
SLALOM Update:The Race Continues
John Gustafson, Diane Rover, Stephen Elbert, and Michael CarterAmes LaboratoryDOE, Ames, Iowa

Last November, we introduced in these pages a new kind of computer benchmark: a complete scientific
problem that scales to the amount of computing power available, and always runs in the same amount of time…
one minute. SLALOM assigns no penalty for novelty in language or architecture, and runs on computers as
different as an Alliant, a MasPar, an nCUBE, and a Toshiba notebook PC.

Since that time, there have been several developments:

• The number of computer systems in the list has more than doubled.
• The algorithms have improved.
• An annual award for SLALOM performance has been announced.
• SLALOM is the judge for at least one competitive supercomputer procurement.
• The massively-parallel contenders are starting to unseat the low-end Cray computers.
• All but a few major scientific computer manufacturers are represented in our report.
• Many of the original numbers have improved significantly.

Most Wanted List

We’re still waiting to hear results for a few major players in supercomputing: Thinking Machines,
Convex, MEIKO, and Stardent haven’t sent anything to us, nor have any of their customers. We’d also very
much like numbers for the WaveTracer and Active Memory Technology computers. Our Single-Instruction,
Multiple Data (SIMD) version has been improved since the last Supercomputing Review article, so the groups
working on those machines might want to check it out as a better starting point (see inset). The only IBM
mainframe measurements are nonparallel and nonvector, so we expect big improvements to its performance.

We’re awaiting word from the Japanese computer makers: NEC, Hitachi Data Systems, and Fujitsu. We
also welcome entries from small systems. Anything over 137 FLOPS should be able to finish a small run in less
than 60 seconds.

The Superlinear Speedup Effect

A marvelous thing happens with fixed-time benchmarking, not mentioned in our previous report. Many
parallel machines more than double their MFLOPS rate when they double the number of processors used. The
reason for this is illustrated by the figure below:

http://www.scl.ameslab.gov/Personnel/john.html
http://www.scl.ameslab.gov/Personnel/steve.html
http://www.scl.ameslab.gov/Projects/slalom1.html

Most scientific computers achieve their highest MFLOPS rate doing matrix operations, and lower
MFLOPS rate doing setup and miscellaneous tasks. Input/output might not score any MFLOPS at all! As the
problem size grows, the matrix operations becomes a larger and larger fraction of the one minute run… so the
average speed per processor increases. One reason the MFLOPS entries in the table increase so nicely when the
number of processors increases is because this effect compensates for some of the usual losses of parallel
efficiency.

This is one reason one shouldn’t use MFLOPS (or MIPS) to measure performance, of course. Right now
we provide MFLOPS in the table to help people translate the performance to something for which they have a
feel, but ultimately the only number that matters is the size of the problem solved, here measured by the number
of patches.

Preserving Integrity

To answer one question we’ve been asked repeatedly, we will not accept money in return for optimizing
SLALOM performance. But we will provide, for free, unbiased advice and suggestions to anyone trying to get
the best possible performance out of their system.

We also do not allow use of these results in advertising without our prior consent. Too often, benchmark
data has been “excerpted” in lists that conveniently eliminate certain competing machines or crucial footnotes
that tell the full story. If you suspect that SLALOM information is being misused, please contact us immedi-
ately. SLALOM is designed to resist “benchmark rot,” and we’ll fight to preserve its integrity.

Improving the SLALOM Algorithm

A bit of folklore in this business goes something like this: “Half the improvements in computing speed
come from hardware advances, and the other half come from algorithm advances.” That is, if an application runs
108 times faster than it did 35 years ago, it’s probably the result of 104 times faster hardware and 104 times faster
algorithms. Starting in 1990, SLALOM began what may be a decades-long experiment to test this aphorism.

At Cray Research, Inc. and elsewhere, a technique known as Strassen multiplication was used in the
matrix solver. The idea is that 2 by 2 matrix multiplication can be done with 7 multiplications rather than the
usual 23 = 8, and this can be applied recursively to n by n matrices to allow general matrix multiplication in

order nlog27 (about n2.8) floating-point operations. More recent methods take the exponent down as low as 2.4,
but are only advantageous for very large n. So we now have “blocked” versions of SLALOM that use matrix-
matrix multiplication as the kernel (similar to LAPACK), and you can adjust the size of the matrix and the
method used to whatever works best. That was the first major improvement to the SLALOM algorithm.

James B. Shearer, of the IBM T.J. Watson Research Center, has provided a number of ideas for SLA-
LOM, especially in the “SetUp” routines. He discovered a way to reduce the number of calls to the logarithm
function, and found ways to re-use some quantities without loss of generality. For very large numbers of
patches, he points out, the rounding error in our coupling function will make mathematically approximate
formulas computationally more accurate. Fortunately, that will offer only a slight improvement because the
setup is only a small part of the one-minute run for such large numbers of patches.

Shearer also suggests that iterative methods for solving the matrix will beat our direct method, at least
for the suggested input data. He may be right, but we reserve the right to evaluate systems based on their worst-
case-input behavior. If all the walls in the radiosity problem are highly reflective, iterative methods converge
very slowly. But we invite the experiment.

These algorithm improvements are another reason not to use MFLOPS to compare performance. These
improvements might allow larger problems without higher MFLOPS, and post-mortem operation counts are
very difficult with these clever optimizations. For now, we will continue to estimate the minimal operations for
the best serial version of the program, which will be accurate to a few percent in most cases.

SLALOM will absorb these changes and others that arise. An upper bound on advances occurs if finer
problem decomposition yields no improvement in answer accuracy, for some problem size that can be solved in
less than a minute on some machine. This would mean the end of the race for this first SLALOM experiment,
and we would seek different scalable problems on which to base a fixed-time performance comparison. But for
now, the SLALOM benchmark looks like it may last for a while.

How to Get SLALOM

SLALOM resides on a Unix workstation at Ames Lab, tantalus.al.iastate.edu . For those of you without a
nameserver, that’s IP address 129.186.200.15. If you connect to this computer through the networks via “ftp ”, just answer “ftp ” to
the “username :” prompt, and a carriage return to the “password :” prompt, and you’re in. Use your usual ftp commands to
peruse the directories and files you find there, downloading whatever interests you. Among other things, you’ll find

• Up-to-date reports of all computers measured so far
• Programs for displaying the answer graphically
• Concise definitions of the problem to solve, in Fortran, C, and Pascal
• Parallel versions for SIMD and MIMD environments
• Vectorized versions for traditional pipelined supercomputers
• Examples of answer files for checking your results

If your only network access is e-mail, send a note to netlib@tantalus.al.iastate.edu , and a case-sensitive version of the
netlib software will mail you back instructions. Please don’t ask for a tape, a listing, or “just send me everything!” If you don’t know
exactly what you want, find a friend on the Internet.

The SLALOM Benchmark Report
The following list ranks computers that are actively marketed.

Machine, environment Processors Patches Seconds MFLOPS Measurer Date

Cray Y/MP-8, 167 MHz 8 5120 59.03 2130. J. Brooks (v) 9/21/90
Fortran+tuned LAPACK Cray Research
solver (Strassen)

Cray Y/MP-4, 167 MHz 4 4096 54.81 1190. J. Brooks (v) 9/21/90
Fortran+tuned LAPACK Cray Research
solver (Strassen)

nCUBE 2, 20 MHz 1024 3720 59.96 813. J. Gustafson 1/11/91
Fortran+assembler Ames Lab

Cray Y/MP-2, 167 MHz 2 3200 56.71 557. J. Brooks (v) 9/21/90
Fortran+tuned LAPACK Cray Research
solver (Strassen)

Cray Y/MP-1, 167 MHz 1 2560 58.27 283. J. Brooks (v) 9/21/90
Fortran+tuned LAPACK Cray Research
solver (Strassen)

nCUBE 2, 20 MHz 256 2493 59.99 251. J. Gustafson 1/11/91
Fortran+assembler Ames Lab

Cray-2S/8, 244 MHz 8 2443 59.83 240. S. Elbert 9/8/90
Fortran+directives, Ames Lab
FPP 3.00Z25

Intel iPSC/860, 40 MHz 64 2167 59.99? 169. T. Dunigan 1/7/91
Fortran+assembler BLAS ORNL
(pgf77 -O3 NOIEEE)

MasPar MP-1, 12.5 16384 2047 55.4 155. J. Brown (v) 11/20/90
MHz, C with plural MasPar
variables (mpl)

iPSC/860, 40 MHz 32 1920 59.95 118 E. Kushner (v) 1/25/91
Fortran (-O3 -Knoieee) Intel

MasPar MP-1, 12.5 8192 1791 59.90 96.2 M. Carter 1/15/91
MHz, C with plural Ames Lab
variables (mpl)

Alliant FX/2800 14 1736 59.86 89.3 J. Perry (v) 1/24/91
Fortran Alliant
(-Ogc, KAI Lib's)

iPSC/860, 40 MHz 16 1671 59.83 78.85 E. Kushner (v) 1/25/91
Fortran (-O3 -Knoieee) Intel

nCUBE 2, 20 MHz 64 1598 59.70 69.4 J. Gustafson 1/11/91
Fortran+assembler Ames Lab

Machine, environment Processors Patches Seconds MFLOPS Measurer Date

Alliant FX/2800 8 1502 59.98 58.9 J. Perry (v) 1/24/91
Fortran Alliant
(-Ogc, KAI Lib's)

MasPar MP-1, 12.5 MHz 4096 1470 59.77 54.6 M. Carter 1/14/91
C with plural Ames Lab
variables (mpl)

Intel iPSC/860, 40 MHz 16 1404 59.85 48.7 T. Dunigan 1/7/91
Fortran+assembler BLAS ORNL
(pgf77 -O3 NOIEEE)

iPSC/860, 40 MHz 8 1392 59.72 46.75 E. Kushner (v) 1/25/91
Fortran (-O3 -Knoieee) Intel

Silicon Graphics 4D/380S 8 1308 59.19 40.2 O. Schreiber (v) 1/28/91
33 MHz, Fortran+block Solver Silicon Graphics
(-O2 -mp)

IBM RS/6000 540, 30 MHz 1 1304 59.86 39.4 J. Shearer (v) 1/8/91
Fortran+ESSL calls IBM
XLF V2 prerelease, -O

FPS M511EA, 33 MHz 1 1197 59.98 30.2 B. Whitney (v) 1/24/91
Fortran+LAPACK calls FPS Computing
f77 -Oc vec+ -Oc inl+

Alliant FX/2800 4 1139 59.78 26.9 J. Chmura (v) 12/7/90
Fortran Alliant
(Ogc DAS -KAI Lib's)

MasPar MP-1, 12.5 2048 1119 58.59 25.6 M. Carter 1/15/91
MHz, C with plural Ames Lab
variables (mpl)

iPSC/860, 40 MHz 4 1103 59.85 24.03 E. Kushner (v) 1/25/91
Fortran (-O3 -Knoieee) Intel

IBM RS/6000 520, 20 MHz 1 1091 59.30 23.8 J. Shearer (v) 1/9/91
Fortran+ESSL calls IBM
XLF V2 prerelease, -O

Silicon Graphics 4D/380S 4 1065 59.46 22.4 O. Schreiber (v) 1/28/91
33 MHz, Fortran+block Solver Silicon Graphics
(-O2 -mp)

nCUBE 2, 20 MHz 16 994 59.87 17.9 J. Gustafson 1/11/91
Fortran+assembler Ames Lab

MasPar MP-1, 12.5 MHz 1024 927 57.0 15.9 J. Brown (v) 10/5/90
C with plural MasPar
variables (mpl)

Intel iPSC/860, 40 MHz 4 905 59.89 14.1 T. Dunigan 1/7/91
Fortran+assembler BLAS ORNL
(pgf77 -O3 NOIEEE)

Machine, environment Processors Patches Seconds MFLOPS Measurer Date

IBM RS/6000 320, 20 MHz 1 895 59.96 13.7 S. Elbert 1/30/91
Fortran+block Solver (-O Ames Lab
-lblas, some -qopt=3)

SKYbolt, 40 MHz i860/i960 1 831 59.94 11.1 C. Boozer (v) 1/9/91
C+assembler dot product SKY Computers
(-O sched vec UNROLL)

Silicon Graphics 4D/380S 2 834 59.25 11.2 S. Elbert 1/30/91
33 MHz, Fortran+block Solver Ames Lab
(-O2 -mp)

SKYstation, 40 MHz i860/i960 1 793 59.90 9.77 C. Boozer (v) 1/29/91
C (-O sched vec UNROLL) SKY Computers

Silicon Graphics 4D/35 1 717 59.54 7.46 O. Schreiber (v) 1/29/91
37 MHz, Fortran Silicon Graphics
(-O2 -mp)

Alliant FX/2800 1 693 59.75 6.76 J. Chmura (v) 12/7/90
Fortran Alliant
(Ogu -KAI Lib's)

Silicon Graphics 4D/380S 1 676 59.40 6.36 S. Elbert 1/30/91
33 MHz, Fortran+block Solver Ames Lab
(-O2)

IBM 3090-200VF 1 657 59.96 5.83 R. Hollebeek 11/29/90
Fortran (Fortvs2n) U. Penn
Unvectorized

iPSC/860, 40 MHz 1 647 59.41 5.46 E. Kushner (v) 1/25/91
Fortran (-O3 -Knoieee) Intel

FPS-500 (33 MHz MIPS 1 619 59.75 4.97 P. Hinker 11/12/90
+vec. unit), Fortran LANL
(FPS F77 4.3,-Oc vec)

nCUBE 2, 20 MHz 4 596 59.87 4.34 J. Gustafson 1/11/91
Fortran+assembler Ames Lab

DECStation 5000, 1 534 59.95 3.25 S. Elbert 1/30/91
25 MHz, Fortran+block Solver Ames Lab
(-O2)

Silicon Graphics 4D/25 1 507 59.87 2.83 S. Elbert 1/30/91
20 MHz, Fortran+block Solver Ames Lab
(f77 -O2)

DECStation 5000, 1 432 59.66 1.82 D. Rover 1/31/91
25 MHz, Pascal (-O2) Ames Lab

SUN 4/370, 25 MHz, 1 419 59.82 1.75 M. Carter 10/8/90
C (ucc -O4 -dalign etc.) Ames Lab

DECStation 3100, 1 418 59.52 1.70 S. Elbert 1/30/91
16.7 MHz, Fortran+block Solver Ames Lab
(-O2)

Machine, environment Processors Patches Seconds MFLOPS Measurer Date

Silicon Graphics 4D/20 1 401 59.71 1.52 S. Elbert 1/30/91
12.5 MHz, Fortran+block Solver Ames Lab
(f77 -O2)

DECStation 2100, 1 377 59.84 1.29 S. Elbert 1/30/91
12.5 MHz, Fortran+block Solver Ames Lab
(-O2)

nCUBE 2, 20 MHz 1 354 59.73 1.13 J. Gustafson 8/13/90
Fortran + assembler Ames Lab
subroutines (-O2)

DECStation 2100, 1 340 59.64 0.967 M. Carter 1/24/91
12.5 MHz, C Ames Lab
(cc -O3)

Motorola MVME181 (20 1 289 59.43 0.676 R. Blech 10/17/90
MHz 88000) Fortran, NASA
(OASYS F77 1.8.5)

Sequent Symmetry 1 253 59.91 0.479 M. Carter 1/3/91
33 MHz, C Ames Lab
(cc -O -fpa)

VAXStation 3520 1 181 59.53 0.197 M. Carter 1/24/91
C Ames Lab
(cc -O)

Cogent XTM 1 149 59.37 0.133 C. Vollum (v) 6/11/90
(T800 Transputer) Cogent Research
Fortran 77 (-O -u)

Toshiba 1000, 6 MHz 1 12 54.+ 0.000646 P. Hinker 11/14/90
8088, C (Turbo C, LANL

 with reg/jump option)

NOTES

A “(v)” after the name of the person who made the measurement indicates a vendor. Vendors frequently have
access to compilers, libraries, and other tools that make their performance higher than would be achievable by a
customer.

The CRAY Y-MP runs failed the old SetUp3 tolerance of 5.E-10, but passed with a tolerance of 5.E-8; special
LOG and ATAN functions were used with only 11-decimal precision for higher speed. We will enforce the
current tolerance uniformly in our next report.

The CRAY 2 figures are low because blocking methods were not used; future runs will use matrix-matrix multi-
ply as the kernel, as was done for the Y-MP.

