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Greenhouse gas Reduction through Agricultural Carbon Enhancement network (GRACEnet) is a multi-location research effort within the ARS organization to address scientific and program issues related to agricultural carbon sequestration, greenhouse gas emissions reduction and environmental benefits related to these activities.  The emphasis will be on comparing among common management scenarios at each location although the specifics will be location dependent.   The soils, crops and condition will be location specific, but consistent methods and detailed record keeping will be used to facilitate cross-location comparison and to ensure quality control.  The objective of this document is to provide background and sampling protocols for residue quality parameters.

Background 

The impact of crop residues on trace gas emissions (CO2, N2O) is dependent upon the quality of the residue (e.g. C:N ratio, N concentration) and the size of residue.  The amount of N2O evolved depended on the type of residue incorporated and the particle size of the residue (Ambus et al., 2001; Shelp et al., 2000).  The incorporation of crop residues can provide a source of readily available C and N.  Greater emissions of N2O follow incorporations of residues with low C:N ratios, such as legumes of horticultural crops as compared with cereal straw incorporations (Baggs et al., 2002). Smaller crop residue particles, allow for increased microbial attack, and thus greater production of N2O (Ambus et al., 2001).  Such residues can enhance metabolic activity and form local anaerobic zones, giving favorable sites for denitrification and contribute to ‘hot spots’ of N2O emission (Ball et al., 1999).  Homogenous mixing of residue into soil increased the amount of N2O released compared to applying a layer of residue in soil cylinders (Ambus et al., 2001). The quality of crop residues can alter the balance of N immobilization and mineralization, thus indirectly impacting substrate availability for N2O formation.

The ratio of C:N is an easy parameter to measure, however it has been shown that C:N is not sufficient for predicting decomposition (Franck et al., 1997; Gorissen et al., 1995; Palm and Rowland, 1997; Scholes et al., 1997).  Palm and Rowland, (1997) recommended that lignin, soluble carbon (soluble sugars, (if %N> 1.8%) soluble phenolics, total N, total P, total C, ash-free dry weight be included in a minimum data set of parameters used to characterizing plant input quality for decomposition and soil organic matter studies.  

Plants fix and assimilate C from CO2 into high-energy organic C compounds (e.g. sugars and starch) during photosynthesis.  Roots can also fix CO2 via phosphoenol pyruvate carboxylase.  The impact of C assimilation in roots ranges from negligible (Farmer and Adams, 1991) to providing 25 to 33% of the carbon required for N assimilation in nodules (Vance et al., 1983) or for C exuded as citrate or malate from phosphorus stressed white lupin (Lupinus albus L.) (Johnson et al., 1996).  All of the energy to reduce C to high energy forms directly or indirectly is derived from photosynthetic C reduction.  It has been estimated that 16 to 33% of the total C assimilated by plants is translocated and released into the soil, contributing 30-60% of the organic C pool in soil (Boone, 1994; Heal et al., 1997).  Roots contribute more C to SOM compared to above ground sources (Angers et al., 1995; Balesdent and Balabane, 1996; Barber, 1979; Flessa et al., 2000; Gale and Cambardella, 2000; Huggins et al., 1998; Puget and Drinkwater, 2001). 

Organic C products or residue released into the soil can be consumed by soil fauna (macro and micro), be released as CO2, or be converted into soil organic matter.  The balance among these options is dependent upon both abiotic (temperature, moisture, pH) and biotic factors.  Management such as crop type, fallow frequency, residue management, soil amendments, use of cover crops, tillage, irrigation, drainage, mulching and fertilization all can impact the rate of SOM formation, C storage or release by altering biotic or abiotic factors (Paustian et al., 1997).  The storage of soil C and the release of greenhouse gases (CO2, CH4 and N2O) requires a better understanding of the changes in soil physical, chemical, and biological processes and properties.  One step in understanding these processes is to identify the most stable forms of C and the mechanism to increase the input of stable C into the soil.  The system is very complex, involving interactions of the C, N and P cycles and associated feedback among the plants, animals and soil microbes (Kennedy, 1999).  

Sampling guidelines

Plant material should be analyzed fresh or freeze-dried, especially if soluble compounds are to be assayed (Allen, 1989).  However, an acceptable compromise is to dry the material below at or below 45oC, with adequate ventilation to minimize microbial or enzymatic breakdown (Allen, 1989; NREL, 1996).  After drying the material should be ground to pass through a 1 mm mesh.  Determination of equivalent dry-weight at 100oC permits results to be expressed on dry-weight basis (Palm and Rowland, 1997).  Biochemical composition varies among species, and physiological stage (Constantinides and Fownes, 1994; Heal et al., 1997). Therefore, it is important to include the age or physiological stage of the material and the organs included.   

Analytical methods

There are two extraction approaches for characterizing residue quality.  One is to use a sequential extraction scheme (Figure 1).  Sequential extraction allows isolation of more specific components with a limited amount of plant material however they it is time consuming, expensive and has more potential for experimental error (Palm and Rowland, 1997).  The second method is to do separate extractions of a limited number of components (Figure 2).  An advantage of using the separate extraction method is that for example, lignin could be extracted without having to first extract starch.  Also, separate extraction tends to reduce the experimental error (Palm and Rowland, 1997).    

Methods for determining extractives, starch, total carbohydrate by HPLC, acid-soluble lignin, acid-insoluble lignin and ash have been developed by the National Renewable Energy Laboratory (NREL) at Golden, CO and have been accepted by the ASTM as ASTM standard test methods.  These methods are available at the NREL web site http://www.eere.energy.gov/biomass/analytical_procedures.html as standard biomass analytical procedures (Table 1).  The methods at the NREL site have the advantage of being very detailed, complete with background references, step-by-step protocols and sample calculation.  Currently, the methods can be downloaded free of charge.  In addition this web site has a biomass feedstock composition and property database, which has information on agricultural residues, wood, herbaceous energy crops and other potential biofuel sources.  

Table 1.  A partial list of protocols available at NREL for characterizing residue quality.

	Component
	NREL protocol
	Link: http://www.eere.energy.gov/biomass/analytical_procedures.html

	Total solids (biomass)
	LAP-001
	

	Extractives
	LAP-010
	

	Starch
	LAP-016
	

	Carbohydrates
	LAP-002
	

	Acid-insoluble lignin
	LAP-003
	

	Acid-soluble lignin
	LAP-004
	

	Ash
	LAP-005
	

	
	
	


Table 2.  Additional methods for characterizing residue quality.

	Component
	Citation

	Nonstructural Carbohydrates
	(Hendrix, 1993)

	Soluble sugars
	(Dubois et al., 1956)

	Soluble C and N
	(Anderson and Ingram, 1993)

	Soluble phenolics
	(Waterman and Mole, 1994)

	
	

	Alkaline extractable phenolics
	(Martens, 2002)
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Figure 1. Schematic of separate extraction for plant residue quality parameters
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Figure 2.  Schematic of separate extraction for plant residue quality parameters
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