

Mid Term Briefing – CA1 1 December 2004, 10:00 – 11:00 AM

Schafer Corporation System Engineering and Integration Division

- 1.0 Introduction
- 2.0 Exploration Objectives
- 3.0 Architecture Overview And Definition
- 4.0 System And Element Requirements
- 5.0 Trade Studies And Analysis For Super System And CEV
- 6.0 Technology Requirements
- 7.0 Exploration Programmatic And Technical Risk Assessment
- 8.0 Summary

Through Spiral 3: Gateway Architecture Using ELVs And 8 mt CEV Supports All Missions

Requirements, CONOPS, Cost, And Performance are Integrated With Our Transportation Model

2.0 Exploration Objectives

Decomposition And Maturation

Our Architecture Development Process Is Designed To Accommodate Changes At All Steps And Traces The Impacts Of The Changes Through The Architecture Model

Initial Evaluation Of Architecture Types

Top Level Objectives

Architecture Solutions:

Direct To Planet

Launch Crew, Equipment, Supplies, And Propellant To Planet Surface. Minimal Pre-positioning. Mission Is Essentially Self-Contained

LEO Staging

Multiple Launches To Assemble Crew, Equipment, Supplies, And Propellant At LEO For Transport To Planet Surface.

Space Gateway

Multiple Launches To Preposition Equipment, Supplies, And Propellant At Space Node. Crew Transport With Re-supply At Nodes.

LEO And Space Gateway

Multiple Launches To Assemble At LEO. Preposition Equipment, Supplies, And Propellant At Space Node. Crew Re-supplied.

Conclusions:

- Direct To Planet Architectures Speed Exploration At Sacrifice To Other Objectives
- LEO Gateway Is Advantageous For Any Lunar Campaign
- Gateways Maximize Opportunities For Science Due To Frequent Access To Space And Planet
- Space Economy Aided By Nodal Architectures Due To Largest Number Of Required Elements

Down Selection To Gateway Architecture Provides Best Opportunity To Address All Top Level Objectives

3.0 Architecture Overview And Definition

Bruce Peters

Element Decomposition

Architecture Element Decomposition

Integrated Products Define Behavior In Terms Of Elements and Interactions And Interfaces

Lower Level Element Decomposition Supports Detailed Use Case Development and Functional Allocation To Define Architecture Elements And CONOPS

High Degree of Commonality Between Landing on the Earth Moon and Mars

- Transport and Sustain Crew
- Engines for Deorbit
- Heat Shield
- Atmosphere Use Parachutes
- Engines for Soft Landing
- Land on Land Preferred
- Land on Water Emergency
- Safely Land Crew

- Transport and Sustain Crew
- Engines for Deorbit
- Heat Shield
- Atmosphere Use Parachutes
- Engines for Soft Landing
- Land on Land
- Land on Water
- Safely Land Crew

- Transport and Sustain Crew
- Engines for Deorbit
- Heat Shield
- Atmosphere Use Parachutes
- Engines for Soft Landing
- Land on Land
- Land on Water
- Safely Land Crew

Design A Modular CEV to Land on the Earth, Moon, and Mars

- Simulates Movement of Mass Through the Transportation System
 - EXTEND
 - Incorporates Timing
 - Interfaces With Excel
- Crew Launch When All Prepositioned Supplies and Cargo Are In Place
- Cargo/Mass Flows Toward Lunar Surface
 - Desired Mass Halts Flow
- Parameter Inputs Based on Physical Mechanics
- Outputs Launch and Propellant Requirements

11

Discrete Event Simulation Of Architecture Is Used To Perform Trades And Analyses To Evaluate Architecture Elements, CONOPS, And Determine Sensitivities

- Emphasize Gateway Architecture Concepts
- Architecture Concepts Must Foster In Situ Resource Utilization (ISRU)
- LEO Specified At 407 km Altitude, Circular Orbit
- Calculated ΔV and Flight Time From Orbital Mechanics and References To Determine Minimum Acceptable Transport Duration with Acceptable Energy
- For This Analyses, L1 Position Fixed, Relative To Earth And Moon
- Off Earth Robotic Assembly, Set-up, and Operation For All Infrastructure
- Chemical Propulsion (LOX, Hydrogen) I_{sp} = 440
- Only Hydrogen Fuel Subject To Boil-off at a Rate of 0.1% per Day
- Robotic Reconnaissance Missions Select Near Lunar Equator And South Pole Locations For Probable Extended Presence And Continued Exploration
- Assume One Crewed Mission Per Year Over 5-year Campaign In Spiral-2

Architecture Concepts Provide A Point Of Departure For Further Studies

Lunar Mission Definition

The Full Gateway Architecture Is Evolvable, Flexible And Provides Added Capability

- Re-Supply at L1 On Transport To Moon
- Re-Supply Mission On Lunar Surface (For Extended Stays Beyond 7 Days)
- CEV Delivers Crew To And From Lunar Surface
- Re-Fuel Capability At L1 Using Pre-positioned Propellant Transported From Earth
- Direct Return To Earth From Lunar Surface (No Rendezvous At L1 Or LLO Required)
- Extended Lunar Stays Meets Up With Prepositioned Habitat And Supplies

Architecture Supports The CEV In LEO, L1, and The Lunar Surface

El Measures Interaction Between CEV Mass, Infrastructure, and Launch Rates

Architecture Efficiency Composite Score

Approach To Composite Score:

 Adds Influence Of Objectives To The Efficiency Index To Determine Effectiveness Of Viable Architectures Of Responding To Program Objectives

- Only Evaluate Viable Spiral-2 Architectures
- Current Estimated Launch Capacity Of 12 Launches Per Year Is Sufficient To Achieve All Architectures
- L1 With Small CEV Benefits Architecture
- Lunar Depot Does Not Strongly Benefit Any Architecture

Conclusions:

- L1 Permits A Smaller CEV
- Second Launch Service Increases Performance (Two Boosters, Two Launch Pads)
- LEO Assembly Only Architectures Competitive Through Spiral-2

Influence Of Objectives Impacts The Selection Of Architecture

SI Measures Interaction Between Launch Infrastructure, Reliability, And Mission Success

Architecture Sustainability Composite Score

Approach To Composite Score:

 Adds Influence Of Objectives To The Sustainability Index To Determine Effectiveness Of Viable Architectures Of Responding To Program Objectives

Only Evaluate Viable Spiral-2 Architectures

- Current Estimated Launch Capacity Of 12 Launches Per Year Is Sufficient To Sustain Some Architectures
- L1 With 8 Or 12 mt CEV Has Greater Flexibility And Sustainability Than LEO Only

Conclusions:

- No Benefit For Investment In Further Launch Capability Beyond 24/yr
- L1 Enhances Sustainability

Influence Of Objectives Demonstrates Greater Sustainability Of L1 Architectures

Gateway At L1 Provides Flexibility, Safety, Shorter Transport Modes

Results – Total Launches To LEO

- Smallest CEV Through L1 (Less Launches To LEO) Achieved If CEV Lands On Moon
- L1 And LEO Only Architecture Competitive
- Possibility To Utilize International And Commercial Launch Capability To Supply Propellant To LEO

Spiral-3

- Assume Lunar Infrastructure Established In Spiral-2
- 20 mt EELV For Cargo Launch
- Two Launch Pads
- EELV With IVHMS For CEV Launch
- 1 Mission Per Year For 5 Years

CEV Sizing

- 8 Or 12 mt CEV Through L1 With Landing On Moon (Supported By CEV Concept Development)
- 12 Or 16 mt CEV From LEO With Landing On The Moon (Supported By CEV Concept Development)
- 8 Or 12 mt Non-reusable Lunar Lander

L1 Architecture Analysis Indicates Advantage To CEV That Lands On The Moon

Smaller/Lightweight CEV-Mod-L Provides Greater Architecture Flexibility

- Lower CEV-Mod-L Mass Requires Less Pre-position Of Propellant
- CEV-Mod-L Functional Analysis Leads To 8 mt Minimum Realistic Mass
- Maximum CEV-Mod-L Of 16 mt Mass For Direct To Lunar Surface
- CEV-Mod-L Mass Growth Impacts Architecture Effectiveness
- CEV-Mod-L Permits Landing On Moon and Mars
 - Similar Functionality Indicated Between Lunar And Earth Landing
 - Only One Crewed Vehicle Development Program Required
- Direct Return To Earth From Lunar Surface
 - Capability For Abort, Emergency, And Reduced Propellant Pre-positioning
 - Direct Return Provides Option To L1 Or Lunar Hop At No Added Cost
- Cross Range Capability Desired For Safe Landing On Land

8 mt CEV Goal Provides Greatest Flexibility With L1 Architecture

Results – Lunar Base Location

- L1 With Re-supply Capability Permits Access To Any Remote Lunar Location
- CEV Or Lander Permits Access To Lunar Surface And Can Be Used As A Hopper
- L1 Permits Easier Access To Different Sites Not Always Achieved From LLO

- Spaceports Will Be Limited Due To Development And Installation Costs
- Ground Transports Have Limited Range
- Hopper Extends Access To Remote Activity Sites
- Hopper Adds Lunar Survey Capability

Suborbital Hopper Travel Time Much Less Than L1 Trip; Even Much Less Than LLO Depot, When Rendezvous And Refuel Times Are Factored In

Combination Of L1 And Lunar Hopper Provides Greatest Flexibility For Human Exploration Of Multiple Lunar Sites

CONOPS Supports NASA Objectives And Minimizes Concurrent Development Programs

- Alternative Launch Sites, LVs, And International Participation
- Expand The Analysis Of HLVs And SDVs
- In Space Propulsion Technologies
- Lunar Base Options For Spiral-3
- Investigate Lunar Surface Power Options
- Safe Haven Capabilities
- Expand The Analysis Of Mission And System Reliabilities
- Expand The Analysis Of Mission Success And Contingencies
- Continue ISRU Investigations
- Lunar Cargo Lander Study

Refinement Of CONOPS , Gateway Architecture, And Elements Will Continue

4.0 System And Element Requirements

Functional

- CEV-Mod-L Must Permit Refueling Or Propellant Tank Replacement If Gateway Architectures Are To Be Viable
- CEV-Mod-L Maximum Nominal Transit Time Is 4 Days
- CEV-Mod-L Must Have Sufficient Propellant On Moon To Permit Emergency Return Direct To Earth (Which Is More Than Necessary For Trip To L1)
- CEV-Mod-L Lunar Landing Capability Desired But Not Required In L1 Architecture (Minimize Need For Two Concurrent Crewed Vehicle Development Programs)
- Safe Haven Located At L1 And Lunar Surface
- Resupply Of CEV-Mod-L Required To Support Lunar Stay Beyond 4-Days
- Ability To Resupply Crew Within 15 Days
- CEV Must Be Capable Of Automated Flight Control
- CEV Should Support CONUS Landing

Functional Requirements Support NASA Objectives And Maximize Flexibility

Performance

- 8 mt CEV Mass Goal (TBR) Greatly Benefits Gateway Architecture
- CEV-MOD-L Must Have Provisions And Operational Systems With Margin For 8 Days For Four Crew For Safety Concerns
- CEV Contains Minimum 3.07 km/s (TBR) For Direct Return From Lunar Surface To Earth (CEV Team Further Refining Value)
- CEV Must Have Sufficient Cross Range Capability To Support Land Landing
- Interface
 - CEV And Cargo Must Interface To Both Atlas-V, Delta-IV Heavy (20 mt Lift To LEO)
 - Common Docking And Transfer Interface On All Elements
 - Common Propellant Transfer And Refueling

Performance Requirements Supports NASA Objectives

- CEV Mass Strongly Influences Propellant Required
 - Impact Number Of Launches To LEO
 - Potential Impact To Launch Integration Facilities
 - Mitigation Approach Could Involve International Launch Assets For Re-fueling
- Radiation Shielding Of CEV Is Severe Penalty
 - Utilize Solar Weather Prediction To Minimize Risk
 - Transport Segment Limited To 4-Days
 - Safe Havens Available With Sufficient Shielding At L1 And Moon
- Launch Of Propellant Mass To LEO Dominates All Architectures
- CONUS Landing Stresses CEV For Direct Return
 - Cross Range Capabilities Increased
 - Orbital Plane Change Near Moon Can Add Substantial ΔV

CEV Mass, Launches To LEO And CONUS Landing Drive CEV And Architecture

- LV Capabilities And Lift Mass To LEO
- CEV Crew Size
- Propellant Mass Required To Move Propellant In Space
 - Alternative Technologies May Mitigate Sensitivity
- Reliability Of Storage And Transfer Of Cryo Propellant In Space
 - Technologies Under Development Need To Be Demonstrated In Spiral-2
- ISRU Propellant Or LunOX Production Effectiveness For Future Spiral-3 Missions
- Abort Scenarios For Crew Safety Determine Size And Mass Of L1 Infrastructure
 - Safe Haven Shielding And Supplies For 4 crew For Maximum 15 Days
 - Pre-positioning Of Propellant For CEV Transit

CEV And Architecture Sensitive To Availability And Location Of Re-fueling

Initial Feedback on ESMD Level 1 Requirements (1 of 2)

ΤΟΡΙΟ	REQUIREMENTS	IMPLICATION	RECOMMENDATION	
Lunar Landing	CEV0450G, CEV0460G, CEV0490G, CEV0500G, CEV0600G, CEV0612G, CEV0630G	Requires two separate vehicle developments – CEV and LSAM; Requires LLO rendezvous for return to Earth	Do not preclude CEV as lunar lander; avoids risk of failed LLO rendezvous; allows direct return to Earth from Lunar surface	
Lunar Orbit Rendezvous	CTS0100G, CEV0450G, CEV0460G, CEV0485C, CEV0490G, CEV0500G, CEV0600G, CEV0612G, CEV0630G	Requires uncrewed automated CEV in LLO; Requires additional capacity for LSAM and CEV rendezvous maneuvers and fuel; Source of risk to crew survival	Do not require Lunar orbit rendezvous to transfer crew; Allow CEV to carry crew from Earth surface to lunar surface and back to Earth surface	
Launch Site and Ground Support	CTS0020H, CVS0020H	Only Eastern Range can support Exploration missions	<u>Allow additional launch site</u> for redundancy, launch rate, and launch opportunities for Spiral 3 and beyond	
Passive Re- Entry	Applicable Document: NPR 8705.2	NPR 8705 requires passive reentry capability for CEV for crew safety; strongly drives CEV design and mold line	Do not preclude active stability concepts if contractor can demonstrate viability and benefits	

Written Feedback Will Be Consolidated and Submitted on 3 December as Requested

Initial Feedback on ESMD Level 1 Requirements (2 of 2)

ΤΟΡΙΟ	REQUIREMENTS	IMPLICATION	RECOMMENDATION	
CEV Launch Abort	CVS0080H, CVS0390C	Requires highly reliable, automated abort / escape capability for CEV LS; Represents "Significant Improvement" in crew survival over existing systems	<u>CEV RFP should include abort /</u> <u>escape capability explicitly;</u> <u>Acquisition and DDT&E</u> <u>approaches should ensure the</u> <u>integration of CEV and LV into a</u>	
CEV LV Reliability	CVS0140C, CVS0390C	Requires high reliability for LV with additional improvement required for Spiral 2 and again for Spiral 3	<u>complete Launch System including</u> <u>the balancing of LV reliability with</u> <u>abort/escape requirements;</u> Have CEV LV available for integration and testing with CEV from 2011 thru 2014	
Crew Rescue	CTS0405G, CTS0120G, CEV0410G	Rescue anytime and anywhere is challenging and may not be feasible; Requirements suggest second CEV launched with every crew as remotely controlled backup CEV for escape/rescue	Do not preclude <u>backup CEV with</u> <u>launch on demand capability as</u> <u>rescue vehicle</u>	
Extensibility to Mars	No CONOPS or Requirements for Spirals 4 and 5	Mission needs for Spirals 4 and 5 are not factored into CONOPS and architecture	Consider at a minimum Spiral 4 and its needs for transportation and staging in requirements analysis and definition; include extensibility to Mars in proposal evaluation criteria	

Written Feedback Will Be Consolidated and Submitted on 3 December as Requested

5.0 Trade Studies And Analysis For Super System And CEV

Key Architecture Trades

Name		Description	Results	Status
1a	Architecture FOMs – Programmatic Objectives	The set of objectives prepared for the proposal and the weighting factors for evaluating or ranking the architectures must be investigated to identify sensitivities. That analysis must also incorporate the possible programmatic concerns in an attempt to determine the robustness of the architectures to changes in program direction and scope.	 Gateway Architecture Has Highest Composite Score Against Program Objectives. 	Completed
1b	Architecture FOMs – Efficiency Index	The development of a novel efficiency index based on transportation systems is needed to quantitatively measure the performance of the architectures with respect to mass of architecture elements, propellant usage, launch capacity, and launch frequency.	 Efficiency Index Shows L1 Has Competitive Performance Through Spiral-3. 	Completed
2a	Gateway Location	Excursions on the location of the gateways will be investigated. As identified by early studies of the objectives and evaluation criteria, the location of the gateways is an important part in the performance of the architecture. A LEO gateway has obvious advantages but the location of a gateway at L1 or LLO will be investigated.	 L1 And LLO Offer Comparable Performance. L1 Has Flexible Access To Lunar Surface. 	Completed
2b	Gateway Location – L1 Orbital Characteristics	A study is needed to determine the nature of the Earth-Moon Lagrange Point (L1) orbit. Issues of orbital geometry, fuel usage, rendezvous maneuvering and period must be addressed.	L1 Orbit Analysis Shows Stable Orbit Achievable	Completed
3	Launch Vehicle To LEO	Utilization of a LEO gateway is going to be dependent on how most of the payloads are lifted into LEO. This indicates that the advantages and disadvantages of existing ELVs and future heavy Lift vehicles (HLVs) must be evaluated both independently and when used in consort with other LVs. Initial modeling and simulation indicates that multiple acceptable solutions are achievable with proportional blending of ELVs and HLVs within the architecture but that the choices have major implications to life cycle costs and scheduling.	 ELVs Support The Architecture And Require Modification Rather Than Development. HLVs Minimize Launches Required But Require Vehicle Development. 	First Analysis Completed. Further Analysis Is Underway

Key Architecture Trades

Name		Description	Results	Status
4a	Lunar Gateways – Locations and Distribution	Behavior modeling of lunar exploration missions will be highly dependent on the location of lunar landing sites and the impact on the architecture to be able to reach and support them. Therefore, trades are needed to look at locations near the equator, poles, and latitudes between. A central location with excursions from it compared to multiple and maybe independent locations on the moon need to be examined.	 Both Polar And Equatorial Locations Preferred For Science And ISRU. L1 Permits Access To Both. Lunar Hopper Provides Added Capability. 	Underway
4b	Lunar Gateways – Mission Duration	The length of lunar exploration will be related to the goals and desires of the USA and the need to test critical systems prior to crewed operations extend to Mars. Schedule and achievements must be flexible to account for testing of critical systems to reduce risk while not placing undue delays on further exploration of Mars.	 Extended Lunar Stay Needed To Fully Test Infrastructure. Multiple Early Missions Desirable To Refine CONOPS And Equipment. 	Underway
4c	Lunar Gateways - Power	The power requirements for a prolonged stay on the lunar surface will greatly impact selection of power supply technologies. Lunar night will be a strong driver for sustainable power.	Alternative Technologies Are Being Traded	Started
4d	Lunar Gateways - ISRU	The potential for in situ resource utilization (ISRU) for the generation of Lunar oxygen (LunOX) from lunar rock for use as the oxidizer in propellant would substantially decrease the logistics of transporting propellant. The infrastructure, power required, and technical maturity need to be evaluated in order to determine if the approach can be economical.	 ISRU Reduces Required Propellant Mass That Must Be Launched From Earth To Support The Architecture 	Underway

Key Architecture Trades

Name		Description	Results	Status
5a	Nuclear Power	Trade studies are needed to define nuclear options for power and propulsion. The savings in launches of fuel for power generation must be compared to the number of launches required to establish and operate a nuclear facility on the lunar surface or in space.	 The payback in reduced launches possible with nuclear power must be determined. 	Started
5b	Nuclear Propulsion	Long term missions indicate the need to have alternative propulsion but the impacts to launches and CONOPS must be explored to determine the benefits vs. the cost as expressed in launches to LEO.	 Nuclear propulsion benefits must be compared to alternatives. 	Started
6	Robotic Options	Robotic options will be explored through trade studies and through the behavior modeling including allocation of functionality to robots or humans. The use of robots as precursors to human exploration will drive the communications/data handling and autonomous operation of the robots and place requirements on the architecture.	• The ability of astronauts and scientists to have a tele- presence along with the level of autonomous operation will drive the robotic missions	Started
7	Mars Mission	The inability to easily resupply or rescue a Mars mission indicates that greater redundancy and flexibility will be required in comparison to the planned lunar missions.	Novel and affordable approaches must be considered to achieve mission success and maintain crew safety	Started

6.0 Technology Requirements

Conclusions:

- LEO Architecture Inherently More Efficient than an L1 Architecture
- Selected Technologies (e.g. ISRU) Offer Substantial Performance Gains

Maximum Efficiency Curve

- Efficiency Curve Is Defined By Capabilities, Architecture, And Technology
- ISRU Provides Large Increase In Efficiency By Minimizing Launches To LEO
- Small CEV In A LEO Architecture Has Large Efficiency Benefits Compared To A Large CEV

Impact To Architecture

- Technology Improvements Can Have Large Effect On Architecture Efficiency
- A Combination Of Launch Capabilities, Architecture And Technology Improvement Avenues Can Be Traded To Find Maximum Efficiency At Minimum Risk

Architecture Analysis Has Identified Technology Investments

Development of Spiral 1 and Spiral 2 Critical Technologies

2005 2010 2	2015	2020	2025	TBD
	- Crewed Low Ear - Robotic	Access to th Orbit Exploration, Lunar	Spiral-1	
Critical Technologies	<u>Planned</u>	- Crew	ved Exploration,	On incl. 0
IVHMS and Launch Abort Subsyste	em Spiral 1	- Robe	otic Exploration, Mars	Spirai-2
Thermal Protection System (TPS)	Spiral 1		-Crewed Exp	loration.
Automated Rendezvous and Docki	ing Spiral 2		Lunar Long	Duration Spiral-3
In-Space Refueling (Cryo)	Spiral 2			
Power Generation	Spiral 3			-Other Potential Capabilities
Propulsion				
Electric	Spiral 3	1		-Crewed Exploratio
ISRU - LunOX	Spiral 3			Mars Surface
Nuclear	Spiral 4			
Closed-Loop ECLSS	Spiral 4			
Artificial Gravity	Spiral 4	Plann	ed Technology	
Autonomous Robotics	Spiral 4	D	evelopment	

Critical Technologies Included in CEV and SoS Development Plans

7.0 Exploration Programmatic And Technical Risk Assessment

Top-Level, Long-Term Architecture Risks

DESCRIPTION

- (1) Not Achieving Human Flight Safety Ratings for a System Using Existing United States Launch Vehicles
- (2) Failure of a Space Docking Attempt
- (3) Strained Relations with Countries That Can Provide Man Rated Launch Vehicles
- (4) Long Term Space Exposure Causing Damage To Infrastructure
- (5) Failure of Maintenance and Logistics Supply Train

CONSEQUENCES

MITIGATION

- Establish Human Flight Ratings of Multiple Launch Systems Using Different Launch Vehicles to Obtain a Primary Launch System and Multiple Backup Launch Systems
- (2) Implement into the Architecture Robust Standard Interfaces and a Recover and Reattempt Docking Capability. Provide Early Testing and Integration. Establish Straightforward Safety Docking Procedures.
- (3) Use Foreign Man Rated Launch Vehicles as Backup Systems.
- (4) Design the Architecture with Multiple Crossover Functions and Duplicate Systems. Provide On-Board Repair Capability/Access to Subsystems to Facilitate Emergency Repairs and Execution of Standard Maintenance Procedures. Provide Redundant Communication Channels to Maintain Open Communication to Ground Support Personnel.
- (5) Provide Frequent Robotic Supply Runs to All Gateways. Integrate Logistic Paths to Reduce Long Distance Resupply. Provide an Excess of Supplies to the Supply Depot. Frequently Ship Supplies from the Supply Depot to Keep Supplies Distributed.

Architecture Risks Are Identified And Mitigation Strategy Developed

8.0 Summary

Through Spiral 3: Gateway Architecture Using ELVs And 8 mt CEV Supports All Missions

Exploration Objectives	 Discussed Objectives, Updates Relations to Architecture
Architecture Overview/Definition	 Gateway Architecture Refinement Use of Transportation Model for CEV Operations Evaluation Using Novel FOMs
System and Element Requirements	 Functional Allocations, Drivers, Sensitivities Feedback on ESMD Requirements
Trade Studies and Analysis	 Highlighted Key Architecture SoS Trades Documented in Mid-Term Report
Technology Requirements	 Identified Technology Investments Mapped Technology Needs to Spiral Timelines
Programmatic and Technical Risk Assessment	 Defined Long-Term Architecture Risks and Mitigation Approaches

Back Up

Inputs – Assess National Goals

References:

- The Presidential Directive
 - Implement A Sustained And Affordable Human And Robotic Program
 - Extend Human Presence Across The Solar System
 - Develop The Innovative Technologies, Knowledge, And Infrastructures To Explore
 - Promote International And Commercial Participation In Exploration
- NASA Level 0 Requirements

Guidelines:

- Columbia Accident Investigation Board Final Report
- Aldridge Commission Report

National Concerns

Programmatic Challenges

We Identified Three Top-level, Strategic Objectives For The Vision For Space Exploration

Science

 Establish a robust, sustainable program of exploration

Economic

• Enable a self-sustaining marketbased space economy

Security

Foster U.S. national defense and economic security

Three Strategic Objectives Drive The Major Objectives That Support Scientific, Economic And Security Concerns Of NASA And The Nation

President, Congress, NASA, Industry

Programmatic Challenges

Our Team Examined Experiences From NASA, DoD, And Commercial Projects In Formulating Our Preliminary Architecture

These Experiences Motivate Choices Of Specific Architecture Elements And Approaches To Support The Decades Long Campaign

Historical Challenges	Architectural Features Motivated to Respond to Difficulties
Program Funding Fluctuations	 Incremental Approach To Development. Spiral Development And Use/Qualification Of Commercial Components To Achieve Capability
Program Redirection –	Develop An Adaptable Architecture Composed Of Overlapping Functionality To
Political Changes	Allow System Flexibility And Evolution
Instability Of International	Segment Missions Based On Critical US Economic And Security Requirements
Partnerships	And Non-critical Items To International Participation
Volatile Science Objectives	Standard Equipment Interfaces And Payload Accommodations, Use Of Science Peer Review Process Modeled On Hubble Space Telescope
Public Program Support	Provide Inspiration Through Regular Significant Events, Establish Broad
Diminishing With Time	Contractual Base, Broad Involvement And Extensive Education
Lack Of Predictable Access To	Distributed Nodes, Vehicles, And Sensors Paired With High Bandwidth Data
Exploration Data / Results	Paths To Provide Abundant Amounts Of Data

Our Architecture And Approach Will Mitigate Many Of The Challenges Experienced By Large And Complex Projects Taking Place Over Many Years

Our Architecture Development Process Is Designed To Accommodate Changes At All Steps And Traces The Impacts Of The Changes Through The Architecture Model

Exploration Objectives

Strategic Objectives	Exploration Objective	Science	Economic	Security	NASA Level-0 Req Link
Establish Robust,	Provide maximum probability of Total Program Success	√	\checkmark		1
Sustainable	Provide maximum probability of Mission Success	√	\checkmark	\checkmark	1
Program Of	Provide for safety of human space explorers	√	\checkmark	V	1.5, 3.3
Exploration	Provide for flexibility in and aborts during mission execution	√	\checkmark	\checkmark	1.1
	Provide means to be anywhere on lunar surface	√	\checkmark	\checkmark	1.1, 1.7, 2
	Provide many opportunities for robotic science/exploration	√	1		1.2, 1.4, 1.6
	Provide many opportunities for human science/exploration	1	\checkmark		1.3, 1.5
	Provide maximum benefit/return-to-cost ratios	1	\checkmark		1
	Provide opportunities to inspire/train next generation	1	1	\checkmark	6
	Provide opportunities to improve foreign relations	1	\checkmark	\checkmark	3.2, 4
	Provide means to test hardware bound for Mars & beyond	√	\checkmark		1.3, 1.5, 3.2
Enable	Ensure broad/expanding industrial base for space		\checkmark	\checkmark	2, 4, 5
Self-Sustaining	Provide demand for steady supply of hardware, parts		\checkmark	\checkmark	2, 4, 5
Market-Based	Maximize compatibility of space hardware/processes		\checkmark		3.2, 4
Space Economy	Provide opportunities to excite the general public		V		6
Foster U.S. National	Provide means to approach launch on demand	√	\checkmark	\checkmark	2, 5
Defense And	Provide assured access to space	√	\checkmark	\checkmark	1.7, 2, 3.1, 5
Economic Security	Provide means to protect U.S. space assets		1	\checkmark	Not In Level-0
	Ensure protection of U.S. intellectual property		1	\checkmark	Not In Level-0
	Ensure U.S. leadership in space technology		\checkmark	\checkmark	6
	Ensure U.S. lead in robotics/UAV technologies		\checkmark	\checkmark	1.2, 1.4, 1.6

All Of Our Objectives Are Linked To NASA Level-0 Requirements

Ranking Of Program Goals

H 0.8 High influence or interestM 0.5 Med. influence or interest		^c		av	5 5			/		ners	IN OF	5	ours		
L 0.2 Low influence or interest		Ĵ		x at P	Jens'	,the	,olic/	ren	201	amm	NOCK!	ester	wists on	>/	Objective
Score = Sum(Influence x Interest)	LY.	Ŷ.	65	$\langle \rangle_{\chi^0}$	e las	» ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	» / S	12 atio	×~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	it Ac	Nati Nati		Objective
What Stakeholders Want	I AL	5A (ongi De	st st	ate Ge	snert st	3700 11	ernesi	Jerie Gr	220 55	2 ^{2CE} SY	2 ^{2CE} U	hiteo		Factors
LEVEL OF INFLUENCE ON PROGRAM	Н	Н	Н	М	М	М	М	М	М	L	L	L	Score	RANK	
Regular PR"Wow factor"	Н	Н	L	L	Н	Н	L	М	Н	Н	Н	L	3.45	1)
National Pride/International Prestige	Н	Н	Н	М	Н	L	Н	L	L	L	L	L	3.39	2	
Economic/Intellectual Security	L	Н	М	Н	М	Н	М	Н	М	М	L	L	3.33	3	≻ 1.0 - 0.7
Return on Investment thru Commercialization	М	Н	L	L	Н	L	Н	М	Н	Н	Н	L	3.21	4	
Return on Investment thru Jobs	М	Н	L	L	Н	L	Н	М	Н	Н	L	L	3.09	5	J
Accessible science	Н	L	М	L	М	М	М	Н	М	L	L	L	2.82	6	Ĵ
Regular Work Big projects	Н	М	L	L	L	L	Н	М	Н	L	L	L	2.67	7	
National Security (militarily)	L	Н	Н	М	М	L	L	L	L	L	L	L	2.46	8	
Superiority	L	Н	Н	М	М	L	L	L	L	L	L	L	2.46	9	
Direct Space Experimentation	М	L	Μ	L	L	Н	L	Н	L	М	М	L	2.40	10	≻0.7 – 0.5
Constant Data for Theoretical Evaluation	М	М	L	L	L	Н	L	Н	L	М	М	L	2.40	11	
Stay in School by having neat stuff available	Н	L	L	L	М	Н	L	М	L	L	L	L	2.28	12	
Regular Return on Investment	М	Н	L	L	Н	L	L	L	L	L	L	L	2.22	13	
Math & Science Majors	М	L	L	L	L	М	L	Н	Н	L	L	L	2.19	14)
Fast return short term risk for recognition	L	L	L	L	L	L	Н	М	L	Н	L	L	1.77	15)
Benefits Sharing	L	L	L	М	L	L	Н	L	L	L	L	Н	1.77	16	
Private/Direct Access or Experience	L	L	L	L	М	L	L	М	L	М	Н	L	1.68	17	
International Balance	L	L	L	Н	L	L	L	L	L	L	L	Н	1.62	18	0.5 - 0.3
Raise Standard of World Living	L	L	L	М	L	L	М	L	L	L	L	Н	1.62	19	
Space Colonization	L	L	L	L	L	L	L	L	L	М	Н	L	1.38	20	J

Addressing Key Objectives Is Used To Assign Objective Weighting Factors

Summary Of Objectives

- Construct Set of Objectives That Demonstrate Both Technical And Political Realities
- NASA FOMs Efficiently Relate to Technical Requirements
- Schafer Objectives Qualitatively Rank Stakeholders Interests in Overall Architecture Operation
 - Foster Use of Robots: Promote the Development and Operation of Robotics To Perform Tasks Difficult For Humans
 - Increase Commercial Opportunities: Promote the Partnership with Private Enterprise, Increase Potential For Space Economies
 - Increase Flexibility To Changing Goals
 - Foster More International Opportunities: Promote International Cooperation Though Launch Services and/or Joint Ventures
 - Utilize Progressive Development
 - Regular Scheduled Milestones: Promote Regular Opportunities For Public Buy-in
 - Minimize Life Cycle Costs: Promote Flat Annual Costs
 - Minimize Reliance on Optimization: Promote Modularization and Reuse Across Applications
 - Minimize Reliance on New Technology: Promote Use of COTS and Existing Technology to Minimize Development Cost and Time

	Weighting Factor	
10	Safety	0.7
SMS	Reliability	0.3
Б С	Sustainability	0.7
SA	Affordability	0.5
AN	Extensibility	1.0
	Evolvability	1.0
	0.7	
In	crease Commercial Opportunities	0.5
Incre	ase Flexibility To Changing Goals	1.0
Foste	r More International Opportunities	0.5
	Utilize Progressive Development	0.7
	Regular Scheduled Milestones	0.7
	Minimize Life Cycle Costs	0.8
Ν	Inimize Reliance on Optimization	0.5
Minin	nize Reliance on New Technology	0.3

Architecture Composite Score

	Objectives	Objective Factor	Architecture Score
	Safety	0.7	
Ms	Reliability	0.3	
FC	Sustainability	0.7	
SA	Affordability	0.5	
NA	Extensibility	1.0	
	Evolvability	1.0	
	Foster Use of Robots	0.7	
In	crease Commercial Opportunities	0.5	
Incre	ase Flexibility To Changing Goals	1.0	
Foste	r More International Opportunities	0.5	
	Utilize Progressive Development	0.7	
	Regular Scheduled Milestones	0.7	
	Minimize Life Cycle Costs	0.8	
Ν	Inimize Reliance on Optimization	0.5	
Minin	nize Reliance on New Technology	0.3	

Program Objectives:

- Objective Factors Reflect Relative
 Importance Of Objective
- Each Viable Architecture Is Evaluated With Regards To Every Objective Architecture Score:
- The Architecture Score Is A Performance Evaluation

Composite Score:

 Combine Objective Factor With Architecture Score To Determine Composite Score

Composite Score = Objective × Performance

Composite Score Reflects Performance And Program Objectives

		Reference Missions	Architecture CONOPS	CEV CONOPS		
4	1A	Robotic Orbiter to Moon	Minimal Architecture Needed	Design CEV For Stressing Spiral 2 And Utilize Design		
8-201	1B	CEV Mod-E Flight Test Demo	Spiral 2	In Spiral-1		
000	10	Robotic Lander on Moon	Selected Architecture	Selected CEV Concepts		
al-1	1D	CEV-Mod-E w/ Crew	Concepts For Spiral 2 Will Bound The Design Space	Bound The Design Space		
Spir	1E	CEV Mod-L Demo w/o Crew	Technology Demonstrations			
	1F	CEV Mod-L Demo w/ Crew				
20	2A	CEV-Mod-L to Lunar Orbit	Staging In LEO, Direct To	19 Concepts Identified For		
-203	2B	Short Crewed Mission to Lunar Surface	rewed Mission to Lunar Surface Lunar Surface			
2015	2C	Initial Extended Crewed Mission to Lunar Surface	Staging In LEO, Through L1	Model		
8	2D	Extended Crewed Mission to Lunar Surface				
oiral	2E	Robotic Orbiter to Mars	– Direct Return To Earth			
s	2F	Robotic Lander to Mars	• ISRU Propellant Production			
	3A	Long Duration Lunar Testbed for Mars	Extend And Expand Lunar	Utilize CEV-MOD-L		
	3B	Lunar Testbed for CEV-Mod-I	Architecture For Spiral 3	Develop CEV-MOD-I		
	4	Mars Flyby and Test of Martian Lander				
	5	Initial Human Mission to Mars Surface				

The Architecture, CEV, And Reference Missions Are Included In The Transportation Model

CONOPS Supports NASA Objectives With Minimal Development And Prepositioning

Additional CONOPS Supports Prolonged And Sustainable Presence On Moon

Eight Days of Supplies And Minimum 3.07 km/s Within CEV Required for Safety

BOEING

Transportation Model – Inputs

- Launch Vehicle
 - Booster Sizes Of 20mt And 80mt
 - Derived Launch Capabilities From Booster Availability And Integration Requirement Inputs.
 - 7 To 12 Launches Consistent With Existing Launch Support And Vehicles (Delta IV Heavy And Atlas V-551)
 - 24 Launches Must Use Both Delta And Atlas, Two Assembly Facilities And Two Launch Pads
 - Additional Launches Requires New Facilities
- Transportation Parameters
 - ΔV And Transported Mass Determine Propellant Requirements And Flight Times Between Nodes
- Other Parameters
 - Reliability Of Activities At Each Node Such As Launch, Docking, Engine Restart Failure, Etc.
 - Cryogenic Propellant Boil Off Rate
 - Support Structure Masses (E.G. Habitat, Power Plant, Safe Haven)

CEV Mass	12 🖛	nt	Eucl M		spc	ort Table	Long	lorMaa		9	
Action		argoDeltaV	Fuel Wa	(s) CargoM	222	U.3 FuelNeeded		FltTim	b	o CEVEuelNeed	ed
	0	3 77	3 5750525	37 Oargow	8	14 5309517	3 77	3.5	, 75052535	21 796427	/61
LEO2Moon	1	6.1	4 5192801	00	4	16 1083838	61	4.5	0002000	48 59516	15
LEO2Moon	2	10.1	179 71275	68	20	26 0379931	10.2	179	7127568	33 987237	/85
L12Moon	3	2.77	0.553436	336	6	7.02799658	2.77	0.5	55343636	14.055993	316
L12Mars	4	10.2	179.22803	323	8	10.4151973	8	223	.9836043	23.04047	85
Mars2L1	5	10.2	179.22803	323	8	10.4151973	8	223	.9836043	23.04047	'85
Mars2LEO	6	10.2	179.71275	68	20	26.0379931	10.2	179	.7127568	33.987237	'85
Mars2Earth	7	7.2	1	80			7.2		180	19.689922	262
Moon2L1	8	2.77	0.553436	636	6	7.02799658	2.77	0.5	55343636	14.055993	16
Moon2LEO	9						4		3.5	8.9518118	38
Moon2Earth	10	3.07	·	3.5			3.07		3.5	16.192725	<u>;9</u> 2
L12LEO	11	3.	Pa	rameters	-	11 51 09517	20mt		Dad1	Pad2	i
L12Earth	12	0.	1	BoilOffRate	0.0	00167	2011L		Faul	Fauz	
Dummy	13		2	LunarStay		14 0	Number of				
EarthLaunch	14		3	ISRÚ		0 0	Encilition			2 2	
MoonMoon	15		4	ISRU Rate		0.1 0	Facilities			2 2	
LEO2m2LEO	16		5 C	argo Leg1 ID		0 0	Time Requ	lired for			
L12m2L1	17		6 C	argo Leg2 ID		3 0	Integeratio	n	~		
LEO2m2E	18	-	/ (rew Leg1 ID		17 0	(uays)		C	30 30	
	19		9 Crev	w Return1 ID		8	Number of	Main			
			10 Crev	w Return2 ID		12	Boosters				ľ
			11 Refu	el on Moon?		0	Kequired p	er		3 1	
		_	12 Amou	untPrepMass		0	Number of	GEMs		<u> </u>	
		- F	13 Amt	PrepMassL1		0	Required n	er			
		L	14	TRefueling		0.000	Vehicle	-		0 5	
							Pad Keepo	out		-	
			Reliabili	ties			Times (day	/s)	1	0 1	
		Cargo	b	Crew	Co	omment					_
Laun	ch	0	.975	0.99							
Assembly	y LEC	0.85	5 0.99		Ra	anges boun	d unknown	reliabi	lity		
Docking 0.99		System wide									
Refueling 0.85 0.99 0.99		Ranges bound unknown reliability									
Crew Tra	Crew Transfer 0.99		Only for use with Lander								
					Ca	argo based	on upper st	age			
Engine F	ailure	9 0.95	5 0.99	0.99	re	iability					
Ion Engine	Failu	ire 0.93	3 0.97		Ro	olls errors to	gether for i	nitial c	ut		
Lunar La	nding	j (0.95	0.99							
	ndina			0.99115	Sł	uttle based	value				
Earth La	nunng						14.40				
Earth La	nunng				Ba	ised on 100	% success	for De	elta		

Transportation Requirements Calculated From Physical Principals

- Time to Complete Objectives
- Total Launch Requirements
 - Number of Crew Launches
 - Number of Cargo Launches
- Total Amount of Mass Launched
- Total Amount of Mass Used at Each Node
 - Almost Entirely Propellant
 - Divided into Mass Used for CEV and Mass Used for Other (e.g. Support or Propellant Transportation)
- Total Number of Cargo Shipments Between Nodes
- Mass Collected At Each Node
- Total Number of Reliability Errors
 - Indexed by type and location
 - Separate Crew and Cargo Reliability Error Responses

Discrete Event Simulation Of Architecture Is Used To Perform Trades And Analyses To Evaluate Architecture Elements, CONOPS, And Determine Sensitivities

Architecture Efficiency Index

Approach:

- Trade Between CEV Mass, Infrastructure, And Number Of Launches
- 16 mt Upper Limit For CEV Integration With Existing And Near-Term Launch Vehicles
- 8 mt CEV Mass Goal Permits Greatest Flexibility

CEV Mass Based On Detailed CEV Design Development

ISRU Requires Further Technology Development And Demonstration To Verify Performance Which Will Not Be Available By Spiral-2

Conclusions:

- Only Evaluate Viable/Feasible
 Architectures
- Substantial El Increase For 24 Launches Per Year – Warrants Investment
- Multiple Architectures Expected To Have High Performance

El Integrates Multiple Factors To Evaluate Architecture Performance

Architecture Sustainability Index

Approach To Sustainability Index:

- Adds Influence Of Sustainability And Supportability (Includes Maintenance)
- Increases In Systems Reliability And Crew Safety Are Rewarded As Increasing Probability Of Mission Success

Only Evaluate Viable Spiral-2 Architectures

 Current Estimated Launch Capacity Of 12 Launches Per Year Is Sufficient To Sustain Only Some Architectures

Conclusions:

- No Benefit For Investment In Further Launch Capability Beyond 24/yr
- L1 Enhances Sustainability Given CEV Size

SI Rewards Mission Success Through The Use Of Existing Capacity To Recover From Potential Failures

Schafer

CEV Launch System Comparison

Delta IV Heavy And Atlas V Existing ELVs Provide Sufficient Capability For Cargo And CEV

CA-1 Mid Term 1 Dec 04

Launch System Trades

Existing Systems

- Lift Capacity And Fairing Dimension Show Adapting ELVs Is Preferred
- Current U.S. Assembly, Integration And Launch Facilities Support 12-24 Launches Per Year
- Human Rating Implementation Options
 - Additional Launch Abort System
 Cost And Risk Required For All
 Approaches
- Launch Capacity
 - Additional Launch Facilities and Production Facilities For HLV Would Require Significant Development Activity
- International Participation
 - Cargo Capacity To LEO Could Be Obtained From Existing Foreign Sources

Delta IV Heavy

- 3 Main Boosters 21,892 kg to LEO
- 40 Delta IV Booster Cores Per Year
- Parts Shipped Via The Delta IV Mariner
- Two Horizontal Integration Facilities at CCAFS & VAFB
- Facilities Support Launch Of 24 Delta IV Heavy per Year
- Limited to 12 Launches per Year Due to Booster Production

Atlas V

- The 551 Variant 20,050 kg to LEO
- One Vertical Integration Facility At CCAFB
- 60 Day Integration For Atlas V 551
- Atlas V Constructed on Pad At VAFB

Cargo And CEV Can Be Designed to Launch on Multiple Existing ELVs

- Separate Cargo And Human Flight
- Baseline Existing Systems
 - 20 t Lift Capacity For Cargo
 - CEV Fits Existing Fairing Dimension
 - Utilize Existing Launch And Integration Facilities
- Modification Of Existing LV No Development Required
 - Common ELVs Suitable For Cargo And CEV
 - Minimize Need For Development Of HLV
 - Minimize Investment In Development Program

Integrated Vehicle Health Monitoring System (IVHMS) Must Be Added to ELVs to Allow Safe Operation With a Crew

- Delta IV Heavy And Atlas V
- International
 Participation Is Possible

20 t Lift Capability ELVs Available For Cargo, Modified ELVs With IVHMS For CEV

Chemical Propulsion Using RL-10 Derived Engine Provides

Purpose:

- Evaluate Access To Lunar Surface From L1 And Low Lunar Orbit (LLO) To Evaluate Architecture Impacts
- Quantify Lunar Ascent/Descent Constraints

Operational Advantages Of Lunar Gateway:

- Leaving Portion Of CEV Mass At Gateway Decreases Lunar Descent/Ascent Mass – Uses Less Fuel
- LLO Demonstrated In Apollo Program
- LLO Permits Optimization To Reduce Fuel Consumption
- Gateway Provides Option For Prepositioning Of Lunar Supplies
- Gateway Provides Option For Separate Lunar Lander

Equatorial Sites	Mid Latitude Sites	Polar Sites
From Equatorial Orbit	From Inclined Orbit	From Polar Orbit
Only Equatorial Sites Available Every ~2 Hrs	Opportunity Every ~28 Days	Opportunity Every ~2 Hrs For Polar Sites ~14 Days Other Sites

Opportunities For Lunar Injection From LEO Into LLO No More Than Every 5 Days. Lighting Conditions On Lunar Site Will Vary

L1 And LLO Support Gateway Architecture

L1 vs LLO Study – Location Of Gateway

Lunar Landing	unar Landing From LEO To Moon		Opportunities For Ascent/Descent To Moon				
Site Location	Thru L1	Thru LLO	From L1	From LLO			
Equator	Continuous	No More	Continuous Access	Every ~2 hrs (From Equat. Orbit)			
Middle Latitudes	Access	Than 5 Days		Every ~14 days (From Polar Orbit)			
Polar		Access		Every ~2 hrs (From Polar Orbit)			
ΔV (km/sec)	3.77	4.10	2.77	2.07			

Results For LLO:

- Inclination (Equator, Inclined, Polar) Must Be Selected Upon Departure From LEO To Minimize ΔV
- Prohibitive ΔV To Alter Orbit
- LLO Selected Will Limit Access To Some Lunar Locations
- CEV Must Contain Greater Contingency Resources (Heavier) Due To Potential Limitations To Accessing LLO From Surface

Results For L1:

 Permits Continuous Access To Any Lunar Location In 24-48 Hours Transit Time

Conclusion:

- Greater Flexibility From L1 Permits Continuous Access To Lunar Surface
- L1 Permits Resupply And Emergency Support From Single Location

L1 Advantageous Over LLO Because Of Access To Lunar Surface For Spiral 3

Lunar Base Requirements

	<u>Mass (mt)</u>	L1 or Lunar Base Crew Supplies Mass vs Number of Crew
 Supplies, Science, and Spares 		
 Supplies (water, clothes, O2, N2, etc) 	5-9	26 26 25
 Science (estimate 1MT a year) 	0.5	
 Spares (estimate 1/6 of total) 	2	
 Total supplies, science, spares 	7.5-1.5	
 Accommodations (30%) 	2.3-3.5	
 Total w/ Accommodations 	10-15	
EVA supplies		M 12 U 11 U 10
 9 EMUs per crew rotation 	1	60-Days
 Consumables (35kg per EMU per EVA) 	6	30-Days
 EVA supplies accommodations (30%) 	2	43 10-Days
 Total EVA supplies w/ accommodations 	9	0 1 2 3 4 5 6 7 8 7-Days 0 11 Number of Crew
Propul	sion Subsystem	Propulsion Subsystem

 Cargo I 	Module
-----------------------------	--------

- Lunar Habitat
- Rover
- Power Plant
- In-Situ Processing Plant

Propulsion Subsystem		Propulsion Subsystem	
Structure		Structure	2.30
Resource Module Structure		Resource Module Structure	0.50
Cargo & Accommodations, Structure		Cargo & Accommodations, Structure	0.58
Miscellaneous Items		Miscellaneous Items	0.26
Avionics	0.66	Avionics	0.20
Telemetry, Tracking, and Control (TT&C)		Telemetry, Tracking, and Control (TT&C)	
Power Subsystem	3.50	Power Subsystem	0.97
Thermal Centrol	3.25	Thermal Centrol	0.75
Payload Interfaces & Control		Payload Interfaces & Control	0.60
Crew Systems	1.72	Cargo	12.84
Consumeables	1.69	Consumeables/Prop	
Total Mass	19.00	Total Mass 19.	

Lunar Surface Infrastructure Sizing For Spiral 3 Fits Within EELV

Lunar Gateway Assessment -- Preliminary

WAR BESS POINT FOR STONE STON AND STON										
Figure of Merit / Measure of Perf.		·/			4	4	4			
Normalized Pugh Vote (-2 to +2)	0.4	0.5	0.7	1.1	-1.0	-0.2	-0.2			
Deployability	2	1	-1	0	-2	-2	-1			
Evolvability	0	0	1	2	0	0	1			
Operability	0	1	-1	0	-2	-1	-2	• L1 With Re-supply Capability		
Applicability to Mars Exploration	1	0	1	1	1	1	-2	Permits Access To Any		
Robustness	0	0	2	2	-2	-2	-1	Remote Lunar Location		
Safety & Survivability	0	1	1	2	-1	-1	1			
Accessability from Earth to Base	-1	0	0	0	-1	1	2	CEV Or Lander Permits		
Accessability from Base to Sites	0	0	1	1	-1	0	-2	Access To Lunar Surface		
Security	0	0	1	1	-1	-1	-1	Flight Is Faster Than Ground		
Maintainability	2	2	1	1	-2	-1	0	Transportation		
Sustainability	0	0	-1	-1	0	0	1	mansportation		
Supportability	1	1	0	0	0	1	-1			
Connectivity	0	0	1	1	-1	1	2			
Commercialization Potential	1	1	2	2	-2	0	-1]		
International Involvement	1	1	2	2	-1	1	0	1		
Adaptability	0	0	1	2	-1	0	1			

Polar And Equatorial Lunar Bases Yield Maximum Benefits

-1

-1

-1

2

Performance (Useful Work vs. Effort)

0

0

Lunar Basing and Evolvability

- L1 With Re-supply Capability Permits Access To Any Remote Lunar Location
- CEV Or Lander Permits Access To Lunar Surface

- Spaceports Will Be Limited Due To Development And Installation Costs
- Ground Transports Have Limited Range
- Hopper Extends Access To Remote Activity Sites

68

Hopper Permits Manned Lunar Survey

Exploration And Travel On Moon And Mars Surface Will Require Establishment Of Surface Transport Nodes To Cover Significant Distances

Initial Lunar Hopper Assessment

Significant ΔV Only Required For Hops Of Greater Than 90° Around Moon Transit Times For Hopping Less Than One Hour Versus 2-3 Days For L1 Round Trip

CEV Size:

- Model Spiral 2 Missions
- Determine Number Of Required Launches For Architecture Concepts With And Without L1
- Independent CEV Model Indicates 8 mt CEV Is Feasible If Refueling Is Available From Architecture Nodes

LV Size:

- Model Spiral 2 Missions
- Assume ELV With 20 mt And A New HLV With 80 mt Lift Capability To LEO
- HLV Reduces Launches In Proportion To Greater Lift Capacity – No Clear Benefit
- HLV Requires Full Development And Higher Cost Prior To 2014

Conclusions:

- 80 mt HLV Is Not A Necessity For Launching Of Fuel
- L1 Architecture With ELV Supports 8 mt CEV Design Goal

L1 With ELVs More Flexible And Extensible To Future Spiral 3 Missions

Purpose:

 Quantify The Advantages Of L1 In The Gateway Architecture

LEO

- Longer Transportation Segment Requires Larger CEV To Carry Additional Payload
- Mission Is Relatively Self Contained
 L1
- Potentially Smaller CEV (Shorter Transport Segments, Shorter Flight Durations) Permitted To Refuel At L1

Approach

- Model the Architecture Concepts With And Without L1 To Compare Number Of Required Launches
- Assume EELV With 20 mt And A New HLV With 80 mt Lift Capability To LEO To Determine If Concept Benefits From HLV

Conclusions:

- 80 mt HLV Is Not A Necessity For Launching Of Fuel
- L1 Architecture Performance Comparable Or Better Than LEO Direct

L1 More Flexible And Extensible To Future Spiral 3 Missions

Purpose:

- Determine The Relative Size Of The CEV
 To Support The Architecture
- Determine Sensitivities Of The Architectures To CEV Size
- Verify CEV Concepts Fit Architecture

Assumptions:

- Mass Is Limited To Launch On ELV CEV Sizes
- Small (~8 mt) With Capability To Land On Planet. Sized For Shorter Transport Segments Of L1 Architecture
- Large (~16 mt) With Capability To Land On Planet. Sized For Longer Duration And LEO Architecture
- Small CEV With Separate Lunar Lander (~8 mt Each). Optimized Independently For Transport And For Lunar Landing. Need To Preposition Lander At L1

Conclusions:

- Small Highly Capable CEV That Lands On Moon Significantly Reduces Fuel Supply Launches
- CEV With Reusable Lander Is Functionally Comparable To Small CEV That Lands On Moon
- Functionally Separating Lunar Lander From CEV Eases Design Process But Requires Crew Transfer

Small CEV Size (~8 mt) Provides Greatest Flexibility And Capability

Purpose:

- Determine Advantage Of Lunar Fuel Depot
- When Is Cost In Launches Recovered

Advantages Of Lunar Depot:

- Lunar Re-Fueling Supports Decreased CEV And Lunar Lander Size By Reducing Fuel Tank Size And Storage
- Ability To Re-Fuel On Lunar Surface Extends Architecture Capability For Spiral 3
- Re-Fueling From L1 Is As Fuel Efficient As Fuel Storage On The Moon During Spiral 2

Alternatives:

- Single Fuel Supply Depot At L1 Could Support Any Lunar Location
- Fuel Expended In Landing Fuel On Moon Equals Fuel Savings From Smaller CEV

Conclusions:

- No Significant Architectural Advantage To Lunar Fuel Depot During Spiral 2
- Lunar Fuel Depot Permits Smaller CEV And Smaller Lunar Lander

Lunar Depot Has Negligible Benefit On Architectures During Spiral 2

Refueling And Assembly Study

Purpose:

 Evaluate Sensitivity Of Gateway Architectures To Re-Fueling And Assembly

Assumptions:

 Assume 20 mt Booster To Maximize Number Of Assemblies And Re-Fuelings

Approach

- Include Reliabilities For Fueling And Assembly Similar To Failures
- Determine Additional Launches Required Due To Failures

Impact To Architecture

- L1 Architecture Very Sensitive Because Of More Refueling And Assembly Occurrences
- Direct From LEO Has No Refueling And Only Limited Assembly Due To Small Booster
- HLV Reduces Direct From LEO Assembly
- Schedule Delay In L1 Architecture Can Be Recovered Through Added Launches

Conclusions:

- Refueling Reliability Of Cryo Propellants Is A Technology Issue That Needs To Be Demonstrated
- Assembly Reliability Is A Process Issue That Has Been Demonstrated But Can Be Improved
- Gateway Architectures Are Reliant On Re-Fueling Or Fuel Tank Exchange

Architecture Can Utilizes Excess Launch Capacity To Mitigate Schedule Delays Due To Reliability

Purpose:

- Quantify Fuel Savings Benefit Of Direct Return From Lunar Surface To Earth
- Direct Return Increases Crew Safety

Assumptions:

- Direct Return From Moon To Earth = 3.07 km/s
- Ascent To L1 And Direct Return From L1 To Earth = 3.29 km/s
 - Moon To L1 = 2.52 km/s
 - Direct Return From L1 = 0.77 km/s

Mission Safety:

- Direct Return Requires CEV To Contain Minimum Fuel To Achieve Safe Return
- Direct Return From Moon To Earth Is Sufficient ΔV For Ascent From Moon To L1 For Resupply
- Direct Return Minimizes Risk To Astronauts
- Direct Return Reduces Fuel Requirements

Conclusions:

- Direct Return Is Required
 - From Moon To Earth Saves ~0.5 Fuel Launches Per Mission
 - From L1 To Earth Saves ~1.5 Fuel Launches Per Mission
- ΔV For Direct Return From Moon To Earth Could Be Used For Ascent From Moon To L1 For Resupply And Refueling

Direct Return Reduces Launches For Refueling

Purpose/Background

 Determine Reentry Trajectories For LEO To Determine Flight And Landing Characteristics.

General

- Approach
- 2 Thrust Motors Capable Of 65000 N Each
- 440 Sec Isp For Deorbit Burn
- 365 Sec Isp For Landing
- Apollo Aerodynamic Data As A Function Of Mach Number And Angle-of-attack
- 8076.59 kg Mass
- 19.635 m2 Reference Area (5 Meter Diameter)

Deorbit

- Thruster Firing Begins At Time = 2070 Sec
- Fire Thruster To Reduce Orbital Speed By 100 m/s
- Throttle Set To 0.5, Corresponds To 32500 N Thrust Level Per Motor

Parachute

- 0.8 Axial Force Coefficient
- Droque Deployed When Altitude < 6096 m, 2 sec To Unfurl
- Mains Deployed When Altitude < 4000 m, 15 sec to unfurl
- 1 Drogue Chute With 19.635 m² Reference Area (5 Meter Diameter)
- 3 Main Chutes With 962.113 m² Reference Area Each
- Drogue Chute "Cut" When Mains Deployed

Landing

- Thrust Level And Isp As Specified in Approach
- Begin Thruster Firing When Altimeter Reading < 3 m
- Throttle Setting Varied Between 0.3 And 1.0 As A Linear Function Of Altimeter Rate

Detailed Simulations Underway For Analysis of Design Performance During LEO Re-Entry

Trajectories	∆ V (km/s)	Time-of-Flight (hrs)	150 Human Spacefligh Textbook
Earth to LEO	10.82 km/s (Hohmann) 9.7 km/s (University Source)	0.74 hrs. (Hohmann)	* NASA Jac Paper LEO to L1
Earth to L1	12.01 km/s (Hohmann) 12.9 km/s (University Source)	95.12 hrs. (Hohmann)	300
Earth to Moon	13.64 km/s (Hohmann) 15.2 km/s (University Source)	119.41 hrs. (Hohmann)	200
LEO to L1	4.48 km/s (Hohmann) 3.77 km/s (Human Sp-flight)	95.3 hrs. (Hohmann) 96-144 hrs. (Human Sp-flight) 3-5 days (NASA JSC)	
LEO to Moon Surface	6.12 km/s (Hohmann) 5.93 km/s (Human Sp-flight) 5.91 km/s (NASA JSC)	119.6 hrs. (Hohmann) 66-90 hrs. (Human Sp-flight) 3-5 days (NASA JSC)	100 -
L1 to Moon Surface	2.83 km/s (Hohmann) 2.52 km/s (Human Sp-flight, NASA JSC)	298.77 hrs. (Hohmann) 48-72 hrs. (Human Sp-flight) 1 day (NASA JSC)	200
LEO to Mars	9.00 km/s (Hohmann) 10.2 km/s (3.8 w/Aero- braking) (University Source) 9.5 km/s (3.71 w/Aero- braking) (NASA JSC)	258.94 days (Hohmann) 183 - 269 days (NASA JSC)	
L1 to Mars	9.2 km/s (Hohmann)	259.3 days (Hohmann)	
Moon to Mars	8.7 km/s (Hohmann)	259.3 days (Hohmann)	

Delta-V vs Time-of-Flight Curves Are Provided to the Transportation Model

77

Solar Weather Prediction Study

- Characterize Solar Weather Prediction For 4-Days By K-factors
 - K-factor Values Selected: 1.00, 0.75, 0.50, 0.25
- Historical Data Reflects 5 Significant Solar Weather Incidents (Their Strength And Orientation Would Affect Lunar Missions) In 40 Years
 - 0.0003425 Probability Of Impact On Any Given Day (12 % Chance Per Year)
 - Accept 18 Hour Solar Event Arrival Time At Fastest Speeds
- Assume Maximum Travel Away From Safe Haven Is 4-Days. Mission Departs, No Return For 4-Days
 - Assume Mission Vulnerable During Entire Mission
 - Launch Only When Predicted Probability Of Solar Event Is Less Than Safety Threshold For All Four Mission Days (Reject Solar Event)
 - Set Safety Thresholds (Probability Of Solar Event That Causes Launch Postponement) Over Range Of 4.5 Standard Deviations
- Simulate One Million Missions (To Account For Rarity Of Solar Events) For Each Of 19 Safety Thresholds

Determine If Required CEV Shielding Can Be Reduced To Save CEV Mass And Still Permit Crew To Survive A Solar Event Through Solar Weather Prediction

Conclusions:

- Maximum Predicted Mission Exposure Of 0.00110 Closely Agrees With Theoretical Value (0.0003425 Per Day Multiplied By 3.25 Days)
- Can Reduce Mission Risk To 0.069% But At Cost Of Postponing 73% Of Scheduled Launches (Missed Opportunities To Fly)
- Can Reduce Mission Risk To Nearly Zero At Cost Of 99.98% Postponed Launches

Solar Weather Prediction Has Limited Ability To Effectively Decrease Radiation Shielding Unless The Number Of Flights Is Few And Schedule Is Not A Concern

Purpose/Background

 Radiation Shield Will Be A Significant Amount Of Mass In The CEV Or Attached To the CEV

Approach

Determine Radiation Environment And Acceptable Crew Dosages

- Shielding From Galactic Cosmic Rays (GCRS) Not Critical For Short Lunar Transits
- Shielding From Solar Event Particles (SEPs) Needed Anywhere Beyond The Earth's Magnetosphere
- 30-day Exposure Limit Of 25 cSv Used For Lunar Transit

Solar Weather Prediction In Short 4-Day Flights Decreases CEV Shielding Mass But May Limit Flight Opportunities

ISRU - Generating Lunar Propellant

ISRU Reduces Propellant Or Oxidizer Transport To Reduce Required Launches

- Level 0 Water To Propellant (LOX/LH₂) Model Created
- Model Assumes:
 - Tracking Solar Power
 - Equatorial Heat Rejection
 - Parabolic Shaped Radiator Shades
 - Brayton Cycle Refrigerator

Production	Dry Mass	Wet Mass	Total Power	H2 tank
kg/year	kg	kg	kW	kg
250	417	730	0	67
2000	1634	4134	4	533
4000	3025	8025	7	1067
8000	5807	15807	15	2133
16000	11370	31370	29	4267
40000	28060	78060	74	10667
100000	69785	194785	184	26667
200000	139327	389327	368	53333

Production vs. Facility Mass (Propellant From Lunar H2O)

Recommend Early Testing And Development Of LunOX ISRU During Spiral-2 In Order To Support Spiral-3 And Mars Activities

System	Dry Mass Subtotal _(kg)	Percent Tota Mass _(kg)	
Solar Array	12910	9.3	
Radiators	1825	1.3	
Avionics and Power Conversion	667	0.5	
Support Structure	14928	10.7	
Electrolysis	5074	3.6	
Propellant Drying	288	0.2	
Hydrogen Liquification	564	0.4	
Oxygen Liquification	294	0.2	
Water Storage	5000	3.6	
Propellant Storage	97778	70.2	
тот	139327	100.0	

ISRU Could Create Sufficient LunOX To Supply Oxidizer For Spiral-3

- Other models in work:
 - Regolith to water
 - Regolith acquisition
 - Ice acquisition
 - Regolith to LOX
 - Energy Efficiency (Power In vs. Propellant Out)
- Explore Pilot Plant Development And Demonstration During Spiral-2
- Explore Transport Of Lunar Propellant To L1 To Support Mars And Future Missions

Source	Base Metal	Energy Required	O2 Mass Per Metal Mass	
Al203	AI	28KWh/kg	0.9] •
Fe203	Fe	7KWh/kg	0.43	
Fe304	Fe	5KWh/kg	0.38	LunOX F
Si02	Si	25KWh/kg	1.13	Regol
Ti02	Ti	15KWh/kg	0.69	

ISRU Power Supplied From Solar

FOMs versus Solar Power Operating Time						
		Mass FOM	Power FOM	Dry Mass		
		(prop per year/dry mass)	(prop per year/kW)	(kg)		
		1.44	0.54	139327		
	10%	0.85	0.11	235216		
	20%	1.14	0.22	175285		
30%		1.29	0.33	155308		
Solar	40%	1.38	0.43	145320		
Insolation 50% Percentage 60%		1.44	0.54	139327		
		1.48	0.65	135332		
	70%	1.51	0.76	132478		
	80%	1.53	0.87	130337		
	90%	1.55	0.98	128673		
	100%	1.57	1.09	127341		

Multiple ISRU Concepts Available

Demonstrate Capability During Spiral-2 In Order To Establish Pilot Plant In Spiral-3

- Identify and Investigate Critical Technologies for CEV and Architecture
 - Review and Assess Candidates from H&RT SoS Technology Program
- Identify Gaps in Technology for Spiral 1
 - Support H&RT BAA 2nd Round in early 2005
- Develop Technology Development Plan for Critical Technologies

Critical Technologies

- IVHMS and Launch Abort Subsystem
- Automated Rendezvous and Docking
- In-Space Refueling (Cryo)
- Power Generation
- Propulsion
 - Electric
 - ISRU LunOX
 - Nuclear
- Closed-Loop ECLSS
- Artificial Gravity
- Autonomous Robotics

- <u>Planned</u>
- Spiral 1
- Spiral 2
- Spiral 2
- Spiral 3
- Later Spirals
 - Spiral 3
 - Spiral 3
 - Spiral 4
- Spiral 4
- Spiral 4
- Spiral 4

- Ensure Spiral 1 and 2 Needs are Addressed with Technology Infusion BAA (Early 2005)
- Continue Research and Technology Development Approach
 - ESR&T
 - HSR&T
 - Prometheus
 - IPP/SBIR/STTR
 - DART
- Continue to Identify Critical Technologies and Fund Development
- Continue to Identify High-Payoff Technologies and Fund Research and Development

Emphasis on Spirals 1 and 2 But Development of All Critical Technologies is Needed

Potential ISRU LunOX Production

Production kg/year	Dry Mass kg	Wet Mass kg	Total Power kW	H2 tank kg
250	417	730	0	67
2000	1634	4134	4	533
4000	3025	8025	7	1067
8000	5807	15807	15	2133
16000	11370	31370	29	4267
40000	28060	78060	74	10667
100000	69785	194785	184	26667
200000	139327	389327	368	53333

- In-Situ Resource Utilization (ISRU)
 - Assume Lunar Oxygen (LunOX)
 Production For Oxidizer in Propellant
 - Carry Hydrogen Fuel
 - Deliver LunOX Plant To Lunar Surface
 - Assume Robotic Operation
- Impact To Architecture
 - LEO Architecture Benefits More Because Of Increased Propellant Consumption (and Therefore Production)
 - Requires Initial Launches To Establish
 - May Require Manned Presence
- Continued Study
 - Added Benefit If LunOX Can Be Delivered To L1 For Spiral 3
 - Alternative LunOX And Propellant Production Technologies

ISRU Greatly Decreases Propellant Mass Requirements

Conclusions:

- Refueling Reliability Of Cryo Propellants Is A Technology Issue That Needs To Be Demonstrated
- Assembly Reliability Is A Process Issue That Has Been Demonstrated But Can Be Improved

- Add Reliabilities To Transportation Model
- Sensitivity To Refueling And Assembly
 - Assume 20 mt Booster

Impact To Architecture

- L1 Architecture Has Inherently More Refueling Occurrences, And Therefore Increased Sensitivity
- Schedule Delay In L1 Architecture Can Be Recovered Through Adding Launches (Assuming Launch Capacity Exists)
- L1 Architecture Can Recover From Refueling Sensitivity By Using Replacement Fuel Tanks Instead Of Refueling

L1 Architecture Launch Flexibility Can Overcome Potential Refueling And Assembly Risk Through Added Launches Of Propellant

Purpose/Background

 A Silicon-carbide Nano-cellular **Based TPS Similar To What Was Tested Under The X-37 Program**

Approach

- Analyze TPS Performance Using **A Direct-return Trajectory From** The Moon. The NASA Code **MINIVER Was Used To Predict TPS Performance Of Each** System.
- The Metric Used In This Trade Is The TPS Mass Per Unit Area **Needed To Keep The Maximum CEV-E Structural Temperature** Below 200° C.
- An Apollo Style Aero-ballistic Lifting-body Reentry Was Used.

- Mass Per Unit Area Of 47 kg/m²
- Carbon-carbon/Nano-foam Design **Represents A TPS Mass Reduction Of 50%**

Reduction in Heat Shield Mass Will Reduce Propellant Requirements

Schafer Competition Limited

•

Standard DoD-based Risk Process

- Experienced With DoD Approach for Risk Identification, Assessment, Prioritization, Mitigation
- Identify and Describe Technical Risks for Architecture and CEV
 - Identify New Candidate Risks
 - Standard Format for Description
 - Available to Whole Schafer/Boeing Team
 - Document in Monthly Report
- Risk Assessment Panel Investigates Each Candidate Risk
 - Representatives from SE&I, Architecture, and CEV Areas (Primary and Alternate)
 - Meet at least Monthly and As Needed
 - Review Candidate Risks and Assess Severity and Probability of Occurrence
 - Describe in Standard (Proposed) Risk Assessment Chart Format
 - Define Risk Mitigation Plans
 - Identify Risk Mitigation Approaches for Each Risk
 - Monthly Update and Refine Risk Mitigation Approaches
 - Obtain Concurrence from PM, Architecture Lead, and CEV Lead

	Consequence if the event occurs							
Level	1 - Minimal	2 - Moderate	3 - Major	4 - Severe	5 - Critical			
Technical	Minimal or No Impact	Moderate Rework, Same Approach Retained	Moderate Rework, Workarounds Available	Major Rework, But Workarounds Available	Unacceptable, No Alternatives Exist			
Schedule	Minimal or No Impact	Additional Activities Required. Able to Meet Need Dates	Major Milestone Slip < 1Month	Major Milestone Slip >1 Month or Program Critical Path Impacted	Cannot Achieve Major Program Milestone			
Cost	Minimal Impact < 5% Impact to Budget	Moderate Impact >5% to 10% Impact to Budget	Major Impact >10% to 20% Impact to Budget	Severe Impact >20% to 30% Impact to Budget	Critical Impact >30% Impact to Budget			

Proven Risk Process Adopted From DoD SoS Development Programs

