Intercalation and Ion Exchange Properties of Hydrotalcite $Mg_{1-x}AI_x(OH)_2A_x \cdot nH_2O$ Derivatives (A = CI⁻, NO₃⁻, Br⁻, and I⁻)

<u>Ranko P. Bontchev</u>, Shirley Liu, James L. Krumhansl, James Voigt and Tina M. Nenoff

Sandia National Laboratories,

P.O. BOX 5800, Albuquerque, NM 87185-0755

- Current Research: Precipitation of inert phases able to incorporate or exchange large amounts of anions
- Target materials: Anion "getters" (CI⁻, Br⁻, I⁻, NO₃⁻,...)
- Most promising candidates: Hydrotalcites (HTCs)

Goal of this study: To evaluate the ability and selectivity of HTCs to incorporate a series of monovalent anions under different synthetic and ion-exchange conditions

Background

- HTCs double layered hydroxides with general formula Mg_{1-x}Al_x(OH)₂A_x·nH₂O (A = NO₃⁻, Cl⁻, Br⁻, I⁻, SO₄⁻, CO₃⁻...)
- Stacking of $[Mg(II)_{1-x}AI(III)_{x}(OH)_{2}]^{x+}$ and $[A]_{x}^{-}$ layers
- Hexagonal (trigonal, R-3m) cell with $a_o \approx 3.05$ Å and $c_o \approx 22-25$ Å

Synthesis

of pure and mixed AA'-HTCs: $Mg_6AI_2(OH)_{16}(A)_x(A')_{2-x}.4H_2O$ (A, A' = NO_3^- , CI⁻, Br⁻, I⁻)

- I. One-pot synthesis:
- 1. $MgA_2 + AIA_3 + H_2O$
- 2. Precipitation with

NH₄OH (pH = 8.5)

3. 12-24h @ 120°C ,

Parr-reactor

Crystalline A-HTC

II. Direct ion exchange

1. Pre-synthesized A'-HTC

2. A'/A exchange in NaA sln.

Characterization: XRD, SEM, BET, DMLS, IC, FTIR

Morphology, particles size and surface area of HTCs

XRD: (I) crystalline Mg₆Al₂(OH)₁₆A₂.nH₂O
(II) amorphous Mg₆ / Al₂ /(OH)₁₈
(III) crystalline MgO + Al₂O₃

<u>TGA</u>: $Mg_6Al_2(OH)_{16}Cl_2.5H_2O$

(I) 25 < T < 250°C

 $Mg_{6}Al_{2}(OH)_{16}Cl_{2}.5H_{2}O - 5H_{2}O$

(Calc. Wt. Loss = 14.20 %)

(II) 250 < T < 500°C

 $[(I)] - [2HCI - 7H_2O]$

(Total Calc. Wt. Loss = 45.66 %)

All HTCs preserve their crystal (layered) structure up to about 250-300°C

XRD: c_o and L as a function of the anionic radii (r_i) of A⁻

The bigger the ionic radius of A^2 , the bigger L and c_o

* Determined from CO₃-HTC (CO₃ in "flat configuration")

Possible orientations of the (NO₃)⁻ anions and resulting interlayer MOH - MOH distances [L] in NO₃-HTC

Ion Exchange at Room Temperature: CI-HTC + 1.0M NaA Solutions ($A^{-} = Br^{-}$, I^{-} , NO_{3}^{-})

Ion Exchange at Room Temperature: Br-HTC + 1.0M NaA Solutions (A⁻ = Cl⁻, l⁻,NO₃⁻)

Interlayer separation L [A]

Ion Exchange at Room Temperature: I-HTC + 1.0M NaA Solutions (A⁻ = Cl⁻, Br⁻,NO₃⁻)

Ion Exchange at Room Temperature: NO₃-HTC + 1.0M NaA Solutions (A⁻ = Cl⁻, Br⁻, l⁻)

Interlayer separation L [A]

Ion exchange of A-HTCs with 1 M NaA' solutions @ room temp.

All A-HTCs show highest selectivity for Br⁻ In all cases, the order of ion exchange preference is $Br^- > Cl^- > NO_3^- > l^-$ <u>Cl⁻ determines the interlayer spacing L in all cases</u>

 $NO_3 : CI = 0.74 : 1$ $NO_3 : CI = 0.13 : 1$

The higher the starting (A' : CI) ratio, the higher the incorporation of A' in the final A'/CI-HTC

A'/CI-HTCs show highest selectivity for Br⁻ in all starting (A' : CI) ratios

CI⁻ determines the interlayer spacing L in all cases

The higher the starting (A : NO_3) ratio, the higher the incorporation of A in the final A/NO₃-HTC

A/NO₃-HTCs show highest selectivity for Br⁻ in all starting (A : NO₃) ratios

CI, Br and I determine the interlayer spacing L when A : NO₃= 1:1

 NO_3 ("tilted") determines the interlayer spacing L when A : NO_3 = 1:3

One-pot synthesis of HTC with starting ratio CI:Br:I:NO₃ = 1:1:1:1

The as-synthesized HTC shows highest incorporation of Br⁻ The order of ion incorporation preference is $Br^- > CI^- > NO_3^- > I^-$ CI⁻ determines the interlayer spacing L

Conclusions

All synthetic methods (one-pot synthesis, ion exchange) lead to mixed AA'-HTCs with virtually the same A : A' ratios

The final A:A' ratio in one-pot synthesized AA'-HTCs is proportional to and could be controlled by the starting A:A' ratio

There is no simple and straightforward correlation between the size of the incorporated A/A' anions and the interlayer spacing L

All A-HTCs show highest selectivity for Br⁻

In all mixed HTCs the order of anion incorporation preference is $Br^- > CI^- > NO_3^- > I^-$

Acknowledgments

Thanks to Diana Sipola for the particles size distribution, surface area determination and SEM images

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

