

Presentation Outline

- Characteristics of the Y-Chromosome and Y-SNPs
- Y-STR Markers, Core Loci, and Kits
- Populations, Mutations, and Statistics
- Work with Additional Loci to Separate Common Types
- Casework Examples and Resources

"State of the Y STR Assay" in June 2000

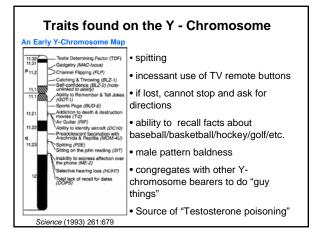
From J.M. Butler talk June 1, 2000 at CHI "DNA Forensics" meeting (Springfield, VA

- A number of multiplex reactions have been reported in the literature but Y STR multiplexes have not reached their potential...
- Very little PCR optimization to-date (most work has been done with the original PCR primer sequences)
- No commercial Y STR kit exists yet (therefore these markers remain inaccessible to the general forensic DNA community)
- New Y STR markers are becoming available which will greatly improve the power of discrimination between unrelated individuals (e.g., DYS385) and these will need to be incorporated into future multiplex sets

What has happened in the past few years...

- "Full" Y-chromosome sequence became available in June 2003; over 350 Y-STR loci identified (only -20 in 2000)
- Selection of core Y-STR loci (SWGDAM Jan 2003)
- Commercial Y-STR kits released - <u>Y PLEX 6,6,12 (2001 03);</u> PowerPlex Y (9/03), Yfiler (12/04)
- Many population studies performed and databases generated with thousands of Y-STR haplotypes
- Forensic casework demonstration of value of Y-STR testing along with court acceptance

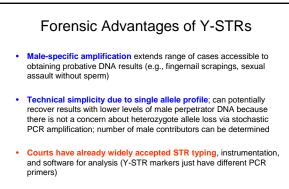
Characteristics of the Y-Chromosome


THE HUMAN Y CHROMOSOME: AN EVOLUTIONARY MARKER COMES OF AGE

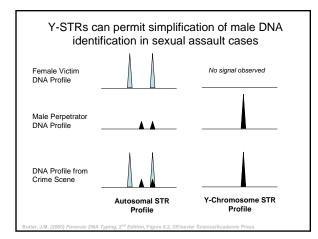
Mark A. Jobling & Chris Tyler-Smith Nature Reviews Genetics (2003) 4, 598-612

Abstract

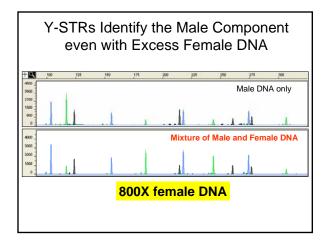
 Until recently, the Y chromosome seemed to fulfill the role of juvenile delinquent among human chromosomes — rich in junk, poor in useful attributes, reluctant to socialize with its neighbors and with an inescapable tendency to degenerate. The availability of the near-complete chromosome sequence, plus many new polymorphisms, a highly resolved phylogeny and insights into its mutation processes, now provide new avenues for investigating human evolution. Y-chromosome research is growing up.

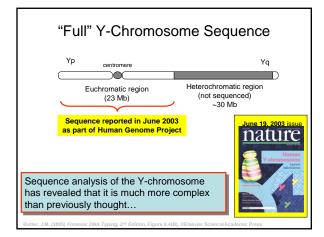

Value of Y-Chromosome Markers

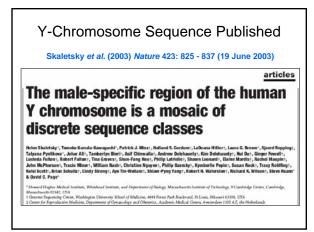
J.M. Butler (2005) Forensic DNA Typing, 2nd Edition; Table 9.1


Application	Advantage
Forensic casework on sexual assault evidence	Male-specific amplification (can avoid differential extraction to separate sperm and epithelial cells)
Paternity testing	Male children can be tied to fathers in motherless paternity cases
Missing persons investigations	Patrilineal male relatives may be used for reference samples
Human migration and evolutionary studies	Lack of recombination enables comparison of male individuals separated by large periods of time
Historical and genealogical research	Surnames usually retained by males; can make links where paper trail is limited

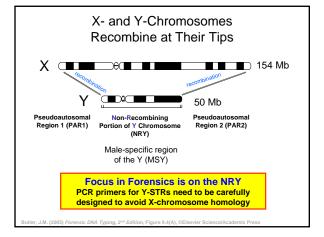
Disadvantages of the Y-Chromosome

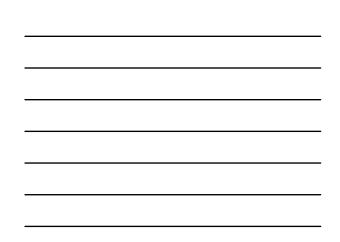

- Loci are not independent of one another and therefore rare random match probabilities cannot be generated with the product rule; must use haplotypes (combination of alleles observed at all tested loci)
- Paternal lineages possess the same Y-STR haplotype (barring mutation) and thus fathers, sons, brothers, uncles, and paternal cousins cannot be distinguished from one another
- Not as informative as autosomal STR results
 More like addition (10 + 10 + 10 = 30) than multiplication (10 x 10 x 10 = 1,000)


Acceptance of statistical reports using the counting method due to previous experience with mtDNA

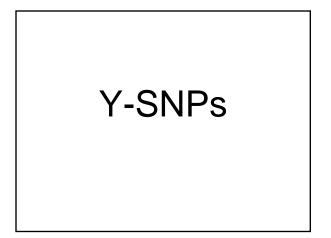


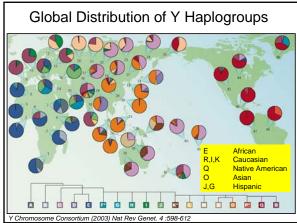
X-Chromosome Sequence Published

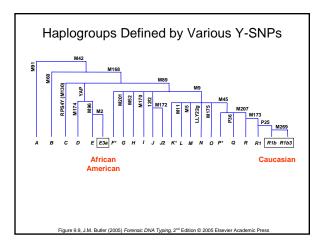

Ross et al. (2005) Nature 434: 325 - 337 (17 March 2005)


articles

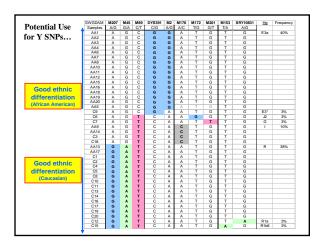
The DNA sequence of the human X chromosome

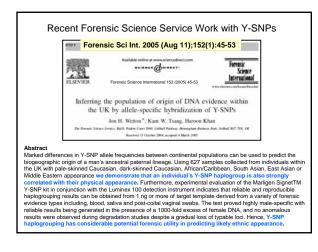

List if authors and their affiliations appears at the end of the pa

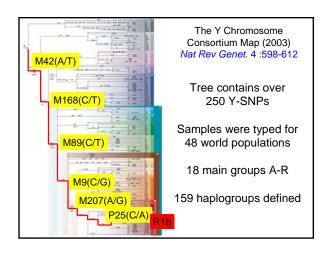

The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and temains. We have determined M2.5% of the excitorimatic sequence of the X chromosome, Dur analysis instates the autosome X, and the obtain of autospacet dorganization of the Y chromosome. The strange elements cover one-hird of the X-chromosome with a distribution that is consistent with their proposed rule available in the process of X-chromosome inscriptions. A dispropriorities in the sequence of our of the strange elements cover one-hird of the X-chromosome functional types. A dispropriorities in the sequence of our of the strange elements cover one-hird of the X-chromosome function the transfer to the strange of the strange elements cover and in various tamour types. A dispropriorities in 13 X-divide grees, which is many cases were characterized with the of a the bids expenses.



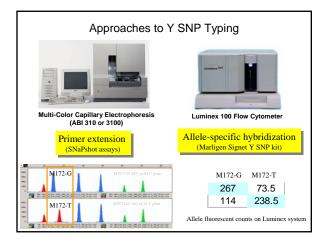
Various Types of Genetic Markers on the Human Y-Chromosome Y-STRs Y-SNPs Short Tandem Repeats Single Nucleotide Polymorphisms -CGATG--GATAGATAGATAGATA-#Copies -CGGTG-- 12 -13 Insertion/deletions (indels) - 14 - 15 Multi-state characters **Binary characters** Slowly evolving (~10⁻⁸/gen) Quickly evolving (2 x 10⁻³/gen) High resolution haplotypes Low resolution haplogroups Slide from Alan Redd (University of Arizona) presentation at Promega Oct 2002

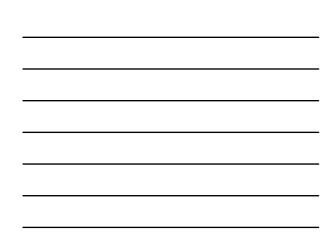


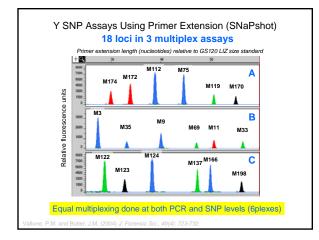




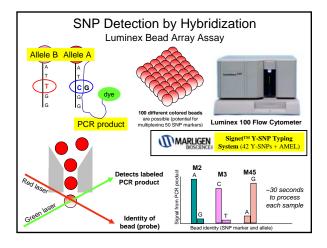
Y-SNPs in U.S. populations

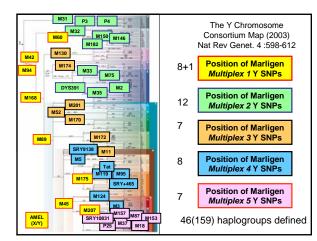

What haplogroups will be observed?


How specific will certain Y-SNPs be for a U.S. population group?


Forensic utility in comparison/addition to Y-STRs

Commercial kit (Marligen) 42 Y-SNPs


Medium sized multiplexes developed in-house (CE or MS)

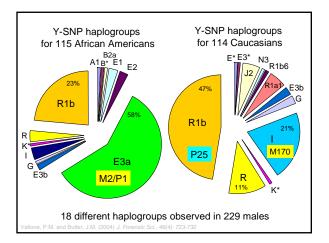


Y-SNPs Typed at NIST

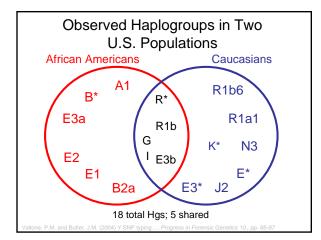
42 SNPs + Amelogenin present in 5 multiplexes (commercially available kit from Marligen)

18 SNPs in 3 NIST-designed 6plexes (8 unique) 10 SNPs in 2 NIST-designed 5plexes (1 unique)

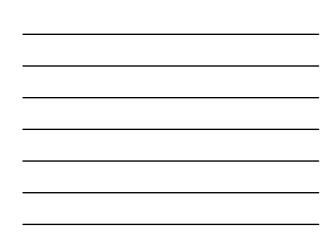

19 of the SNP sites overlapped...


Resulting in a total of 51 Y-SNPs

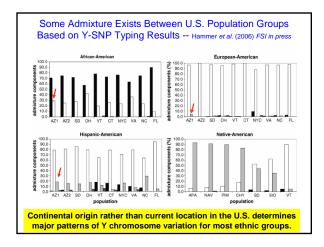
115 African Americans


114 Caucasians

95 Hispanics (presently typed for 10 Y-SNPs)



Publication on U.S. Groups with Y-SNPs				
I Forencic Sci, July 2004, Vol. 49, No. 4 Paper ID JFS2003030 Available online at www.satu.cog				
Peter M. Vallone, ¹ Ph.D. and John M. Butler, ¹ Ph.D.				
Y-SNP Typing of U.S. African American and Caucasian Samples Using Allele-Specific Hybridization and Primer Extension*				
Summary • Different technologies yield the same Y-SNP type • Full concordance was observed between hybridization and primer extension technologies on 18 different Y-SNPs (>3,800 allele calls)				
 Y-SNPs will have limited value for individualizing a sample 18 different types observed in 229 individuals 				
 Current Y-SNPs appear to have limited value for ethnic differentiation in U.S. populations One exception: M2 only in African Americans; not in Caucasians 				


http://www.cstl.nist.gov/biotech/strbase/training.htm

		on ST	RBas	e Webs		
r Y position (Mb)	SNP Name	YCC Hg Defined	gov/biote Multiplex	Polymorphism	SNPs/YSNPs50 African American (N=115)). NtM Caucasian (N=114)
2,562,931	SRY+465	O2b	4	C->T	1.00/0.00	1.00/0.00
2,564,927	SRY _{10831ab}	B-R, R1a	5	A->G, G->A	0.01/0.99, 1.00/0.00	0.00/1.00, 0.95/0.05
2,566,620	SRY ₉₁₃₈	К1	4	C->T	1.00/0.00	1.00/0.00
2,642,605	M130 (RPS4Y)	с	3	C->T	1.00/0.00	1.00/0.00
13,407,330	M2	E3a	2	A->G	0.42/0.58	1.00/0.00
13,413,670	DYS391	E3	2	C->G	0.40/0.60	0.96/0.04
14,124,138	M168	C-R	1	C->T	0.03/0.97	0.00/1.00
14,157,939	M170	1	3, A	A->C	0.97/0.03	0.79/0.21
14,179,223	M182	B2	2	C->T	0.99/0.01	1.00/0.00
14,232,730	Tat	N3	4	T->C	1.00/0.00	0.99/0.01
14,264,427	M174	D	3, A	T->C	1.00/0.00	1.00/0.00
Docitions m	anned agai	nst Human	Genome r	oforonco soru	ence (July 2003)	using BLA

