Intrinsic Errors in Physical Ocean Climate Models

Matthew Hecht Los Alamos National Laboratory

Satellite observation of sea surface temperature

Horizontal vs Vertical Mixing

- Observational estimates:
 - A_v order of 1 x 10⁻⁴ m²/s
 - $A_H \text{ order of 1 x 10}^2 \text{ m}^2/\text{s}$
- Separation of 6 orders of magnitude
 - These estimates for viscous mixing of momenta
 - Similar separation of scales for diffusive mixing of heat and salt

But mixing of heat and salt not exactly horizontal/vertical

 Large lateral mixing along local surface of constant "potential density"

- GM90: Gent-McWilliams form of isopycnal tracer mixing
 - Rotate mixing of heat, salt slightly from horizontal to "local surface of constant potential density"
 - Diffuse "layer thickness"

Ocn Model Turbulence Param. in the momentum eqns

- Smagorinsky, sometimes
 - do boundary flows get dissipated too vigorously?
- Anisotropic forms
 - High along-stream, low cross-stream

summarizing what we do...

- set lateral viscosity as low as possible, consistent with minimum constraints of
 - viscous balance with planetary vorticity in western boundary layer, where mid-latitude boundary jets live
 - noise control
- use Gent-McWilliams form of isopycnal tracer mixing
 - not only for direct impact of GM90 on fields of heat and salt (on the density structure), but then
 - rely on geostrophy to get much of the influence of sub-gridscale mixing on momenta

Effectiveness of Gent-McWilliams isopycnal mixing

Compatible atmospheric and oceanic northward heat transports with use of GM90

Previous generation ocean model produced incompatible saw-toothed line -- required "flux corrections"

Refinement of GM90 Isopycnal Mixing

- Isopycnal mixing is for the adiabatic interior
 - What to do in the very diabatic mixed layer?
 - How to transition between the two regimes?
- Focus of one of two NSF/NOAA funded "Climate Process Teams"

in review

Features that resist parameterization

- Two examples:
 - Gulf Stream/North Atlantic Current System
 - Southern ocean response to wind stress

FIG. 6. Instantaneous surface speed in 1° and ½° models after 40 yr. Note that the large-scale structure of the 1° model is quite similar to the ½° model (the currents have similar locations and have similar horizontal extents). The main difference is in the presence of intense jets and eddies in the ½° model.

HALLBERG AND GNANADESIKAN

FIG. 4. One-year running mean Drake Passage transport at $\frac{1}{2}^{\circ}$ (magenta), $\frac{1}{2}^{\circ}$ (blue), and $\frac{1}{2}^{\circ}$ (red) resolutions with explicit eddies, and at $\frac{1}{2}^{\circ}$ (green) and 1° (black) resolutions with eddy effects parameterized with an interface height diffusivity (akin to GM) of 1000 m² s⁻¹. After 20 yr, the heavier lines denote the cases with stronger winds and the thinner lines are with weaker winds. Adding the GM parameterization to the $\frac{1}{2}^{\circ}$ model suppresses both the marginally resolved eddy variability and most of the Drake Passage transport variability at a range of time scales.

Does it matter?

 Will these less adequately modeled features matter more to 21^{rst} Century response than to 20th Century "control"?

Does the path taken by warm, salty North Atlantic waters matter...

 Efforts underway to study 21^{rst} century climate response with more realistic eddy-resolving ocean

– Recall that term, "grand challenge"?

 A few words on one more effort to get a more complete representation of influence of mesoscale variability on the mean circulation...

 satisfies Kelvin's Circulation Thm, conserves energy and potential vorticity in the absence of dissipation.

LANS- α in QG model with double gyre forcing

Holm and Nadiga, JPO 2003

20

Other considerations for climate ocean modeling

- Transport scheme
 - Do we require sign preservation, or even strict monotonicity?
 - Concern for spurious convection, 2*dx modes?
 - Griffies et al. (2000) point out:
 - spurious mixing increases with eddy variability
 - case for importance of transport scheme at *high* resolution.
- Horizontal grid discretization
 - Uniformity, or focused resolution?

... other considerations

- Vertical discretization of topography
 - Penduff (2002), Barnier (2006), make case for at least light smoothing
 - but still need to maintain extrema (sills, passages)
- Vertical mixing, convection
- Tides, bottom topography and mixing
- Overflows
- Can the vertical discretization of the ocean handle more than a few meters of sea ice?

Vertical coordinates: there are choices

- We've talked about "z-coordinate" modeling
 - because this is what most of us do
- Classes of code have traditionally been set by different vertical coordinates
 - Z-models: large-scale climate
 - isopycnal-models: idealized adiabatic simulations
 - Sigma-models: coastal applications
- These barriers being eroded

Vertical coordinates for climate

- Standard z-coordinate models to be well represented in IPCC AR5
- Hybrid isopycnal/z-coordinate model making inroads
 HYCOM: used by GISS, studied within CCSM by FSU
- MIT has option for z^{*}
 - Variation on z-coordinate, no restriction on thickness of first level
 - Sea-ice needn't be restricted to a few meters thickness
 - GFDL MOM adopting z^* as well
- LANL POP developing a different kind of hybrid
 - Hybrid isopycnal/z-coordinate for temperature, salinity
 - Z-coordinate for momenta
 - Minimization of pressure gradient errors
 - Energetically consistent interpolations between

Take up some of these issues with an ocean modeler:

- Best options for:
 - adiabatic tracer mixing,
 - viscosity?
- Grid discretization:
 - Horizontal,
 - vertical?
- Resolution?

- Transport?
- Basic model
 formulation:
 - Vertical coordinate?
 - and other very fundamental issues not touched on here (but you'll know many of them)...