Sixth Annual Conference on Carbon Capture & Sequestration

Capture - Advanced Concepts

PC FLUE GAS: IMPACT ON THE CO2 PERMEATOR

Michael C. Trachtenberg, Robert M. Cowan & David A. Smith

May 7-10, 2007 • Sheraton Station Square • Pittsburgh, Pennsylvania

The Carbozyme Permeation Process: Gas Separation by Catalyzed Reaction-Diffusion

Comparison of Experimental and Modeled Performance

- Celgard X40-200 micro-porous hollow fiber
- # of feed fibers = # of sweep fibers
- nominal porosity = 30%

Carbozyme

- Total membrane surface area = 0.19 m^2
- Effective membrane area = 0.076 m^2
- No CLM pumping

In the simulation $kcat = 1E6 (s^{-1})$

5-Day Permeate gas composition

Mass Transfer Permeator Module Designs

Long-Term Stability - 50-Day Run with temperature-based condensation

c.

Spiral Wound Hollow Fiber 1/4" PVC Permeator

Evaporation Control Heating

Carbozyme

Composition of Various Flue Gases

Carbozyme

Flue Gas	Carbon	Carbon	NOx	Nitrogen	Nitrous	Sulfur	Mercury	Oxygen	Nitrogen	Particulates	Hydrocarbons
	Dioxide	Monoxide		Oxide	Oxide	Dioxide				(Ash)	
	CO2	CO		NO	NO2	SO2	Hg	02	N2		
	g/MJ	mg/MJ	mg/MJ			mg/MJ				mg/MJ	mg/MJ
Natural Gas	56	9.4	47.2			0.3				0.6	3.8
Propane											
Fuel Oil	75	13.9	236.4			426.7				50.4	9.7
Coke	92	1717.6	57.3			398.9				309.2	381.7
Subbituminous											
Lignite	111	3146.9	209.8			1129.4				608.4	699.3

Base Flue Gas Composition

Component		Composition	Composition	Composition	Composition
		(mol at 100 mol	water added	(%) Wet Gas	(%) Dry Gas
		basis)			
Water ¹	H_2O	7.71	12.58	12.00	0%
Nitrogen	N_2	74	74	70.56	80.18
Carbon dioxide	CO_2	14.3	14.3	13.64	15.49
Oxygen	O_2	3	3	2.86	3.25
Argon	Ar	0.93	0.93	0.89	1.01
Nitric oxide	NO	0.04	0.04	0.03	0.04
Sulfur dioxide	SO_2	0.026	0.026	0.025	0.029
Hydrogen chloride	HCl	3.00E-04	3.00E-04	2.86E-04	3.25E-04
Hydrogen fluoride	HF	1.00E-05	1.00E-05	9.54E-06	1.08E-05
Mercury	Hg	2.00E-07	2.00E-07	1.91E-07	2.17E-07
TOTAL		100	104.87	100	

Amount of water in Flue Gas was adjusted to provide sufficient humidity so that the aqueous phase would not dry out at high Flue Gas to CLM ratios.

Possible Modes of Contaminant Operation

- Decrease in CLM pH below 7.5
- Loading of inhibitory anions above the *Ki* value
- Loading of inhibitory cations above the Ki value

Solutions for Affordable Clean Energy TM

Solutions for Affordable Clean Energy TM

Solutions for Affordable Clean Energy TM

Contaminants Acceptance Concentration

Carbozyme

CONTAMINANT	ACCEPTANCE
	CONCENTRATION
	IN CLM
	<u>Ki</u> (mM)
Cŀ	200
F	200
SO4 ⁼	200
NO3 ⁻	35
рН	7.5*

*pH criteria are very conservative.

Flue Gas Contaminant Experiment

- Hollow fiber contactor (25°C water jacketed)
- 1 M NaHCO₃ (38 mL) recirculate constant volume
- Gas containing:
 - 79% N₂, 15% CO₂, 5% O₂, 0.3% Ar, 0.0288 % SO₂, 0.044 % NO, 0.003 % NO₂
- Gas flow at 75 to 80ccm for 65 hr, then 200 to 250ccm for 167 hr
- Measure
 - solution pH (in-line probe recorded every 5 min)
 - feed gas concentration and flow rate
 - outlet gas concentration and flow rate
- Simulations done using OLI Systems StreamAnalyzer® software
- Target: 2500h continuous operation under oxidizing or non-oxidizing post-combustion conditions

Solutions for Affordable Clean Energy TM

Cost Comparisons

The Carbozyme Benefit

