchell pointed out [Mi-95] that 
there exists a regular homotopy between a closed curve with even number of
self-intersecting points and a closed curve without a self-intersection (Fig. 21). 

Fig. 13. Interior surface by Mitchell's proof 

From an implementation standpoint, however, even if the existence of an
interior surface might be proven, it is not always appropriate to create a 
homotopy using the method described in the proof. For example our ability to 
control the shape of the homotopy shown in Fig. 17 is poorer than sweep-based
method. Therefore, we will consider other implementation techniques to create 
simple interior surfaces bounded by a single dual cycle.

However, before we consider methods for generating the interior surfaces, let 
us first consider some helpful constraints that must, or should, be satisfied in the 
creation of interior surfaces with respect to hexahedral mesh generation: 
1. The interior surface bounded by a dual cycle should be nearly orthogonal to 

the solid surface at the boundary,
2. The interior surface should be smooth, 
3. The interior surface must be completely enclosed within the solid, 
4. The self-intersecting curve connecting a pair of self-intersecting points should 

be smooth. It is also desirable that this curve will not alternate direction 
multiple times (e.g. Fig. 4 is not desirable). 

5. If the interior surface self-intersects, the angle of self-intersection should be 
nearly a right angle along the self-intersecting curve.

6. No self-intersections within the interior surface are allowed (with the 
exception of the possible self-intersecting curve connecting a pair of self-
intersecting points).

(a) (c)(b-2)(b-1)
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7. The absolute value of the radius of surface curvature should be as large as 
possible.

Following the classification of the self-intersecting point type identity for the 
simple interior surface (i.e. (a), (b), or (c) from Fig. 14), we will study the
implementation of generating interior surfaces to satisfy the above-mentioned 
requirements. 

(a) Case of no self-intersecting points 

First, we will define some helpful terminology. If the ruled surface created by
connecting the barycenter of a dual cycle and every point of the dual cycle forms 
a nearly-planar surface, then the dual cycle is defined to be planar. Otherwise, it
is defined to be hemispherical (Fig. 15). 

Fig. 14. Planar type and hemispherical one Fig. 15. Advancing closed curve 

If the dual cycle is located along a closed sequence of sharp edges, a surface
that is parallel to the surface of the solid is selected as the interior surface 
[Mh-98].

Otherwise, we can use an "advancing closed curve method" that repeats 
advancing the closed curve to the nearly normal direction of the surface,
adjusting it, and finally filling the disk when the closed curve becomes small
enough (Fig. 16). This method can be applied to both the planar and the 
hemispherical types. 

Planar type Hemispherical type 
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(b) Case of dual cycle with identical self-intersecting point-type

For dual cycles with identical types of self-intersecting points, the homotopies 
used in Mitchell's proof of hex mesh existence are illustrated in Fig. 17. It is
difficult to control the shapes of these homotopies, so, here we propose another 
form of homotopy, for which it is easier to control the shape. 

Fig. 16. Homotopy to a self-intersection free loop Fig. 17. Sweep type homotopy

If the points P and Q, have identical self-intersecting point types as shown in 
Fig. 18, then their orders are symmetric with respect to a curve passing through
the points A and B on the two paths connecting the self-intersecting points (as 
shown in Fig. 18). Since the interior surface can be represented as a sweep of a 
sectional curve whose end points lie on the two paths, the corresponding swept 
surface is orientable. A special type of surface is a rotational sweep whose 
rotational axis passes through the points A and B (pivots) on the two paths. 

Note that if a dual cycle is simple and the self-intersecting point-type is 
identical, the two points on a dual cycle cannot always be connected in an 
arc-wise manner without intersecting the self-intersecting curve. For example, in
Fig. 18 the points A and B; R and A; R and B cannot be connected as 
above-mentioned manner respectively. 

(c) Case of distinct self-intersecting point type 

Finally, we consider the difficult case of an interior surface bounded by a 
curve with distinct types of self-intersecting points (Fig. 14c). Using a Möbius 
band instead of an orientable surface, as depicted in Fig. 19, which is 
homeomorphic to Fig. 14c, we can obtain an interior surface that is a regular 
homotopy when it is embedded in a 3D space [Fr-87]. Fig. 20 demonstrates a 
method to create a Möbius band, which is expressed as a regular homotopy such 
that the points P0, P1 are f0(0)=f1(1); f1(0)=f0(1) respectively. 

For this case, it is not easy to satisfy the interior surface generation 
requirements by a simple method where only the end points and tangential
vectors are supplied. Our experience has shown that it is quite difficult to obtain 
a Möbius band with such a neat transition diagram shown in Fig. 21 by a simple
method automatically, as can be seen in Fig. 4, where the self-intersecting curve 
changes the vertical direction 3 times. Utilizing the sectional transition from the

Rotational sweep 

Self-intersecting curve 

R
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left shown in Fig. 21, however, we can reduce the number of vertical direction
changes to 1. 

Even though there are, indeed, topological solutions, non-orientable interior 
surfaces, which contains Möbius bands, should be avoided as much as possible. 

Note that if a dual cycle is simple and the intersecting point types are not
identical, the two points on a dual cycle cannot always be connected in an 
arc-wise manner without intersecting the self-intersecting curve. 

Fig. 18. Möbius band Fig. 19. Möbius band generation 

Fig. 20. Sectional transition diagram of a Möbius band to suppress the directional 
alternation 

4.2 Simple interior surfaces bounded by two dual cycles 

We will now discuss a method of generating simple interior surfaces bounded 
by two dual cycles, where the number of self-intersections is 0 or 2. 

If an interior surface is bounded by two dual cycles, then they must also be
connected by the interior surface (Fig. 22). 

Fig. 21. Connected Dual Cycles 

Consequently, the two dual cycles can be connected into one using a smooth 
transition. (This corresponds to the statement in Section 3 that two dual cycles 
with a self-intersecting point respectively bounding an interior surface should be 
connected prior to determining the type of the self-intersecting point.) The 
resulting types of self-intersecting points for generating a surface bounded by

(a) (b-1) (b-2) (c)

P1=f0(1)=f1(0)

Q0=fv(0)
  Q=fv(u)

P0=f0(0)=f1(1)Q1=fv(1)
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two dual cycles are the same as those in Fig. 10 and 11 of the previous section. 
Once the two dual cycles are converted to a closed curve, a regular homotopy
can be obtained by the method described in the subsection 4.1. 

5. GENERAL INTERIOR SURFACE GENERATION 

We can now propose a technique to "constructively" compose a general 
interior surface whose dual-cycle is bounded by two or more pairs of
self-intersecting points. This will be accomplished by connecting simple 
surfaces with at most one pair of self-intersecting points successively to form the 
more complex interior surfaces.

5.1 Simple interior surface decomposition

In order to create an interior surface by connecting simple interior surfaces, it
is necessary to identify the pairs of self-intersecting points. In this subsection we 
discuss the problem of determining self-intersecting point-type combinations. 

5.1.1 Circuit, triple-circuit, and basic interior surface 

We define a circuit to be a partial dual cycle split at a self-intersecting point
until it does not contain any other self-intersections. We call the splitting point a 
base point (Fig. 23). (Note that intersections between different circuits are 
allowed, and that the selections of circuits are not unique.) Removing specified
circuits, new circuits can be specified recursively (Fig. 24).

Fig. 22. Circuit and base points Fig. 23. Recursive specification of circuits 

The simple interior surfaces described in the previous section have, at most,
two self-intersecting points. Therefore, the interior surface generation method in 
the previous section will work for dual cycles with at most two base points. Let's
call the tuple of three connected circuits a triple-circuit (Fig. 25). A tuple may
have more then two self-intersecting points, while a simple interior surface has at
most two.

Base point

Circuit
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We can extend a simple interior surface to a basic interior surface (Fig. 25) 
that is created by a triple-circuit, where the self-intersecting curve connecting the
two base points is called the basic self-intersecting curve (Fig. 25). A basic 
interior surface may be either an “orientable” or a “non-orientable” type. 

Because the triple-circuit is not always determined uniquely (see Fig. 26), the 
interior surface of the dual cycle shown in Fig. 26 might be orientable (left) or 
non-orientable (right) depending on the self-intersecting point type and the
base-point selected. If the selected base points types are identical it will be 
orientable, otherwise it will be non-orientable. 

Two circuits are considered coincident if they share a base point. If the circuit 
C1 and C2 are coincident, and C2 and C3 are coincident, then we call the two 
circuits C1 and C3 adjacent. For example in Fig. 25 the circuits L and R are called 
adjacent.

Fig. 24. Triple-circuit           Fig. 25. Selection of a triple-circuit is not unique. 

5.1.2 Interior Surface creation

We will call the operation to map a triple-circuit to a basic interior surface a 
“basic interior surface creation”. Any interior surface can be created by
iterating through successive basic interior surface creation operations. In other 
words, a basic interior surface can be created for the triple-circuit formed by
cutting off existing basic interior surfaces, where we let the two circuits be 
coincident at the base points P and Q, by the on-surface curves connecting the 
two base points P and Q (Fig. 27). The on-surface curves connecting the two 
base points P and Q cannot intersect with existing basic self-intersecting curves 
(Fig. 28), because at the intersecting point four local interior surfaces meet
together, which will not result in a valid hexahedral mesh. 

Orientable Non-orientable 
Basic self-intersecting curve Basic interior surface 

L

C

R
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Fig. 26. Basic interior surface creation Fig. 27. Two basic self-intersecting curves 
cannot intersect each other. 

5.2 Other self-intersecting curves 

When simple interior-surface connections have been completed and the 
self-intersecting curves between a pair of base points have been created, it may
be necessary to create other self-intersecting curves. The shape of interior 
surface is fixed by the creation of the other self-intersecting curves and then by 
dividing the faces as shown in Fig. 29. 

intersection between faces

faces

Fig. 28. Intersection between basic interior surfaces 

6. SOLUTION OF SCHNEIDERS' OPEN PROBLEM 

Schneiders presents [Sch-www] a problem regarding whether, or not, there 
exists a hexahedral mesh whose boundary exactly matches a pyramid with a 
prescribed surface mesh as shown in Fig. 30, and hereafter called “Schneiders’
pyramid”. (Schneiders also presents the problem of whether, or not, there exists 
a mesh of hexahedral elements whose boundary matches a pre-specified mesh of 
quadrilateral faces. Hereafter, we’ll refer to this second problem as ‘Schneiders’
general open problem’.) Though, several solutions have been published for
Schneiders' pyramid (see [Ca-www] [YS-01]), we will attempt to solve the first 
problem by utilizing our “interior surface direct arrangement technique” by 
creating the interior surfaces directly in a dual space. 

P
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Fig. 29. Schneiders’ pyramid Fig. 30. Triple-circuit for Schneiders' pyramid

The dual cycles of Schneiders’ pyramid are shown in Fig. 31, and we let the 
points P and Q be selected as the base points of the tri-circuit for the dual cycle 
depicted with solid line. (Note that this is the same as the dual cycle depicted in 
Fig. 26.) The base points are selected such that the self-intersecting point-types 
are identical so that we can obtain an orientable surface. Then, the interior 
surface can be created as a rotational sweep. 

Let the sweep-section rotate from the base point P to the base point Q, and let 
the points A and B be the pivots in Fig. 32. To obtain a regular homotopy, the 
sweep-vector is oriented upward at the starting point (left half), horizontally at
the intermediate point (center; red), and downward at the end point (right half). 
Therefore, the trajectory of the point X on the sweep-section becomes a curve 
with a loop in blue. Fig. 33 shows the interior surface created with this curve (left 
whole; right section).

Fig. 31. Rotational sweep Fig. 32. Interior surface for Schneiders’ pyramid 

This interior surface has four features. The first is that it is regular (if the 
trajectory has no loop, it will make a singular point). The second is that that it is
orientable. The third is that it has two triple points. (However, because this
surface is orientable, it is not a Boy's surface [BE-02][Fr-87].) The fourth feature 
is “through hole” whose section is shown on the right of Fig. 33, which makes
self-loops and increases the number of hexes needed to fill the volume
considerably. Note that the through hole appears due to the intersection of 
rotational sweep section. 

Fig. 33 shows a section of the interior surfaces for Schneiders' problem. Each
of the triple-intersection points represents a dual vertex, and the intersecting 

The 4 points are identical.
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curves are the dual edges in the dual graph of the resulting mesh. Because of the 
four self-loops, several of the resulting hexes require their convexity to be 
recovered.

In order to recover the hex convexity, we insert a cylindrical (closed) surface 
(depicted with dotted line as a closed interior surface in Fig. 34). The resulting
intersecting curves are added to the dual graph, along with the other symmetric
half of the original surface, which produces 20 dual vertices (hexes). The dual 
graph was represented with a prototype 3D cell-complex model, and converted
to a primal graph, whose NASTRAN format data is shown in Tab.1 in the 
appendix together with the node numbers on the surface.

Fig. 33. Section of the interior surfaces Fig. 34. Intersection between the interior
surfaces for Schneiders' pyramid 

Topologically, there are four dual vertices having double edges, namely 26, 
28, 30, 32 (see Fig. 35). We can recover the convexity for these dual vertices by
adding another cylindrical surface, resulting in an additional 18 hexes. 
Furthermore, still there exist 9 convexity-taking edges, and this recovery
requires 9 additional cylinders, which consequently create additional 90 hexes.
For our interior surface arrangement it is confirmed that 146 dual vertices 
(hexes) complete the hexahedral mesh topology. 

As shown above, a hex mesh can be generated from a closed quad mesh with
complicated dual cycles using an “interior surface direct arrangement
technique”. 

Schneiders' pyramid demonstrates to us that there exist quad meshes where
there is an obvious interplay between interior surfaces that result in a poorer 
quality mesh. The process of recovering the convexity of the elements may
intrinsically require the addition of many hex elements, which inevitably reduces 
the industrial value of the solution. 



AN INTERIOR SURFACE GENERATION METHOD 395

7. CONCLUSION 

7.1 Our contribution 

Indeed, the hex mesh existence theory, that "Any simply connected 
three-dimensional domain with an even number of quadrilateral bounding faces 
can be partitioned into a hexahedral mesh respecting the boundary (using interior
surfaces extended from dual cycles into solids)" is well known. However, a 
practical algorithm for generating the meshes indicated by the proof has not yet 
materialized. Our contribution to all-hex meshing is as follows: 

We have introduced the notion of self-intersecting point-type identity for a
dual cycle, and deduced that if the types of self-intersecting point pair are 
identical, then the interior surface will be an orientable homotopy (and can be 
generated via a sweep), otherwise it will be a non-orientable homotopy (i.e. a 
Möbius band will be contained in the interior surface). 

Let a circuit be specified as partial dual cycle split by a self-intersecting point, 
such that it does not self-intersect. A "general" interior surface can be comprised
of "simple" interior surfaces generated from adjacent circuits sequentially. 

We propose to create interior surfaces by the above-mentioned method and to 
apply the interior surface direct arrangement technique. We claim that this is one
of the solutions of Schneiders' general open problem. We have created an
interior surface for Schneiders' pyramid, and showed that it can be filled by 20 
hexes with convexity lost derived from the topological arrangement, or with 146 
hex elements when the convexity is recovered from the topological arrangement
(this does not guarantee geometric convexity).

7.2 Future Problems 

7.2.1 Unstructured all-hex meshing 

The following three questions with respect to unstructured all-hex mesh
generation are important, where an algorithm that positively answers all three 
will have industrially viable solution. 
1. Is the topological solution realized? 
2. Can the convexity of all hexes be recovered from the topological solution in a

reasonable number of hexes? 
3. Are the interior surfaces of sufficient geometric quality that the hexahedral 

mesh also has sufficient quality? 
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The solution presented in this paper demonstrates an answer to the first
question for the example of Schneiders' pyramid. Further research and 
development will be needed for a general solution. 

The second question of convexity recovery for the hexes can lead to large 
increases in the number of hex elements, and is especially apparent with multiply
self-intersecting interior surfaces. These problems have been avoided in the past
by enforcing restricted unstructured hex mesh generation techniques that 
generate hex meshes in much smaller geometric and topologic domains. 

The third question of how the geometric quality of the interior surface results 
in hex mesh quality deterioration has had little study, especially on the 
relationship between surface quad meshes and the interior surface generation
requirements in subsection 4.1. This is also an area of future research.

7.2.2 Implementation 

The surfaces generated as an example in this paper were generated without 
referring to the given volumetric space, and the induced topology was then 
mapped back into the volume. Because of the difficulty of generating interior 
surfaces in pre-defined volumetric boundaries (which would be required for 
sampling quality metrics of the resulting mesh that such interior surfaces might
generate), a technique for directly arranging interior surfaces will have some
difficult implementation issues. For example, surface creation with boundary
constraints, geometrical surface evaluation, topological representations of the 
induced interior surface arrangement, etc. should be investigated. These
problems are also areas for future research. 
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APPENDIX 

Hex N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8
17 1 2 3 4 5 6 7 8
18 9 10 11 12 1 2 3 4
19 13 14 15 16 9 10 11 12
20 17 18 19 8 13 14 15 16
21 20 3 11 15 8 7 21 19
22 22 17 8 5 9 13 23 1
23 7 8 20 3 24 25 26 27
24 5 1 23 8 24 27 26 25
25 28 4 3 27 25 8 7 24
26 27 1 4 28 24 5 8 25
27 29 12 11 30 28 4 3 27
28 30 9 12 29 27 1 4 28
29 31 16 15 32 29 12 11 30
30 32 13 16 31 30 9 12 29
31 25 8 19 33 31 16 15 32
32 33 17 8 25 32 13 16 31
33 3 20 15 11 27 26 32 30
34 1 9 13 23 27 30 32 26
35 19 15 20 8 33 32 26 25
36 17 8 23 13 33 25 26 32

Table 1.  The 20-Hex mesh (convexity lost) by NASTRAN CHEXA Format 
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