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ABSTRACT 
 

Natural resource management under uncertainty frequently raises questions of this form: 
is current information sufficient to support a decision, or is it preferable to defer a 
decision while gathering costly new information?  This paper presents a framework for 
systematically addressing questions of this type.  The partially observable Markov 
decision process (POMDP) is a dynamic optimization modeling approach that accounts 
for uncertainty regarding the system state and for the opportunity to obtain costly 
information on this state.  The main idea of the POMDP is that information has costs and 
benefits—both of which may be uncertain—and that these must be considered along with 
other costs and benefits relevant to the decision problem.  Here, we demonstrate the use 
of the POMDP in the context of Pacific salmon recovery efforts.  Specifically, we 
consider the problem of a planner who must choose among three possible habitat 
management actions: maintaining the status quo regime, which is inexpensive but 
relatively high risk; implementing a monitoring program that will have no immediate 
habitat benefit but may help produce better decisions in the future; or launching a habitat 
rehabilitation program without waiting for further information.  In our example, we find 
that it is often preferable to proceed with habitat rehabilitation projects rather than to 
implement habitat monitoring programs or to maintain the status quo.  We stress that this 
result is entirely due to this particular model’s parameterization and is in no way 
generalizable to other similar questions that arise in habitat or general fisheries 
management.  While we believe that the POMDP is the best available modeling 
framework for rigorously studying information-gathering strategies in fisheries 
management, it confronts the researcher with serious computational challenges even for 
relatively simple problems such as that presented here. 
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INTRODUCTION 
 
While there seems to be no consensus on a definition of ‘adaptive management,’ clearly a 
necessary condition for management to be adaptive is that it account for the arrival of 
new information.  Within the natural resource management literature, most work has 
focused on ‘passive adaptive management,’ in which new information is incorporated 
into decisionmaking as it becomes available.  A more difficult approach is that of ‘active 
adaptive management,’ in which new information is sought optimally: the manager 
considers the short-term cost of information gathering vs. the potential long-term 
benefits, and decides whether the costly information is worth having1.  
 
Markov decision processes (MDPs), which, when solved with the techniques of 
stochastic dynamic programming, yield a mapping from system state into an optimal 
policy, may be thought of as a formal representation of adaptive management.  However, 
MDPs assume that state variables are observed perfectly, an assumption that clearly does 
not hold in many natural resource management problems: animal populations, mineral 
reserves, and water quality, at least in many situations, cannot be known with certainty, 
and even developing good estimates is generally very expensive and time-consuming.    
 
The theory of partially observable Markov decisions processes (POMDPs) was developed 
in response to this shortcoming of MDPs, but no numerical algorithms existed for 
POMDP solution until Sondik (1971).  Despite a steady stream of improvements in both 
exact and heuristic solution techniques since then, most applied work in dynamic 
optimization (including control engineering, economics, and behavioral ecology) has 
continued to rely on MDPs built around certainty-equivalent measures, rather than face 
the numerical difficulties inherent in POMDP.  These difficulties are two-fold.  First, 
POMDPs inherit from MDPs the well-known ‘curse of dimensionality,’ by which is 
meant that solution times explode as the number of admissible states and the length of the 
time horizon increase.  Second, POMDPs are fundamentally Bayesian decision processes, 
in the sense that an agent’s beliefs about state variables become the basis for the optimal 
decision rule.  The agent may change these beliefs, via Bayes’ Theorem, when new 
information becomes available.   While this is conceptually appealing, the practical result 
is that we move from a world of finitely countable MDP states to one of infinitely 
uncountable belief states, since an agent may come to have any set of beliefs, depending 
on how their prior beliefs and new information combine to yield updated beliefs.  Thus, 
for POMDPs we can no longer use the standard techniques of stochastic dynamic 
programming as presented in, for example, Bertsekas (2000). 
 
The difficulty in implementing POMDP solutions is indeed a strong incentive to assume 
certainty-equivalence and stay within the relatively comfortable confines of MDPs.  We 
have done this ourselves (Tomberlin et al., in prep).  However, the substantial—and 
sometimes paralyzing—uncertainty we face in thinking about the most important 
variables in fisheries management (population levels and trends, habitat metrics, fishing 
effort) really demands a better response.  In our own work on salmon habitat 
                                                 
1 Though these ideas are actually lifted whole-cloth from the control engineering literature, the most 
thorough treatment in a natural resource management context seems to be Walters (1986). 
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management, we have found, for example, that the amount of sediment loading from 
logging roads is essentially a mystery, and only a few consultants are even willing to 
hazard a guess (for the correctness of which they will never be held accountable).  How 
can managers reasonably approach sediment control decisions when they don’t even 
know whether it’s a serious problem? 
 
Below, we use this sediment loading example to structure our discussion of the POMDP, 
mostly for the purpose of keeping the discussion from becoming too abstract.  However, 
questions of exactly the same form arise anytime we consider fisheries management 
under uncertainty with an opportunity to invest in learning, which will generally mean 
incurring some short-term cost to achieve greater overall long-term net benefit.  For 
example, should stock assessment efforts be tripled this year in the hope that better 
management will result in future years?  (The answer is not necessarily yes, even if you 
are a stock assessment biologist!)   Or, moving beyond managerial to behavioral 
applications, we can think about applying the POMDP to a fisherman’s dynamic choice 
of fishing location, given that he combines prior beliefs and current catch to assess the 
current state of his current location, and decides whether to move or not based on a 
comparison of his current beliefs for all possible fishing locations.  Indeed, Lane (1989) 
does just this. 
 
We believe the POMDP is the best existing tool for exploring a variety of questions 
related to learning and the adaptive management of fisheries.  Rather than make that 
argument directly, however, here we offer an expository example that we hope shows 
how the POMDP is precisely the tool needed to address a very important question in 
Pacific salmon recovery planning: when are habitat monitoring programs are justified?  
We ask the question because various federal, state, and local governments, as well NGOs 
and community groups, are either monitoring or developing plans to monitor freshwater 
salmon habitat conditions such as water temperature, turbidity, sediment loads, stream 
complexity, and so on.  All this monitoring seems unobjectionable from a conservation 
point of view, and a lot of it is actually quite fun, so it might seem ungenerous to ask 
whether it’s justified.  However, even given the high level of enthusiasm and public 
funding for habitat monitoring work, only a small fraction of streams can be monitored, 
and those only for a few habitat indicators and for a limited period of time.  Since 
monitoring one stream may contribute far less to management than monitoring another, 
our question is an important one if we’re serious about seeing that our conservation 
efforts result in as much conservation benefit as possible. 
 
Below, we focus on the question of whether logging road erosion monitoring is worth the 
time and expense, given that we could decline to monitor in favor of i) applying 
rehabilitative treatments immediately, without bothering to collect data first, or ii) 
ignoring the problem entirely and hoping it goes away—by far the most common 
practice.  The logging road example works well for our purposes for at least two reasons.  
First, surface erosion is by its nature difficult to assess without special equipment, 
making the partial observability approach very apt.  Second, logging road erosion control 
can quite realistically be represented in terms of a few states and actions, and we have 
good estimates of the costs of these actions.  We take the point of view of a land manager 
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who wants to minimize long-run total cost, and will engage in monitoring only if it’s 
expected to help with long-term decision performance.  Our model’s purpose is to help 
the land manager decide when monitoring is worth the trouble. 
 
 
MODEL 
 
We begin with some general notes on POMDP models and then construct a simple model 
that illustrates the use of POMDP for analyzing the desirability of information-gathering 
programs (in our example, habitat monitoring programs). 
 
The traditional MDP is a collection of sets {S, P, A, W}, where S represents state 
variables, P represents state dynamics as transition probabilities, A represents the actions 
available to an agent, and W represents the rewards to taking particular actions under 
particular conditions.   A POMDP is an MDP with two additional components, a set of 
observationsΘ and an observation model R.  Observations Θ∈θ  are the only 
information the agent has on the true state S, which is unobservable.  The observation 
model R describes the probabilistic relationship between observations θ and the true state 
S.  In other words, the agent uses the observation model R to make inferences about the 
true state S based on  noisy observations θ.  
 
Solution of MDPs and POMDPs proceeds through a recursively defined value function V.  
In the case of POMDPs, this value function is: 
 

θ

θ

β

π

θππβππ

θ

θ
θ

 observed and beliefsprior on  based beliefs updatingfunction 
 state  tomoving and action  ngafter taki

  observing ofy probabilit
action  ngafter taki

1 at time  state to at time  state from moving ofy probabilit
factordiscount 

 at time statein  action  for taking reward immediate
 at time  statein  being ofy probabilit subjective

)],|([max)(
,,

1

=
∈∈

Θ∈=
∈

+∈∈=
=

∈∈=

∈=





 += ∑ ∑ +

T
SjAa

r
Aa

tSjtSip

tSiAaq
tSi

where

aTVrpqV

a
j

a
ij

a
i

i

i ji
t

a
j

a
iji

a
iiat

 
 
 
The value function V is simply the greatest expected net benefit that the agent can 
achieve over time, taking into account that as conditions change in the future, different 
actions may be warranted.  From the solution of V we can also derive an optimal policy  
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which is a mapping from beliefs about the current state, π, into the optimal action.  In 
other words, for any possible set of beliefs about the true state S at any time in the 
decision problem,  the optimal policy identifies the action that will have the great long-
term expected net benefit. 
 
While the above formulation may seem abstract, the concept it represents is very 
intuitive.  We live in a world that we understand almost exclusively through limited and 
imperfect observations.  To take an example from fisheries management, we do not set 
Total Allowable Catch based on the number of fish in the sea, rather on the basis of how 
many fish we think are in the sea, and even the best efforts of a stock assessment team 
often yield a broad range of estimates of the true fish population. 
 
To make the POMDP formulation more concrete and its significance clearer, we now 
proceed to construct a particular POMDP that addresses an important question in Pacific 
salmon habitat management.  Sediment loads in salmon-bearing streams significantly 
impair habitat quality in many Pacific coastal rivers and streams, but identifying the 
sources of sediment loading is difficult.  On forested lands with logging roads, managers 
may often suspect that particular roads are providing excessive sediment loading, but 
visual inspection is a very unreliable means of gauging surface erosion levels.  We 
consider the problem faced by a manager who has three actions available to address 
erosion on a suspected problem road:  to maintain the road as it is, to monitor the road’s 
erosion level (by installing field instruments), or to treat the road (e.g., by putting down 
new gravel).   The first of these is quite inexpensive but does nothing to reduce current 
erosion rates or generate better estimates of these rates; the second is less expensive and 
does nothing to reduce erosion, but does provide information for subsequent decision-
making; the last is quite expensive but has a good chance of effectively curbing the 
problem (if there is a problem, which the manager can’t know with certainty). 
 
In terms of the POMDP formulation, the action set A thus consists of {maintain, monitor, 
treat} and the state variable S is surface erosion.  To keep the model tractable, we restrict 
this state variable to only two possible values, High Erosion and Low Erosion.  The 
observation set consists of the same two possible values, High Erosion and Low Erosion, 
but of course an observation of θ = High Erosion does not necessarily mean that the true 
state S =High Erosion!  Instead, we have to define the observation model R: 
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Each matrix, with the state Sj∈  defined by row and each observation θ defined by 
column, defines the probabilistic relationship of observation to true state under a different 
action.  , for example, tells us after taking action a=1 (maintain) and moving to the 
unobservable state j=Low Erosion, we would observe θ=Low Erosion with 60% 
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probability and θ=Low Erosion with 40% probability.  That is, maintaining the status quo 
provides some information, presumably through casual observation of the true current 
erosion level, but it’s very weak information, not too much better than a coin toss.  , 
in contrast, tells us that implementing a monitoring plan (a=2), yields a much stronger 
basis for inference based on observations: in this case, taking an observation when the 
true state is j=Low Erosion yields θ=Low Erosion with 90% probability and θ=Low 
Erosion with 10% probability.  Finally, R indicates that immediately after treating the 
road, observations tell us nothing about the true state of erosion, because the treatment 
itself causes a short-term spike in erosion that is confounded with background erosion 
processes. 
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The stochastic dynamics of the state S are given by transition probability matrices: 
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The first two matrices indicate that under actions a=1 and a=2 (maintain and monitor, 
respectively), a Low Erosion road will stay a Low Erosion road and a High Erosion road 
will stay a High Erosion road.    tells us that under a=3 (treat), a Low Erosion road 
stays in that same state with 95% probability, but allows a 5% chance that the treatment 
will actually backfire and create a High Erosion road.  Similarly, treating a High Erosion 
road has an 80% chance of successfully creating a Low Erosion road and a 20% chance 
of failure.  
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Finally, the reward structure (actually, cost structure) in our model is as follows: 
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Here the columns of each matrix represent the possible states j and the rows represent 
possible observations θ.  [We have suppressed the i-dimension of the cost structure since 
we assume the cost depends only on the state and not how the transition to the state 
occurred, as in the general POMDP formulation.]   In each submatrix of W, the rows are 
the same because in our case the observation per se does not affect costs, though of 
course observations do affect beliefs through the observation model R.  The costs here are 
in $000s/mile of logging road.  The matrix W1 tells us that maintaining a road in Low 
Erosion state will cost $1000, which is very cheap compared to $20,000, the cost of 
maintaining a road in High Erosion state.  W2, the payoffs to monitoring, are the same as 
W1 plus the cost of the monitoring program itself ($2000).  That is, monitoring does 
nothing to change the costs associated with the erosion per se, it is a pure additional cost.  
W3 tells us that treating the road will cost us the same $6000 regardless of whether the 
road is in Low Erosion or High Erosion state.  Comparing all these costs, it’s obvious that 
if the decisionmaker knew the true state to be Low Erosion, the best choice would be to 
maintain the current situation (a=1), and if the decisionmaker knew the true state to be 

 6



High Erosion, the best thing to do would be to treat the road right away (a=3).   However, 
the premise of our paper, and the reality that habitat managers face, is that the true state is 
unknowable. 
 
Finally, we assume a discount factor of β=0.95, which completes our model specification.   
 
 
RESULTS 
 
A POMDP solution consists of the recursively defined value function Vt(π) and the 
associated optimal policy δt(π).  Because the solution technique is rather complicated, we 
will not describe it here; interested readers can consult Cassandra (1994, pp. 45-54) for a 
good discussion of the Monohan/Eagle algorithm.  POMDP algorithms share with MDP 
algorithms the basic notion of backward recursion from an arbitarily defined end of time, 
T.  In our model, time T comes after all decisions have been made and after uncertainty 
about the true state has been resolved (which is important because it allows unambiguous 
values to be assigned to each of the possible final states).    
 
Figure 1 (next page) shows the value function at the final time period in which a decision 
is to be made, T-1.  The x-axis is the belief simplex for the two possible states in S: 
p(Low Erosion) runs from left to right, and since p(High Erosion) must be 1-p(Low 
Erosion), p(High Erosion) runs from right to left.   The y-axis is the expected value of 
taking particular actions.  The blue line is the value function, giving the expected value at 
T-1 of taking whichever action has the lowest expected cost.  Here, since there is only 
one decision period before the end of the problem, these values have very straightforward 
interpretations.  If the manager’s current belief is that p(Low Erosion) is anything less 
than 74%, the optimal action is to treat the road, which has a payoff of –6 regardless of 
the current true state.  If, however, the manager’s current belief is that p(Low Erosion) > 
74%, then the optimal action is to maintain the status quo road, which has an expected 
value of [–1*p(Low Erosion) + –20*p(High Erosion)].  In other words, the more certain 
the manager is that the true state is in fact Low Erosion, the greater the expected payoff to 
doing simple maintenance work.   Thus, Figure 1 not only shows the value function but 
also partitions the belief space into regions on which each possible action is optimal, i.e., 
visually lays out the optimal policy.   
 
Notice that the action monitor does not appear as part of the optimal strategy in Figure 1.  
The reason is simply that, with no further actions to be taken after T-1, there is no 
justification for paying to gather information that can’t provide future benefits in the form 
of improved decisionmaking.    
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Fig. 1: The value function in the last decision period, showing the partition of the 
belief space into regions associated with different optimal actions.  Here, treat is 
optimal for beliefs p(Low Erosion) <= 74%, and maintain is optimal for beliefs 
p(Low Erosion) > 74%. 
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Of course, we are almost always interested in problems that have at least several decision 
periods (and sometimes even infinitely many).  Figure 2 (next page) shows the evolution 
of the value function over a 10-period time horizon.  The most obvious effect of 
lengthening the time horizon is that the value function moves steadily downward, due to 
the expectation of increased future costs (a direct result of our model setup).  However, 
the shape of the value function also changes, as do the actions that form the optimal 
policy.  Specifically, for T-3 and all earlier periods, monitor becomes part of the optimal 
strategy.  The belief ranges for which monitor is optimal are between the two black 
curves; the beliefs to the left of the left-most black curve are those for which the optimal 
action is treat, and those to the right of the right-most black curve are those for which the 
optimal action is maintain. There is a bit of back and forth in the left-most curve, because 
the optimal policy has not fully converged to a stable mapping, but the general picture is 
clear.  Monitoring enters the optimal policy at T-3, once the time horizon has become 
long enough that information generated by monitoring can yield sufficient benefits (in 
expectation) to offset the cost of the monitoring program.  As the time horizon deepens, 
the range of beliefs over which monitoring is part of the optimal strategy increases, from 
about [0.81 0.90] at T-3 to about [0.81 0.97] at T-10.  Due to computational limitations, 

 8



we have not been able to explore longer time horizons, but the belief range seems to be 
on course to converge at about the T-10 level.  Immediate treatment is still the optimal 
action for beliefs up to around p(Low Erosion)=80%, and simply maintaining the status 
quo is preferred only for beliefs such that p(Low Erosion) is well over 90%. 
 
Fig. 2: The evolution of the value function over 10 decision periods.  The value 
function moves monotically downward as the time horizon increases, which is an 
artifact of our cost-only model.  For T-3 and earlier periods, monitoring becomes 
part of the optimal strategy for those beliefs between the two black curves. 
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The above discussion and figures may seem abstract, but in fact they correspond quite 
nicely to the way most of us get through life.  We routinely make decisions that are based 
not on directly observable facts, but on our beliefs about those underlying facts, which for 
a variety of reasons we either can’t or don’t want to know with certainty.  Both the facts 
and our beliefs about them may change over time, but at any point in time we make 
decisions based on our beliefs at that time.  Of course, people don’t apply Bayes’ theorem 
with the kind of ruthless efficiency that a computer does, but the general notion of 
combining old and new information seems to reflect a lot of human decisionmaking.  
Perhaps more importantly for our present purposes, the partition of the belief space into 
regions corresponding to different optimal actions is very intuitive and also useful.  As 
Figure 2 shows, one person may believe p(Low Erosion)=10%, another that p(Low 
Erosion)=40%, and a third that p(Low Erosion)=70%, but the POMDP makes clear that 
they should all still be able to agree on treating the erosion problem immediately. 
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CONCLUSIONS 
 
The partially observable Markov decision process (POMDP) provides a formal 
framework for exploring when information-gathering is likely to be worth the cost and 
when not.  Given the expense of monitoring programs in fisheries management (stock 
assessments, studies of ecosystem indicators, etc.), budgetary realities ensure that 
managers have to choose among candidate monitoring programs.  POMDP provides a 
tool for thinking carefully about such choices. 
 
Here, we have presented an application of POMDP to a simplified problem in salmon 
habitat management.  Because POMDPs are even more subject than traditional MDPs to 
the ‘curse of dimensionality,’ research on numerical techniques for POMDP solution is a 
very active field in engineering and artificial intelligence, and more sophisticated 
applications in fisheries management will have to drawn on recent advances in interior-
point methods and witness algorithms.   However, even our simple example has shown 
that, under reasonable assumptions, the costs of monitoring may exceed the benefits.  In 
our example, we found that, for problems with a time horizon of at least 5 decision 
periods, implementing a habitat quality improvement project without first monitoring was 
optimal as long as the subjective probability of existing habitat conditions being good 
was less than about 80%.   Monitoring was optimal over a narrower range of beliefs, 
specifically when the belief that existing habitat conditions were good was between about 
80% and about 95%.  That is, monitoring in our example was preferred only when the 
manager had a pretty strong hunch that current conditions were good, in which case the 
monitoring served essentially to rule out the need for more aggressive and expensive 
treatment. 
 
In developing our case for the POMDP as a useful decision-making tool, we deliberately 
touched lightly on the nature of the subjective probabilities π, which are really the heart 
of the POMDP.  While from a technical point of view there’s not much to say about π, 
which is simply a vector of conditional probabilities, we should address a concern that 
might arise from a philosophical point of view.  Some may object that subjective 
probabilities have no place in policy making, which should strive at all times to be as 
objective and scientific as possible.  Without rehearsing the centuries-long Bayesian-vs-
frequentist struggle, we note that many Bayesians consider subjective probability the only 
sensible notion of probability, and so would dismiss this criticism as invalid on principle.  
For our purposes, it doesn’t seem necessary to take that rigorous Bayesian position.  We 
are satisfied with the more mundane argument that subjective probabilities are so 
manifestly the basis for current policymaking that it would impossible to imagine any 
policy getting made without them.  In short, we think subjective probabilities in fisheries 
decision-making are perfectly sensible and almost perfectly unavoidable. 
 
The deep uncertainty we face in many aspects of fisheries managment requires that we 
think carefully about when to invest in learning about the systems we manage.   The 
POMDP provides a coherent (and beautiful) framework for such thinking. 
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