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Purpose of In-use Emissions Measurements

• Technology Development and/or Assessment

• Enforcement

• Compliance

• I/M

• Screening

• Inventory



Available Tools
• Engine Test Cells

– Simulated Routes
– FTP

• Chassis Dynamometers

• On-road, On-board 
Emissions Measurement 
Systems
– AEI, Columbus, IN
– Horiba, Ann Arbor, MI
– Sensors, Saline, MI



Challenges to Measurement of 
On-board, On-road Diesel Emissions

• False positives ; Error minimization
• Torque (or percent load) broadcast
• Exhaust flowrate measurement
• Fuel quality variability
• Emissions characteristics from current and future engines/exhaust 

aftertreatment systems (NO, NO2, OC dominated PM emissions)
• Current definition of particulate matter.

• Obsession with brake-specific emissions
– It is recognized that the FTP (brake-specific emissions) is essential 
– However, in-use fuel-specific emissions would eliminate majority of 

challenges associated with collecting brake-specific emissions in the field 
(application dependent)

• Instrumentation
– Advances in systems development have not been fast enough
– Portability; Bulk
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In-Use Emissions Work at WVU
Related to Consent Decrees

• PHASE I:  DEVELOPED MOBILE EMISSIONS 
MEASUREMENT SYSTEM FOR ON-BOARD, IN-USE 
HEAVY-DUTY VEHICLE APPLICATIONS

• PHASE II:  DEVELOPED IN-USE EMISSIONS TESTING 
PROCEDURES, AND TEST ROUTES

• PHASE III: CONDUCTED EMISSIONS TESTING ON A 
VARIETY OF IN-SERVICE DIESEL ENGINES (≤MY1998)
USING THE WVU MOBILE EMISSIONS MEASUREMENT 
SYSTEM (MEMS) TO CHARACTERIZE REAL-WORLD 
EMISSIONS FROM SUCH ENGINES
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In-Use Emissions Work at WVU
Related to Consent Decrees (…Cont’d)

• PHASE IV: CONDUCTING ON-ROAD COMPLIANCE 
MONITORING OF HEAVY-DUTY DIESEL VEHICLES 
(≥MY2002) USING THE MONITORING TECHNOLOGY, 
AND PREVIOUSLY DEFINED TESTING PROCEDURES 
(AND DRIVING ROUTES) DEVELOPED BY WVU, AND 
APPROVED BY THE US EPA.



Mobile Emissions Measurement System

(MEMS)
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Mobile Emissions Measurement System
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NOX MASS EMISSION RATES ON 
SAB2SW ROUTE – MEMS AND 

LABORATORY: CUMMINS ISM 370
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Comparison of Brake Specific Emissions Results

from the FTP Test Cell and MEMS
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Exhaust Stack Measurements



Current Status and Future Direction

• CO2
– Solid State NDIR 

• Current “garage-grade” NDIR microbenches have served the 
purpose

– New Direction – “Sensor-on-a-chip” (a hot-bolometer). Silicon 
microbridge elements with photonic bandgap modified 
surfaces. 

• CO
– Improvements are needed to current solid-state “garage-grade”

NDIR’s ability to measure low levels of CO from diesel engines



t (m sec)

I (
m

A
)

t (m sec)

T 
(K

)

λ  (µm )

Fl
ux

 (a
.u

.)

λ  (µm )

Fl
ux

 (a
.u

.)

λ  (µm )

Fl
ux

 (a
.u

.)

t (m sec)

T 
(K

)

Source 
driver

Source 
temperature

Source 
emission

Optical 
efficiency

Gas 
attenuation

Dual wavelength 
source/detector

Detector 
response

Sensor-on-a-Chip (NDIR)



Current Status and Future Direction

• NOx

– Zirconium oxide sensors
• Results are better with a NOx converter.  
• Avoid using the sensor in the raw exhaust stream

– Current “garage-grade” NDUV may not fully account for noise 
attenuation,  interferences, lamp decay

– New Direction – UV Resonance Absorption Spectroscopy 



UV-Resonance Absorption Spectroscopy
• Simple photometer technology
• Excellent agreement with other 

standard methods
• No critical components:

– Hot measurement, no chiller
– Direct measurement of NO2 , 

no converter
– No ozone generator, no

vacuum pumps etc.
• Calibration with long-term stable, 

gas-filled calibration cells
• Simultaneous measurement of 

up to 3 gas components NO, 
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Current Status and Future Direction
• Total Hydrocarbons

– NDIR detectors are not recommended for diesel exhaust
– Heated Flame Ionization Detectors serve well
– New Direction – Reduce the size and complexity of the FIDs.  

Systems are available, but prone to breakdowns
• Exhaust Flowrate

– Considering the system accuracy, turn-down ratio, meter drift, measurement 
frequency, response time, size and weight, robustness (including operation 
in harsh environments), low backpressure on the engine, etc.

• Averaging pitot tubes (e.g. Annubar), the AEI system
• Others: 

– Ultrasonic flowmeters (size/temperature limitations), 
– Hot-wires (response time limitations), 
– ECU based value (calculated value), 
– Intake measurements (system leaks, time delays, secondary air 

pump during cold start, positioning in the intake system)



Current Status and Future Direction

• Torque and Engine Speed 

– Engine Speed is an Accurate Measurement
– Inference of Engine Power is Possible via Publicly 

Broadcast ECU Information
– Engine Torque/Power Can Be Inferred to Within ±10% of 

Laboratory Measurements
• Engine Maintenance History
• Lug Curve
• Accessory Loading
• Ambient Conditions Limitation
• Operate Within the NTE Zone
• Use Good Engineering Judgment



Current Status and Future Direction

• Uncertainties associated with Exhaust Flowrate
and Torque measurements can be avoided by 
Fuel Specific Measurements

• Only concentration measurements will be 
required



Brake Specific Emissions

NOx

CO2

=
(g/bhp-hr) NOx

(g/bhp-hr) CO2

=

(Density)*(Exhaust Mass Flow Rate)*(Concentration)NOx

bhp-hr

(Density)*(Exhaust Mass Flow Rate)*(Concentration)CO2

bhp-hr



NOX Index
(Fuel Specific Emissions)

(Concentration of NOx) x (Exhaust flow rate) x MWNOx

(Concentration of CO2) x (Exhaust flow rate) x (12.011+1.008*(H:C))

grams of NOx / kg of Fuel

•NOx concentration
•CO2 concentration
•Fuel H:C ratio



Engine Operation Over an On-road Route

0

200

400

600

800

1000

1200

1400

1600

1800

500 1000 1500 2000

Engine Speed(RPM)

En
gi

ne
 T

or
qu

e(
ft-

lb
)

lug curve
Torque
N lo
N hi
15% ESC Speed
30% Torque
30% Power Torque



NTE Zone: Engine Operation and Brake Specific NOx
as a function of Engine Speed and Engine Load
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3-D plot of Brake Specific NOx as a function of 
Engine Speed and Engine Load
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Errors in Torque Broadcast
(Simulated SAB-to-BM Route)
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Simulated SAB-to-BM Route – NTE Zone
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Ratio of bsNOx/bsCO2 vs. Time
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Ratio of bsNOx/bsCO2 vs. Power
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In-use Particulate Matter Emissions
Major Challenge:

• Definition of particulate matter
• Current definition of particulate matter emissions is 

valid in a multi-million dollar brick-and-mortar 
engine/chassis dynamometer test cell

• EPA is hoping to demonstrate “equivalency” between 
portable PM instruments and test cell methods.
– On integrated PM measurements

• Several years down the road unless definition of PM is 
modified. 



Real-Time Particulate Mass Monitor 
(Quartz Crystal Microbalance)

• In-use, On-board 
applications (capable of 
handling severe vibrations) 

• Test cell applications
• Ultra-clean (US EPA 2007 

Standards) engines
• Older “dirty” engines
• Sample Conditioning 

System provides accurate 
dilution up to 1:2000

• NOx, CO2, CO, HC
• CAN network 

communication & RS232, 
GPS



Continuous TPM Measured with
TPM Trace vs. Power: FTP Cycle
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The RPM-100 (QCM) in a Backpack and on 
a Caterpillar D11 Dozer with a 3508 V-8

MEMS & RPM 100



Gravimetric PM Comparisons 
Between the RPM-100 and 

the Full-flow Dilution Tunnel

 Test 01 Test 02 Test 03 
MARI RPM 100 Integrated PM Mass 0.74 1.97 1.73 

Full-Flow Dilution Tunnel Gravimetric 
Integrated PM Mass 0.71 1.75 1.79 

Percent Difference 4.2% 12.6% -3.4% 
 

Note: The RPM-100 sampled from the raw exhaust 
stream. The resultant error includes all sources of errors 
in the emissions measurement systems (exhaust flow 
rate; concentration; data acquisition; etc.)



Conclusions

• Re-visit the definition of particulate matter
• Give serious consideration to fuel-specific 

emissions measurements
• Move all on-board emissions measurement 

systems out of the truck cab and onto the exhaust 
stack – make accurate and precise measurements 
more vehicle driver/owner friendly.

• New, accurate sensors are available
• Need to focus on measurement of emissions 

(species and concentrations), which will be 
encountered in 2007.  
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The End



Engine Speed Histogram for the Candidate Routes  
Mack CH Tractor and Trailer 

With a Nominal 60,000 lbs GVW
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ECU-Derived Engine Power Histogram for the Candidate 
Routes Mack CH Tractor and Trailer With a Nominal 

60,000 lbs GVW
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Inference of Engine Power
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Ratio of bsNOx/bsCO2 vs. Power
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• Constant 1500 rpm
• 10 Second Period 
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