Distributed Cognition: A New Type of Human Performance Model

Robert G. Eggleston
Michael J. Young

Air Force Research Laboratory
Air Force Research Laboratory

Crew Systems Division
Deployment and Sustainment Division

2255 H Street, Bldg. 248
2698 G St., Bldg. 190

Wright-Patterson AFB, OH 45433-7604
Wright-Patterson AFB, OH 45433-7604

Robert.Eggleston@he.wpafb.af.mil
Michael.Young@wpafb.af.mil

Motivation

What can scientists learn about human cognition from the study of human work? Cognitive psychologists who have studied work in natural environments have discovered that individuals who differ in knowledge or learning employ different types of strategies when performing the same task, that a given individual will employ different strategies depending upon environmental circumstances, that individuals who have similar knowledge but differ in what can be called skill perform a given task quite differently, and that individuals often employ an associational mode of inferencing through which they “directly perceive” courses of action in the environment (Dreyfus and Dreyfus, 1988; Rasmussen, 1986; Rasmussen, Pejtersen, & Goodstein, 1994; Sperandio, 1978; Vincente, 1999).

Rasmussen (1986) in a study of electronic trouble shooting noticed that professional electronics technicians and engineers performed the same task quite differently. To understand these differences, we must first discuss conceptual knowledge. When contemplating a system one can conceptualize the system at different levels of abstraction. For example, one can contemplate the system’s physical form, or the physical processes that it embodies, or the general functions it provides, or its abstract functionality, or its overall functional purpose. In addition, one can think about the total system, various sub-systems, functional units, sub-assemblies, or components. What Rasmussen discovered in his study of trouble shooting was that individuals rapidly shifted between these various ways of contemplating a system. In addition, and more interestingly, he discovered that technicians and engineers shifted views in characteristically different ways. The different knowledge they possessed cause them to use different strategies when trouble shooting.

[image: image1.wmf]Means-

Ends

Functional

meaning

Information

measures

General

functions

Physical

processes

Material form

configuration

Whole Total

 Sub- Functional Sub

 Component

part system

 system unit assembly

1

4

6

5

2

3

7

8

9

10

11

12

13

14

15

Figure 1 depicts the trace of an engineer trouble shooting a piece of electronic equipment. The trace is derived from verbal protocol data. Each node in the figure represents one statement. What is characteristic about engineers in general is that they use logical reasoning to determine how to diagnose the faulty equipment They think about which sub-assembly could generate the fault, based upon the available data. They then thoughtfully set a probe to test their hypothesis and factor the result into their reasoning process.

The engineer’s strategy can be contrasted with the strategy of an electronic technician, a trace of which is show in figure 2. The technician’s strategy can be summarized as divide and conquer. They used measurements to determine in which half of the board the problem was. They would then use another measurement to localize it further. They used minimal reasoning about [image: image2.wmf]Means-

Ends

Functional

meaning

Information

measures

General

functions

Physical

processes

Material form

configuration

Whole Total

 Sub- Functional Sub-

 Component

part system

 system

unit assembly

1

4

6

3

2

5

7

8

9

10

11

12

13

14

15

the functional characteristics of the electronic board. In sum, individuals with different educational backgrounds and different job demands have been shown to often use different strategies when accomplishing the same task.

Sperandio (1978) in a study of air traffic controllers noticed that controllers regularly adopted different work strategies to keep cognitive workload manageable as environmental demands changed. In a low load condition (e.g., controlling three planes), controllers would calculate the optimal flight path for each plane based upon such variables as type of aircraft, speed, course and altitude. As task demands increased (e.g., controlling four to six planes), controllers would adopted a more cognitive economical strategy where they used uniform speeds across aircraft and stereotyped flight plans to control the aircraft. As task demands increased further (e.g., controlling more than six planes) controllers would create waiting buffers consisting of a stream of several aircraft. When workload permitted, they would bring aircraft off the buffer and towards the runway at a uniform speed and descent path. In summary, in a low workload condition controllers would try to both control an aircraft an its optimal performance criteria and meet all safety concerns; as workload increased, the controllers shifted their focus and cognitive strategy to maintain safety considerations, while relaxing the concern for optimizing aircraft flying criteria.

In terms of an abstraction-decomposition space discussed previously (e.g., figure 1 or 2), a specific individual will dynamically change their path through this space based upon environmental stimuli (i.e., the number of aircraft that need to be serviced). These changes in trajectories are correlated with changes in perceived workload and denote the fact that an individual can perform a task in several different ways. Individuals seem to shift between alternative task strategies as a way to control cognitive workload. That is, individuals seem to have a preferred level of “arousal” and dynamically adjust work strategies to maintain this level.

Dreyfus and Dreyfus (1988) propose a model of the stages of expertise. Their model is derived from many studies of individuals in diverse career fields. It consists of five stages. In the novice stage, an individual learns and employs facts, features and rules. Further, knowledge is initially context free, the individual is not yet sensitive to situated factors. At this stage information processing is essentially rule-based. Advanced beginners still uses rules, but they are now more sophisticated; they take into account some contextual features. At the third stage, competent performers organize information around a plan of action. Facts are evaluated according to their relevance to the plan. Information processing is now selective. In contrast, at the fourth stage proficient performers begin to process information associationally. Through perception, they connect current context and stimuli with plans that have previously been successful. Only in unfamiliar situations due they revert to an analytic rule-based model of processing. Finally at the fifth stage, experts automatically associate environmental cues with a course of action. They effortlessly perceive context and stimuli, which together provides them a deep understanding of the situation. They do not process rules to generate this understanding.

In terms of our previous discussion of work strategies, one’s relative experience in a task strongly influences the way information is processed. Individuals can process information in multiple ways (e.g., following a rule or directly perceiving a situation and the required course of action) and the mode they use is heavily dependent upon their familiarity with a situation. In terms of the verbal protocol traces, this corresponds to using a different form of “inferencing” within one of the numbered nodes in figures 1 and 2.

The notion that experts can directly perceive possible courses of action in the environment is also supported by research in ecological psychology. Gibson (1979) coined the term direct perception to describe the ability of an agent to perceive an object in terms of its ability to permit or support specific actions by the agent in the environment. In direct perception, one perceives “affordances.” The original conception did not differentiate between different types of affordances. In contrast, our current theorizing leads us to propose four different modes of direct perception. To help explicate our view of direct perception we must first summarize some recent findings from neurophysiology.

In recent years, a new computational metaphor of mind has been proposed by several neurophysiologists which relies on changes of state to model brain processes (e.g., Damasio, 1989; Edelman, 1989; Engel, Konig, Gray, & Singer, 1992; Hebb, 1949; Singer, 1993, 1995; von der Malsburg,1986). The state-change framework of information processing hypothesizes that the basic information processing element is not a neuron, but rather a cell assembly: a collection of neurons that operate collectively as a local circuit. Neurophysiologically, cell assemblies are collections of neurons that have local inhibitory connections and distal excitatory connections. Cell assemblies are connected via both feed forward and feedback (or reentrant; Edelman, 1989) connections. From a functional perspective, cell assemblies are feature detectors (Hebb, 1949; Edelman, 1989). They are comprised of sub-populations of cells whose function is to detect and communicate the presence of specific features.

Damasio (1989) proposes that cell assemblies with similar functional purposes are grouped together into domains in separate parts of the cortex. For example, cell assemblies that detect such things as the location, orientation, spectral composition, and direction of motion of perceptual objects form a visual domain (located in the striate and extrastriate cortex). Damasio proposes that domains exist for a wide variety of processes (e.g., processing music, numbers, faces, social events, or words) and that these areas work according to uniform information-processing principles (i.e., cognitive domains process information using neural substrates and algorithms similar to those found in sensory areas).

In a similar fashion, Edelman (1989) proposes that the brain consists of four functionally distinct subsystems. One subsystem processes external sensory information and consists of the primary and secondary cortex areas associated with each sensory modality. A second subsystem processes internal sensory information concerning the state and needs of the body and consists of the brain stem, hypothalamus and autonomic centers. A third subsystem correlates information across subsystems and time; this subsystem consists of the septum, amygdala, cerebellum and hippocampus. The final subsystem is a special value/category memory consisting of sections of the frontal, temporal and parietal areas of the cortex.

Information is processed in this framework as a series of state-changes occurring among cell assemblies. Information entering the system through a sensory modality initially triggers state-changes in cell assemblies in the appropriate sensory domain; these state-changes correspond to the detection of features in the environment. The constellation of cell assemblies thus formed, in turn, triggers additional state-changes in cell assemblies in cognitive, motor, and other domains. Eventually, state-changes among cell assemblies in the motor domain may produce observable behavior.

From a phenomenological perspective, synchronized state changes among cell assemblies in the brain corresponds to the recognition of a percept, the recollection of a memory, or the formation of a plan, depending upon in which domain (i.e., part of the brain) the constellation of cell assemblies occurs. Phenomenologically, as additional state-changes occur, the individual experiences new thoughts, memories, plans, or produces observable motor output, once again based upon where in the brain the constellation of cell assemblies are occurring.

From a computational perspective, there are a couple of things that are important about this new model of information processing. First, this new model suggests that there is not a central location in the brain that processes all information. Rather, information flows to and is processed in domains, specialized areas of the brain that processes particular types of information. Second, this model suggests that much information processing is associational in nature. The recognition of specific sets of features by one area of the brain can directly trigger activity in other areas.

We propose that direct perception correspond to an associational mode of information processing. Further, we have enfolded the affordance construct into an information-processing model that differentiates four different types of stimuli: signal, sign, symbol, and affordance.

A signal is a simple associational trigger. It corresponds to the activation of a reflexive behavior. A sign, in contrast, is a learned association. The perception of a “sign” produces a mapping from a sensory stimulus to a phenomenal object. A symbol is a learned conceptualization. The perception of a symbol simultaneously produces a mapping from a sensory stimulus to symbolic language and it activates (what can be called) understanding. An affordance is also a learned conceptualization. The perception of an affordance produces a mapping from a sensory stimulus to the goal state of the actor and to the functional capabilities provided by the percept (with respect to the actor’s goal state).

Signs, signal, symbols, and affordances differ from one another in both the domains they activate within the brain and the “fan” of activation. Signals produce tightly coupled associations. Signs produce a mapping from a stimulus to a domain; they produce more activation that a signal (i.e., they produce a larger constellation of cell assemblies). Symbols produce a mapping from a stimulus to multiple domains. They activate both language areas and declarative memory (i.e., they produce an even larger constellation of cell assemblies). Affordances also produce a mapping from a stimulus to multiple domains. They activate motor domains and declarative memory. Affordances, as well as symbols, produce more activation than signs. At the ecological scale of the actor the affordance mapping is experienced as a ‘direct’ association of a percept with action needed to satisfy work within the prevailing situation.

In short, our motivation for creating the Distributed Cognition (DCOG) model is to create a computational model that exhibits the same type of flexible and adapt behavior that human’s exhibit. Our goal is not to build a normative model or even a model that summarizes analytically the result of an experiment (or several experiments), but rather to create a model that can readily display the effects of differences in educational background and skill on information processing and behavior.

Overview of the Distributed Cognition Model

The DCOG model is a bounded simulation of the brain’s functionality. For the initial implementation we modeled the functionality of four relatively well defined brain regions, or domains. The choice of these domains was determined by the behavior required to perform an Air Traffic Control (ATC) task. This task is a limited simulation of an ATC sector controller transferring aircraft from one sector to another and responding to speed increases. We chose this task because there was a task simulation available and there was human performance data available to compare to our model. The four modules we emulate are: 1) a cognitive module which sets goals and prioritizes tasks; 2) a procedural memory module which contains information on how to accomplish the task; 3) a visual sampling module which controls eye movements and provides for perceptual recognition; and, 4) a motor module through which the model operates the display console.

The cognitive domain consists of goals and a mechanism to prioritize actions. A goal is often characterized as a hierarchical knowledge structure that specifies an action an actor wishes to achieve and the conditions that enable and criteria that define its satisfactory achievement (Deutsch, Adams, Abrett, Cramer, and Feehrer, 1993). The nodes or leafs in the mid level of the hierarchy represent strategies, sets of plans to accomplish a goal. Strategies differ in terms of their processing demands (e.g., load on working memory) and their riskiness. The leafs at the lower level of a goal hierarchy are specific plans, sets of potential actions that can accomplish a goal.

Our model treats goals, strategies, and action procedures associationally. Links are formed on the basis of context and prior experience that enables different forms of representation (related to different levels of the Abstraction-Decomposition Space) to serve as the activated goal expression . The active goal expression, along with an activated strategy serves to implement unique levels of expertise.

The model currently has two high-level, abstract goals: avoid preventable delays and prevent accidents. The first goal addresses the way a sector controller transfers aircraft into and out of his or her sector. For each type of transfer there are decisions that have to be made and sequences of actions that have to occur by specified distances from the sector boundaries or an aircraft will go into a holding pattern (i.e., its flight will be delayed). The sector controller’s goal is to avoid delays whenever possible. The second goal addresses safety concerns. A speed request is only granted when there is not an another aircraft in front of the requesting aircraft.

Figure 3 depicts a simplified goal representation as part of the abstraction-decomposition space structure contained in the DCOG model. It is a simplified depiction because not all of the possible leaves, or path relations, are shown. More specifically, it does not depict the different strategies a controller could use. For example, a controller could process one transfer or speed request completely before going onto the next activity (e.g., servicing the next aircraft). Alternatively, the controller could chose a strategy to interweave actions relating to different aircraft. This path would require the controller to remember where he or she is at in an activity sequence for each aircraft, and consequently place a greater demand on working memory. This strategy increases the risk that the controller will forget which action is required next for one or more aircraft, which is the same as increasing the chance that the aircraft will be required to go into a holding pattern. Further, this simplified depiction does not specify the enabling criteria for an action and its success criteria. While this information must be specified, it was omitted from the diagram for simplicity sake.

The DCOG memory domain consists of procedural knowledge represented as event or action schema (Deutsch, et al., 1993). A schema is a data structure where the framework (or schema structure) specifies spatial, temporal, or conceptual relations among the nodes, while the nodes represent declarative information that designates a specific instance or occurrence of the schema relationship. Example event schema in the DCOG model are: accept-aircraft, transfer-aircraft, and respond-to-speed-request. The relations represented for accept-aircraft, for example, include aircraft name, direction headed, location, and distance to boundary. When instantiated, or activated, accept-aircraft nodes contain data on a specific aircraft (i.e., its name, heading, location, etc.) Example action schema are: activate-welcome-button, activate-transfer-aircraft-button, and accept-speed-request. Action schema represent action sequences such as pushing the welcome button, clicking on the appropriate button, and clicking on the send button. The actions are bound together in the schema by a temporal relationship (i.e., there is a correct order to follow when executing the behavior). The nodes of an action schema contain information on where a button is located, for example, and data on a specific aircraft (e.g., the number of the aircraft that requested a speed increase).

The visual sampling domain consists of mechanisms which control eye movements and which recognize perceptual situations (e.g., aircraft approaching the border). Two types of eye movements are modeled: visual scanning and directed gaze. While research has shown that these two eye movements differ across several dimensions (e.g., field of view, fixation pause, velocity of movement, etc.), in DCOG we only model differences in the pattern of saccadic movement. In visual scanning, the saccadic pattern of movement is to primarily examine “areas of tension” on the display. Research on Air Traffic Controllers has discovered that controllers scan select parts of their displays much more frequently than other (Means, Mumaw, Roth, Schlager, Williams, Gagne, Rice, Rosenthal, & Heon, 1988). These so-called areas of tension are areas where the controller anticipates a requirement to control an aircraft. In the DCOG model, we mimic this finding by having the model scan the areas around the sector boundaries much more frequently than other areas. In directed gaze, the saccadic pattern is to primarily follow a target. Directed gaze is employed when the model is actively controlling an aircraft (i.e., when the model handing off an aircraft to another sector).

Both visual scanning and directed gaze can be interrupted by a novel stimulus. When the DCOG model is engaged in either form of visual sampling, saccadic eye shifts cause it to sample other areas, albeit less frequently. If, for example, an aircraft icon has changed color, this will capture visual attention if it falls with the visual field of view and consequentially cause the visual stimulus to be processed by the cognitive domain.

Finally, the motor domain is fairly simplistic. It is the domain that operates the display switchology by controlling a mouse. In the DCOG model, we employ an average time for the model to move the mouse to a button and click. The only limitation we place on the model is that it can only be engaged in one movement at a time.

DCOG Implementation

One of our goals in creating DCOG was to develop a symbolic implementation of the state-change model of information processing described above. We chose to model cell assemblies as procedures and domains/modules as collections of procedures. In the brain, when cell assemblies reach a certain level of activation, they fire, signaling the formation of a thought, percept, or plan depending upon where in the brain the firing occurs. Corresponding, we created procedures that need to reach a certain level of activation before they can execute.

We created the DCOG model using the Distributed Operator Model Architecture (DOMAR) integrative architecture (Deutsch, 1997). DOMAR is a set of languages, analysis tools, and a simulator created to support the development of knowledge-based simulations of human performance, with a focus on the cognitive skills of the human operator. DOMAR provides three languages to represent the different facets of human performance. The SCORE Procedure Definition Language (SCORE) provides a set of sixty computational primitives for modeling the parallel execution of goals, plans, and tasks. The Rule Definition Language (RDL) provides computational primitives for representing rules (i.e., condition action pairs of the form If_Then) and for binding sets of rules into packets which specify when and how the rules are to be applied to a specific situation. The Simple Frame Language (SFL) provides computational primitives to hierarchically represent knowledge about objects and their attributes, and the relationships among objects.

The basic behavioral element in a DOMAR simulation is an agent. An agent is a special class of SFL object which, when it has a procedure bound to it at run-time, can run in the SCORE simulator. The DOMAR simulator is a discrete event simulator which contains mechanisms to simulate the parallel execution of agent behavior. We use this capability in DCOG to simulate the brain as a set of agents which operate in parallel and asynchronously; and whose collective interactions gives rise to the model’s behavior.

The SCORE procedural language is distinctive in that it provides two independent mechanisms for controlling the execution of computer code within a simulation. The first mechanism is the standard procedure call technique used in traditional computer languages. When a program is executed via procedure calls, the active procedure first performs some logic or computational function (i.e., it executes a test); based upon the result of this computation the procedure directly calls, and consequently passes control to, another procedure. Most local agent behavior in the model described below is controlled through sets of procedures that are activated via such procedure calls.

In addition, the SCORE language provides a second way to activate procedures: the signal-event/with-signal utility. A signal-event is analogous to an attention grabber; it is a user-defined occurrence that is broadcast throughout the simulation, “grabbing the attention” of (i.e., activating) all agents/procedures which contain the appropriate with-signal key. The signal-event is implemented as a list containing two parts: the signal key and some associated data. When a signal activates a procedure, the associated data is typically used by the procedure to effect some operation.

Signal events can arise from within the DOMAR simulation environment or from the external environment. DOMAR’s SCORE simulator is a discrete event simulator that operates on a time-sorted queue of future events when the simulation is operating is stand alone mode, and asynchronously when the simulation is linked to an external environment. A simulation begins when the scenario agent signals the initial event. The scenario agent is a special agent that controls both the queue of future events and which can receive input from the external environment.

The DOMAR system comes with interface code which enables it to participate in Common Object Request Broker Architecture (CORBA) distributing computing environments and High Level Architecture (HLA) federations, or be linked directly to a wide variety of systems via a socket interface. In stand alone model, the scenario agent maintains a list of stimuli that are to occur at specific times within the simulation. When linked to the external environment, the scenario agent packages incoming data as signal events and broadcasts the events throughout the simulation.

The signaling of an event begins a cascade of activity in other agents. As these (user defined) agents or procedures execute, they also place future procedures (i.e., signals) on the future-event queue as closures, which is a name for a function or procedure which has had variables bound to it. At the appropriate time interval, the simulator pops all the procedures to be executed at that time off the queue and executes them. This execution often adds additional closures to the queue for future execution. In addition, it can result in the generation of a signal-event-external which is both broadcast internally to DOMAR and externally. When a signal-event-external occurs, the scenario agent generates an appropriate message to be sent to the external environment (e.g., either a CORBA object, a HLA interaction, or a serialized list).

Example Simulation Run

We now provide an example of a notional simulation run to further illustrate the DCOG model. A simulation trial begins when the air traffic control simulation sends data describing the initial condition of the radar display. The DCOG model takes this data and stores it into a radar-display object. This object is not part of the psychological model per se, but rather a data structure the model uses when engaged in visual search behavior. As the simulation continues, aircraft-update information is continually loaded into this structure. In addition, there are other data structures that store textual information that is found on other parts of the radar display.

When the model is initialized, there are two active goals in the cognitive domain: prevent-accidents and avoid-preventable-delays, expressed in a specific form to model individual differences/expertise. The activation of these goals cause a signal-event to be sent to the visual domain, which it turn, causes the visual domain to begin scanning the ATC display using the visual scanning algorithm. The model scans all the areas of tensions, to include the speed request portion of the display and the sector boundaries. The presence of aircraft near a sector border, for example, triggers the activation of an appropriate goal within the cognitive domain. This activation is achieved through the visual sampling domain sending an appropriate signal-event to the cognitive domain. This signal-event contains declarative information (e.g., name, heading, etc. of aircraft) in its body, which is mapped into the appropriate goal schema node positions. One scan may result in the detection of various aircraft that need to be processed. For each aircraft, one signal-event is sent, which, in turn, instantiates a separate goal within the cognitive domain.

The inducement of active avoid-preventable-delays goals within the cognitive domain also triggers the formation of a goal-setting schema (again via the signal-event mechanism). This schema signals the visual sampling domain to use the directed gaze algorithm to determine the distance of each aircraft from the relevant boundary, which results in another signal being return to the cognitive domain. This signal sets a level of activation variable for each avoid-preventable-delays goal schema (which is active). The specific level of activation is dependent upon how close (in a temporal sense) the aircraft is to requiring service. The sooner it will need service, the higher the level of activation.

If the sum of the total activation received by the goal setting schema is below a given threshold (which corresponds to the model having time to service each aircraft in turn with out triggering a delay) then a signal is sent to the serial-processing-strategy schema. This signal-event contains in its body data regarding the aircraft that needs to be serviced first (which correspond to the aircraft with the highest activation level).

The serial-processing-strategy schema then activates the appropriate schema in the procedural memory domain. If, for example, the aircraft that needs servicing first is an aircraft entering the sector, then an accept-aircraft schema is activated. This schema sequentially activates procedures in the motor domain, which operate the appropriate switchology on the display (which is the DCOG simulation corresponds to forming and sending the appropriate signal-event-external to the simulation of the task domain).

As this procedure completes its task, control is handed back to the serial-processing-strategy schema, which signals the visual domain to conduct another scan of the areas of tension. This, in turn, starts the process over. If, however, the sum total of activation resulting from the new scan of the displays is above the set threshold, then a parallel-processing-strategy schema becomes activate.

The parallel processing strategy differs significantly from the serial processing strategy. Whereas the serial-processing-schema attempts to completely process one aircraft before going on to the next aircraft, the parallel-processing-strategy schema attempts to partially process several aircraft at a time. The complete processing of an individual aircraft typically requires multiple steps. For example, accepting an aircraft requires a controller to first respond to a request from a controller in another sector to accept the aircraft and then later to respond to a message from the aircraft entering their airspace. While the serial-processing-schema attempts to accomplish both actions before going on to the next aircraft, the parallel-processing-schema only attempts to accomplish the first action before processing another aircraft.

 The parallel-processing-schema maintains a ranked ordered list of the aircraft that need to be processed. This lists may contain up to seven items. When it becomes active, the parallel-processing-strategy schema will execute the initial action (i.e., if there is more than one) that is required to process the first aircraft in the list by activating the appropriate schema and procedures in the procedural memory domain, which in turn activates a procedure in the motor domain. Once this first action is complete (e.g., the controller has accepted the aircraft), control is passed back to the parallel-processing-schema in the cognitive domain. This is in contrast to the serial-processing-schema which would have maintained control and attempted to execute the next appropriate action (e.g., welcome the aircraft). The parallel-processing-strategy schema then updates the status of the first aircraft and activates the appropriate schema in the procedural memory domain to begin processing the second aircraft in the list. This newly active schema will execute the applicable action for the second aircraft and then return control, once again, to the cognitive domain. This activity continues until the list is fully processed or the ongoing activity is disrupted.

Execution activity can be disrupted in one of two ways. First there is a risk that the information contained in the list will decay before all that actions are completed. That is, activation of a schema corresponds to putting items in short term memory. The number of items in the list correspond to the number of elements in short-term memory. These items slowly decay as time moves on. The schema will continue to execute elements off the list until the remaining items decay below a threshold. Decay is modeled in the DCOG model as a Gamma distribution.

Second, there is also a risk that a saccade will fixate on another higher priority aircraft that needs to be processed before the parallel-processing-strategy schema has finished processing the list . The DCOG model simulates parallel processing among the various emulated domains. While the cognitive domain is setting and achieving goals, the visual domain is still, in parallel, sampling the ATC display. Interspersed among the direct gazes that are conducted to support goal achievement are saccades whose purpose (within an actual brain) is to continually refresh visual awareness. If during a saccade the visual gaze falls upon an aircraft which has turned red, for example, this will immediately trigger a signal being sent to the cognitive domain which activates an avoid-preventable-delays goal. The activation of this high priority goal immediately triggers the re-setting, or re-instantiation, of the goal-setting schema, which in turn, quite frequently results in a reprioritization of goals (e. g., process the delayed aircraft now!).

Conclusion

 The DCOG model emulates the state-change model of information processing through its dynamic linkage of procedures and the way it perceives affordances. Further, this model of information processing, at a symbolic level, seems to correspond closely to the processes that scientists have perceived in the study of work in natural environments.

Within the brain, cell assemblies in different domains synchronize their firing when executing behavior. Which specific cell assemblies become coupled depends to a large extent upon the context of the situation, with contextual cues being directly provided through the perception of affordances. Within the DCOG model, procedures within different modules synchronized their activity in a similar fashion as cell assemblies through the exchange of signal-event messages. Further, which procedures exchange messages depends heavily upon the context of the situation. As the visual sampling domain continuously scans the environment it identifies aircraft that need servicing. Each perception of a needy aircraft directly activates knowledge. The specific knowledge activated across domains depends upon the type of problem perceived (e.g., speed request, transfer, etc.), the number of aircraft the need servicing at a given time, and the expertise level of the actor.

The coupling of procedures also changes dynamically in a context dependent fashion as other information is picked-up from the environment. The perception of an aircraft entering a holding pattern (i.e., turning red), for example, will immediately trigger a reevaluation of the model’s goal. A change in goal typically causes one set of procedures to uncouple and another to couple. This change in coupling corresponds to disparate cell assemblies changing their patterns of synchronized firing.

The current version of the model only demonstrates how one type of stimuli can generate an affordance. However, it should be easy to perceive how this mechanism could be extended to other types of stimuli and other domains. For example, an association could be set-up which corresponds to a reflexive behavior. In this case an environmental stimuli, once perceived, would directly activate a procedure in the motor domain.

The current model changes strategies as workload increase in a similar manner to that seen in studies of individuals working in a natural environment. This change in strategy can be graphed in an abstraction-decomposition space (e.g., figure 1 or 2) as a different trajectory through the space. While the current model does not fully implement alternative strategies resulting from the possession of different knowledge, it does demonstrate different strategies in action.

In summary, the DCOG model described herein is our first attempt to create a model that emulates the way individuals actually work, as determined from process trace studies conducted in actual work settings. It is based upon a neurophysiologically plausible model of information-processing. We have designed and implemented several of the fundamental properties of the DCOG architecture. In the future, we plan to incrementally improve the computational modeling methodology as we continue to investigate the state-change approach as a means to better understand complex human behavior.
References.

Damasio, A.R. 1989. Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33, 25-62.
Deutsch, S. E. (1997). Multi-agent human performance modeling in OMAR. In M. J. Smith, G. Salvendy & R. J. Koubek (Eds.), Design of computing systems: Social and Ergonomic Considerations. Amsterdam: Elsevier.

Deutsch, S.E., Hudlicka, E., Adams, M.J., & Feehrer, C.E. (1993). Research Development, Training and

Evaluation (RDT&E) Support Computational Cognitive Models, Final Report (AL/HR-TR-1993-0072).

Wright-Patterson AFB, OH: Armstrong Laboratory, Logistics Research Division.

Dreyfus, H. L. & Dreyfus, S. E. (1988). Mind over machine: The power of human intuition and expertise in the era of the computer. New York: The Free Press.

Edelman, G. M. 1987. Neural Darwinsim New York: Basic Books.

Engel, A. K., Konig, P., Gray, C. M., & Singer, W. 1992. Stimulus-Dependent neuronal oscillation in cat visual cortex: Inter-columnar Interaction as Determined by cross-correlation analysis. European Journal of Neuroscience, 2, 588-606.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

Hebb, D. O. 1949. The Organization of Behavior. New York: Wiley.

Means, B., Mumaw, R., Roth, C., Schlager, M.A., Williams, E., Gagne, V., Rice, Rosenthal, D. & Heon, S. (1988). ATC Training Analysis Study: Design of the Next-Generation ATC Training System. HumRRO International Inc., OPM Work Order 342-036.

Rasmussen, J. (1986). Information processing and human-machine interaction: An approach to cognitive engineering. New York: North-Holland.

Rasmussen, J., Pejtersen, A. M., & Goodstein, L. P. (1994). Cognitive Systems Engineering. New York:

Wiley.

Singer, W. 1993. Synchronization of cortical activity and it putative role in information processing and learning. Annual Review of Physiology, 55:349-374.

Singer, W. 1995. Development and plasticity of cortical processing architectures. Science, 270, 758-763.

Sperandio, J. C. (1978). The regulation of working methods as a function of work-load among air traffic controllers. Ergonomics, 21, 195-202.

Vincente, K. J. (1999). Cognitive work analysis: Towards safe, productive, and healthy computer-based work. Mahwah: Lawrence Erlbaum Associates.

von der Malsburg, C. (1986). Synaptic plasticity as the basis of brain organization. In Changeux, J-P. & Konishi, M. Eds. The neural and molecular basis of learning. 411-432. New York: Wiley & Sons.

Figure 2 The Trace of a Technician

Figure 1 The Trace of an Engineer

Functional

Provide coordinated use of airspace

purpose

Abstract

 Avoid preventable

Accident prevention

function

 delays

General

Hand-off communication

Speed request

 comm

function

with N, S, E, W sectors

with calling aircraft

Physical

For in-bound traffic: For out-bound traffic:

 Answer speed request

function

Send accept/reject

msg

 Send request

msg

msg

 Accept on request Postpone accept Prior to entrance

 Accept or reject

 & prior to entrance (Delay aircraft) (or aircraft delayed)

 Welcome aircraft

 Contact new ATC

Figure 3 Goal Hierarchy

