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ABSTRACT 
 
This paper describes our participation in TREC-2005 for 
the ad hoc Genomic track, in which we evaluate five 
different stemming approaches to performing domain-
specific searches within a MEDLINE subset.  We also 
evaluate the impact that manually assigned descriptors 
(MeSH headings) have on retrieval effectiveness.  We 
design a domain-specific query expansion scheme and 
compare it with the more classic Rocchio approach.  In 
our experiments on this collection subset, we discover 
that mean average precision does not improve when using 
different stemming algorithm.  We then show how the 
presence of the MeSH headings significantly enhances 
mean average precision by about 9%.  Finally, we 
illustrate how the use of various query expansion 
techniques can impairs retrieval performance.    

1. INTRODUCTION 
During our participation in the ad hoc Genomic track, we 
were concerned with domain-specific IR systems that 
would provide a ranked list of MEDLINE records in 
response to requests by biologists.  This involved a set of 
available queries describing typical search interests, and 
in which gene and protein names were essential elements 
in effective retrieval.  Given that in biomedical 
publications information is evolving rapidly and involves 
a wide variety of terminology.  It is known that large 
numbers of names, symbols and synonyms are used to 
denote the same protein or gene.  In order to provide a 
partial solution to some of these problems, this paper 
describes three strategies that have been suggested to 
hopefully enhance the effectiveness of biomedical 
information searches.   
First we evaluate the impact of various stemming 
procedures used to conflate word variants into an 
appropriate lemma or stem.  This is based on the 

assumption in IR systems that efficient approaches make 
use of stemming schemes in order to resolve partially the 
vocabulary mismatches that occur when users submit 
terms that are very different from those used by document 
authors.  In other words, when a query contains the term 
“computer,” it would seem reasonable to also retrieve 
documents containing related words such as “computers,” 
or even “computing.” 
Second, we accept the fact that manually assigned 
descriptors would increase the chances of retrieving more 
pertinent documents, especially compared to searches 
based only on only terms provided in the query.  Usually 
based on controlled vocabularies, manual indexing tends 
to result in greater indexing consistency.  In fact, the 
underlying thesaurus used would prescribe a uniform and 
invariable choice of indexing descriptors, normalize 
orthographic (e.g., “database” or “data base”) and lexical 
variants (e.g., “analyzing,” “analysis”) or any expressions 
with similar meanings (e.g., “computer science,” 
“informatics”). 
Third, we should also assume that when searching 
information, users will not know all synonyms and related 
terms needed to accurately express their information 
needs.  Query expansion would thus take different term-
term relationships into account and determine which 
words or phrases should be included in an expanded 
query.  Based on various empirical studies already carried 
out, such automatic query expansion approaches usually 
result in better retrieval performance.   
The rest of this paper is organized as follows.  Section 2 
depicts the main characteristics of our test-collection.  
Section 3 briefly describes the IR models used during our 
experiments.  Section 4 presents our domain-specific and 
general query expansion approaches.  Section 5 evaluates 
five different stemming schemes and two query expansion 
methods.  The main findings of this paper are presented in 
Section 6. 



2. TEST-COLLECTION 
The corpus used in our experiments was extracted from 
the well-known MEDLINE1 bibliographic database on 
biomedical literature.  This corpus subset was made 
available for the TREC-2005 evaluation campaign and 
includes around 10 years of scientific publications 
(4,591,008 records or about 10.6 GB of compressed data).   
 

PMID- 10605436 
 … 
DP  - 1978 Feb 
TI  - Concerning the localization of steroids in centrioles and 
basal bodies by immunofluorescence. 
PG  - 255-60 
AB  - Specific steroid antibodies, by the immunofluorescence 
technique, regularly reveal fluorescent centrioles and cilia-
bearing basal bodies intarget and nontarget cells. Although 
the precise identity of the immunoreactive steroid substance 
has not yet been … 
 AU  - Nenci I 
 AU  - Marchetti E 
 PT  - Journal Article 
 RN  - 0 (Steroids) 
 SB  - IM 
 MH  - Animals  
 MH  - Centrioles/*ultrastructure 
 MH  - Cilia/ultrastructure 
 MH  - Female 
 MH  - Fluorescent Antibody Technique 
 MH  - Human 
 MH  - Lymphocytes/*cytology 
 MH  - Male 
 MH  - Organelles/*ultrastructure 
 MH  - Rats 
 MH  - Rats, Sprague-Dawley 
 MH  - Respiratory Mucosa/cytology 
 MH  - Steroids/*analysis 
 MH  - Trachea 
 SO  - J Cell Biol 1978 Feb;76(2):255-60. 
  … 

Table 1. Example of a MEDLINE record 

Each record is structured according to a specific set of 
fields2, such as PMID (PubMed unique identifier), DP 
(publication date), AU (author), PT (publication type), SO 
(source), etc.  From an IR perspective, the most important 
sources of information are the article title (TI), the 
abstract (AB together with the OAB field, other abstracts 
supplied by an NLM collaborating organization) and the 
set of manually assigned MeSH headings (MH) extracted 
from the MeSH3 Thesaurus.  Along with these three main 

                                                           
1 See http://www.nlm.nih.gov/pubs/factsheets/medline.html 
2 For more information about all these fields, see the site 

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helppubmed.t
able.pubmedhelp.T44 

3 See the site http://www.nlm.nih.gov/mesh/meshhome.html 

fields, we also might have assumed that the RN field4, OT 
(other non-MeSH keywords) would be of some value in 
an IR application. 
Within this collection are fifty topics (see examples listed 
in Table 2) that correspond to the real information needs 
expressed by biologists.  This topic set is subdivided into 
five different main scenarios (or typical search interests).  
Regardless of the topic, the IR system is to return the 
same type of answer, namely a ranked list of MEDLINE 
records.   
Five information need scenarios are described below.  
Topics #100 to #109 correspond to search examples for 
certain standard methods or protocols, for some given 
type of experiment (e.g., “How to “open up” a cell”).  
Topics #110 to #119 represent information describing the 
role(s) of a gene involved in a disease (e.g., “Interferon-
beta and multiple sclerosis”).  Topics #120 to #129 
represent information needs related to the role of a gene 
in a specific biological process (e.g., “casein kinase II in 
ribosome assembly”).  Topics #130 to #139 represent 
information needs describing interactions between two or 
more genes in the function of an organ or in a disease 
(e.g., “Bop and Pes in cell growth”).  Finally, topics #140 
to #149 represent information explaining one or more 
mutations of a given gene and its biological impact or role 
(e.g., “mutations in metazoan Pes and effect on cell 
growth”).   
 

<ID> 105 
<METHOD> Purification of rat IgM 
<ID> 111 
<GENE> PRNP 
<DISEASE> Mad Cow Disease 
<ID> 120 
<GENE> Nucleoside diphosphate kinase (NM23)  
<PROCESS> Tumor progression 
<ID> 130 
<GENE> BRCA1 regulation of ubiquitin 
<DISEASE> cancer 
<ID> 140 
<GENE> BRCA1 185delAG mutation 
<PROCESS> role in ovarian cancer 

Table 2. One example taken from each 
of five topic scenarios 

As shown in Table 2, the vocabulary used in these topics 
tends to indicate that general dictionaries or thesauri do 
would not be the most appropriate tools for deriving 
additional useful search terms.  Thus more specific tools 
such as gene ontologies or databases would provide the 

                                                           
4 Number assigned by the Enzyme Commission to designate a 

particular enzyme or by the Chemical Abstracts Service for 
Registry Numbers. 



additional information needed to enhance the information 
needs submitted by users.   
Based on relevance assessments made of this test-
collection, for each query we found that the number of 
relevant records averaged 93.551 (median: 35; standard 
deviation: 139.6).  Query #144 returned only two 
pertinent documents while Query #117 produced the 
greatest number of relevant articles (namely 709).  Query 
#135 did not reveal any pertinent articles.   

3. IR MODELS 
In order to obtain a broader view of the relative merits of 
the various retrieval models, we analyzed nine different 
vector-space schemes and two probabilistic models.  First 
we adopted a binary indexing scheme in which each 
document (or request) was represented by a set of 
keywords, without any weights.  To measure similarities 
between documents and requests we computed the inner 
product (retrieval model denoted “doc=bnn, query=bnn” 
or “bnn-bnn”).  Then, to weight the presence of each 
indexing term in a document surrogate (or in a query), we 
took term occurrence frequencies into account (denoted 
tfij for indexing term tj in document Di, denoting the 
corresponding retrieval model as “doc=nnn, query=nnn”).  
We could also account for their inverse document 
frequency (denoted idfj) and then also normalize each 
indexing weight by applying different weighting schemes, 
as described in the Appendix. 

Other variants could also be created, especially when the 
occurrence of a particular term in a document is viewed as 
a rare event.  Thus, it may be preferable to assign more 
importance to the first occurrence of this word, compared 
to any successive and repetitive occurrences.  Therefore, 
the tf component may be computed as the ln(tf) + 1.0 
(retrieval model notation: “doc=ltc, query=ltc”) or as 0.5 
+ 0.5 · [tf / max tf in a document].  Different weighting 
formulae could of course be used for documents and 
requests, leading to other different weighting 
combinations.  We might also consider that a term’s 
presence in a shorter document provides stronger 
evidence than in a longer one, thus leading to more 
complex IR models; for example the IR model denoted by 
“doc=Lnu” [1], “doc=dtu” [2]. 

In addition to these vector-space schemes, we also 
considered probabilistic models, such as the Okapi model 
[3].  As a second probabilistic approach, we implemented 
the I(n)L2 approach, within the Deviation from 
Randomness (DFR) framework [4].  This IR model is 
based on combining two information measures, 
formulated as follows: 

  wij = Inf1
ij · Inf2

ij = -log2[Prob1
ij] · (1–Prob2

ij) (1) 

in which Prob1
ij is the probability of having by pure 

chance tfij occurrences of the term tj in a document.  On 
the other hand, Prob2

ij is the probability of encountering a 
new occurrence of term tj in the document, given that we 
already found tfij occurrences of this term. 
Within this DFR framework, the model I(n)L2 is based on 
the two following formulae: 

  Inf1
ij = tfnij · log2[(n) / (dfj+0.5)] (2) 

Prob2
ij = tfnij / (tfnij + 1) (3) 

   with tfnij = tfij · log2[1 + ((c·mean dl) / li)] 

where dfj indicates the number of documents indexed with 
the term tj, n the number of documents in the corpus, tcj 
the number of occurrences of term tj in the collection, li 
the length (number of indexing terms) of document Di, 
mean dl the average document length, and c a constant.  
In our experiments, the constant c = 1.5 and mean dl = 
146.  

4. QUERY EXPANSION METHODS 
In this study, we were interested in knowing whether a 
domain-specific query expansion could provide a better 
retrieval performance than a general scheme.  It is our 
opinion that in the biomedical domain vocabulary 
mismatches between requests and documents generated 
by the terminology variation are a real problem.  We thus 
hope to reduce these mismatches by applying appropriate 
domain-specific query expansion approaches, as 
described in Section 4.1.  On the other hand, a general 
query expansion scheme as described in Section 4.2 could 
also complement our domain-specific approach.   

4.1 Domain-Specific Query Expansion 
In the biomedical domain, gene or protein name 
orthographic variants are numerous.  Usually, a few rules 
[5] can be used to generate or to allow a match between 
some of the name variations.  These rules are the 
following: 

- presence of a space or a hyphen (“IL 10,” and “IL-
10”); 

- space or hyphen removed (“ddvit1,” and “ddvit 1”); 
- the word alpha or beta might be replaced by a single 

letter (“epm2-beta” or “epm2b”); 
- the final digit ‘-1,’ ‘-2,’ ‘-3,’ or ‘-4’ might be replaced 

with their Roman equivalent (“UEV-2,” and “UEV-
II”); 

- parts of the name might be written in uppercase or 
lowercase letters (“DDVit-1,” and “ddvit1”). 

In other cases, there might not be any clear relation 
between the various synonyms used for gene or protein 
names, caused in part by the various sub-domains present 
in biological literature.  For example, the protein 
“lymphocyte associated receptor of death” could be 



denoted as “LARD,” “Apo3,” “DR3,” “TRAMP,” “wsl,” 
and “TnfRSF12” [6].  Various databases and repositories5 
have thus been created, partly to assist searchers in 
finding gene or protein synonyms (and to provide 
additional more useful information such as gene 
functions, biological processes, protein sequences or 
structures).  Constructing and updating these information 
sources would require a great deal of manual input, but 
they might prove to be useful in our domain-specific 
query expansions.  We know however that these specific 
and valuable knowledge sources would not contain all the 
synonyms of any given protein or gene name.  A 
complete description of our domain-specific queries can 
be found in [7].   
Some of the following examples will be useful in 
understanding our purposes.  Topic #113 contains the 
gene name “MMS2” and the system automatically adds 
the following orthographic variants: “MMS II,” “mms 2,” 
and “mms2.”  Additionally, the domain-specific query 
expansion process found the related term “UBE2V2,” and 
this term along with its list of synonyms (“UBE2V 2,” 
“ube2v 2,” “UBE2V II,” “ube2v ii,” “ube2v2”) were thus 
added to the final expanded query.   
 

<ID> 111 
<GENE> PRNP 
<DISEASE> Mad Cow Disease 
<BEST> PRNP 
<EXP> PrP33-35C 
 MGC26679 
 PrP 
 PRIP 
 ASCR 
 PrP27-30 
 CJD 
 PrPc 
 prion protein 
 PRP 
 prion protein relate 
 MGC 26679 
 prp33-35c 
 mgc26679 
 prp27-30 
 mgc 26679 

Table 3. Example of our domain-specific 
query expansion 

Not all topic descriptions were modified. The following 
14 topics were not expanded by our domain-specific 
query expansion (namely Query #100, #101, #102, #103, 
#104, #106, #107, #108, #109, #110, #129, #131, #137 
and #147).  For the other 36 queries, on average we added 

                                                           
5 See the SwissProt Web site http://us.expasy.org/sprot/, the 

GenBank site at http://www.ncbi.nlm.nih.gov/, or the Gene 
Ontology at http://www.geneontology.org/ 

27 synonyms/definitions (minimum: 1; maximum: 96; 
median: 25; and standard deviation: 18.7).  
Expanded Query #111 is shown in Table 3, which lists all 
added synonyms (under the label <EXP>), including 
closely related spellings (“PrP” and “PRP,” or “PrP33-
35C” and “prp3-335c”), as well as certain definitions or 
synonyms (“prion protein”). 
These added terms do not occur in the collection with the 
same document frequency (in fact, we have no guarantee 
that these added terms even appear in the corpus).  For 
example, the term “prion” (shown in Table 3) appears in 
4,112 MEDLINE records, while the term “prp” in 2,711 
(“prpc” in 679, “ascr” in 57, “prip “ in 22 and “prp27-30” 
in 19).  The terms “prp33-5c” and “mgc26679” however 
do not occur at all in the corpus.  For the additional terms, 
document frequency seems to be lower than in the 
original query (with some exceptions, such as “protein,” 
occurring in 858,669 records).   
An inspection of the entire original query set shows that 
there were 219 search terms (or 4.38 terms per query) 
occurring in at least one document6.  Based upon the 
document frequency of these search terms, the average 
document frequency was 160,628.5 (minimum: 1; 
maximum: 1,814,074 (term “t”); median: 32,194; and 
standard deviation: 308,456).   
In our domain-specific query expansion, we added 468 
terms, and from this set there were 81 terms that did not 
appear in the corpus at all.  The difference in retrieval 
performance was due to the 387 remaining terms only.  
When a query was expanded (for 36 queries over a total 
of 50), on average the system added 13.0 new search 
terms per query (or 10.74 when ignoring terms not 
occurring in the corpus).  Upon computing the document 
frequency of these 387 new terms, we found the average 
document frequency to be 65,912.1 (minimum: 1; 
maximum: 3,283,925 (term “human”); median: 1,092; and 
standard deviation: 221,453).  Clearly theses values tend 
to confirm our first impression:  the frequencies of words 
added by our domain-specific query expansion approach 
were, on average, lower.   

4.2 Blind-Query Expansion 
Various general query expansion approaches have been 
suggested, and in this paper we will compare our domain-
specific query expansion with Rocchio’s scheme [1].  In 
this latter case, the system was allowed to add m terms 
extracted from the k best ranked documents from the 
original query.  New queries were derived by applying the 
following formula: 

                                                           
6 The terms “Nurr-77” (in Query #115), “aapolipoprotein” (in 

Query #117), “HFN4” (in Query #138), and “4-GABAA” (in 
Query #149) do not appear in any record of our corpus.   



 Q’ = α . Q + (β/k) . ∑ =

k

j 1 ijw  (4) 

in which Q’ denotes the new query built for the previous 
query Q, and wij denotes the indexing term weight 
attached to the term tj in the document Di.  In our 
evaluation, we fixed α = 2.0, β = 0.5. 

5. EVALUATION 
To evaluate our various IR schemes, we adopted non-
interpolated mean average precision (MAP) to measure 
retrieval performance.  This was computed by the 
TREC_EVAL program, based on the retrieval of 1,000 items 
per request.  To statistically determine whether or not a 
given search strategy would be better than another, we 
applied the bootstrap methodology [8].   
In our statistical testing, the null hypothesis H0 states that 
both retrieval schemes result in similar mean 
performances.  Thus this null hypothesis plays the role of 
a devil’s advocate, meaning this assumption would be 
accepted if two retrieval schemes returned statistically 
similar means, otherwise it would be rejected.  In the 
tables included in this paper, we have thus underlined any 
statistically significant differences resulting from a two-
sided non-parametric bootstrap test, based on the MAP 
difference (significance level 5%).   

5.1 IR Models & Stemming Evaluation 
Based on this evaluation methodology, Table 4 depicts 
the MAP for the MEDLINE collection subset, using 
different IR models.  In this table, the best performance 
under a given condition (depicted in bold) will be used as 
the baseline for statistical testing.  The first column lists 
the IR models tested, while the second to sixth columns 
contain evaluations of the different stemming approaches.   
As a first stemming procedure, we may assume that 
stemming must be discarded and the indexing of requests 
and documents would therefore ignore this word 
normalization procedure (performance shown under the 
label “None” in Table 4).   
For the English language, we may use either the Porter 
stemmer [9], having about 60 rules, or the Lovins 
stemmer [10] based on about 260 rules.  The SMART 
system proposed a third approach based in part on the 
Lovins scheme, but producing different stems.  These 
three approaches are relatively aggressive, removing both 
inflectional and derivational suffixes.  It seemed 
reasonable to assume that inflectional endings, used to 
indicate genre (masculine vs. feminine) or number 
(singular vs. plural), would not really modify the meaning 
of a given word.  For example the words “algorithms” and 
“algorithm” are closely related and thus if one of them 
appears in a query and the other in a document, we would 

assume that both word variants refer to the same meaning 
and that the corresponding document should be retrieved.   
 

 if final is ‘-ies’ but not ‘-eies’ or ‘-aies’  then 
  replace ‘-ies’ by ‘-y’, return; 
 if final is ‘-es’ but not ‘-aes’, ‘-ees’ or ‘-oes’  then 
  replace ‘-es’ by ‘-e’, return; 
  if final is ‘-s’ but not ‘-us’ or ‘-ss’  then 
  remove ‘-s’; 
 return. 

Table 5. Minimal S-stemmer [11] 
Of course in English, as in other natural languages, there 
are exceptions to this rule (e.g., words appearing only in 
plural form, such as “scissors”). Matches obtained from 
words derived by adding suffixes (e.g. ‘-ment’, ‘-ably’, ‘-
ship’) would however be more questionable.  For 
example, “algorithm” and “algorithmic” do not have the 
same meanings.  Thus it might be in our interest to 
propose a simple and light stemming approach, one that 
simply removes the most important inflectional suffixes, 
such as the plural ‘-s’ form for the English language.  
Table 5 lists an approach suggested by Harman [11] and 
Table 4 lists its corresponding retrieval performance 
under the “S-stemmer” heading.   
The various stemming approaches are evaluated in 
Table 4, showing that the I(n)L2 probabilistic model 
provided the best retrieval performance. The underlined 
values in Table 4 show that the MAP differences between 
the various IR models are always statistically significant.  
In order to verify whether or not a stemming procedure 
might statistically improve mean average precision, the 
second column without stemming (label “None”) was 
used as the baseline.  To limit the number of comparisons, 
we no longer considered the “bnn-bnn” and “nnn-nnn” IR 
models, since as shown in Table 4, both of which resulted 
in poor retrieval effectiveness.   
Upon comparing these nine best performing IR models, 
we found that of the four models (Okapi, “ltn-ntc,” “lnc-
ltc,” and “ltc-ltc”), the S-stemmer proved to be the best 
approach, while the SMART stemmer performed best for 
only one model (namely I(n)L2 which was also the best 
performing approach listed in Table 4). For these three IR 
models (“dtu-dtn,” “atn-ntc,” and “ntc-ntc”), ignoring the 
stemming procedure proved to be the best solution.  
After averaging MAP values across these nine best 
performing models, we found an average of 0.1939 for 
the “None” approach, 0.1933 when using the S-stemmer, 
0.1899 with the Porter, 0.1894 with the SMART, and 
0.1789 for the Lovins scheme.  From these average values 
or when considering the MAP of the two best performing 
models (namely Okapi and I(n)L2 in Table 4), there is an  

 



 Mean average precision (% change) 
               \  Stemmer None Porter Lovins SMART S-stemmer 
 IR Model      
 doc=Okapi, query=npn 0.2564 (-2.6%) 0.2551 (-2.8%) 0.2454 (-2.6%) 0.2562 (-2.9%) 0.2572 (-2.5%) 
 I(n)L2, query=nnn 0.2633 0.2624 0.2519 0.2639 0.2637 
 doc=Lnu, query=ltc 0.2232 (-15.2%) 0.2235 (-14.8%) 0.2081 (-17.4%) 0.2213 (-16.1%) 0.2211 (-16.2%) 
 doc=dtu, query=dtn 0.2365 (-10.2%) 0.2292 (-12.7%) 0.2127 (-15.6%) 0.2290 (-13.2%) 0.2328 (-11.7%) 
 doc=atn, query=ntc 0.2058 (-21.8%) 0.2019 (-23.1%) 0.1853 (-26.4%) 0.1979 (-25.0%) 0.2018 (-23.5%) 
 doc=ltn, query=ntc 0.1852 (-29.7%) 0.1834 (-30.1%) 0.1716 (-31.9%) 0.1807 (-31.5%) 0.1879 (-28.7%) 
 doc=lnc, query=ltc 0.1333 (-49.4%) 0.1357 (-48.3%) 0.1347 (-46.5%) 0.1335 (-49.4%) 0.1402 (-46.8%) 
 doc=ltc, query=ltc 0.1341 (-49.1%) 0.1229 (-53.2%) 0.1124 (-55.4%) 0.1248 (-52.7%) 0.1344 (-49.0%) 
 doc=ntc, query=ntc 0.1069 (-59.4%) 0.0948 (-63.9%) 0.0881 (-65.0%) 0.0975 (-63.1%) 0.1007 (-61.8%) 
 doc=bnn, query=bnn 0.1246 (-52.7%) 0.1370 (-47.8%) 0.1269 (-46.9%) 0.1375 (-47.9%) 0.1361 (-48.4%) 
 doc=nnn, query=nnn 0.0326 (-87.6%) 0.0283 (-89.2%) 0.0250 (-90.1%) 0.0279 (-89.4%) 0.0274 (-89.6%) 

Table 4.  MAP of various IR models, applying different stemming strategies  
 
evident performance difference between an IR system with 
or without stemming is rather small.  Moreover, the 
performance differences between the various stemming 
schemes are also small.  Although the Lovins approach 
does however seem to perform as well as approaches 
without a stemming phase, these differences are not 
statistically significant (except for the “ntc-ntc” model).   
Based on this test-collection, MAP differences between an 
approach without stemming and five different stemming 
schemes are usually not statistically significant.  With this 
test-collection, stemming approaches do not improve mean 
average precision.  For the “ntc-ntc” IR model however, 
the difference between an approach without stemming and 
the five stemming schemes is always statistically 
significant, and favors an approach without stemming.   

5.2 High Precision Evaluation 
It was assumed that a light stemming approach such as the 
S-stemmer would produce better results during high 
precision searches.  To verify this hypothesis, we computed 
the precision achieved following the retrieval of ten 
documents, for each of the four stemming approaches 
(mean average precision is depicted in Table 6).   
These MAP values listed in Table 6 show that the I(n)L2 
model performed best, using the Porter or SMART 
stemmer.  The second best performance was obtained from 
the Okapi model, using the Porter stemmer.  For the last 
five IR models only, the best performance was achieved 
either with the S-stemmer or with an approach that ignored 
the stemming phase (under the label “None” in Table 6).   
On the other hand, when the I(n)L2 model was used as a 
baseline, the performance differences with the Okapi or 
“Lnu-ltc” model were not statistically significant when 
considering the four different stemming approaches.  The 
last five IR models however always had statistically lower 
performance levels when compared to the precision 

obtained by the I(n)L2 probabilistic model (values 
underlined in Table 6).   
 

 Mean average precision 
IR models None S-stemmer Porter SMART 
Okapi-npn 0.4163 0.4245 0.4306 0.4224 
I(n)L2 0.4224 0.4286 0.4347 0.4347 
Lnu-ltc 0.4020 0.4061 0.4041 0.4020 
dtu-dtn 0.3776 0.3837 0.3796 0.3857 
atn-ntc 0.3571 0.3245 0.3490 0.3347 
ltn-ntc 0.3347 0.3408 0.3245 0.3224 
lnc-ltc 0.2122 0.2204 0.2122 0.2041 
ltc-ltc 0.2020 0.2163 0.1898 0.1796 
ntc-ntc 0.2265 0.2122 0.1918 0.1918 

Table 6.  Mean precision after 10 documents 
 

 Mean average precision 
IR models with MeSH TI & AB only 
Okapi-npn 0.2551 0.2398  (-6.0%) 
I(n)L2 0.2624 0.2486  (-5.3%) 
Lnu-ltc 0.2235 0.2139  (-4.3%) 
dtu-dtn 0.2292 0.2139  (-6.7%) 
atn-ntc 0.2019 0.2059  (+2.0%) 
ltn-ntc 0.1834 0.1695  (-7.6%) 
lnc-ltc 0.1357 0.0787  (-42.0%) 
ltc-ltc 0.1229 0.1034  (-15.6%) 
ntc-ntc 0.0948 0.0966  (+1.9%) 

Table 7.  MAP with and without MeSH headings 
(with Porter's stemmer) 

5.3 Manually Assigned Headings 
In Table 7, we listed the mean average precision achieved 
with various IR models, where only the article title and 



abstract (under the label “TI & AB only“) were used to build 
the document surrogate.  Under this indexing restriction, 
the overall retrieval performance was lower than the 
corresponding system with manually assigned descriptors 
(2nd column in Table 7).  When taking the nine best 
performing IR models into account, average percent 
decreases were about 9.3% when the search system did not 
include the MeSH headings.  These performance 
differences were usually statistically significant, except for 
the “ntc-ntc” model.   

5.4 Evaluating Query Expansion Models 
As explained in Section 4, we designed a domain-specific 
query expansion scheme.  In order to compared this search 
strategy with the more classic Rocchio scheme, we used the 
Okapi and I(n)L2 probabilistic models and applied 
different parameter settings.   
 

 Mean average precision 
Models & 
parameters 

Domain 
specific Rocchio 

Okapi-npn 0.2551 0.2551 
3 docs / 10 terms 0.2114 0.2454 
3 docs / 20 terms 0.2114 0.2492 
5 docs / 10 terms 0.2114 0.2416 
5 docs / 20 terms 0.2114 0.2478 
10 docs / 10 terms 0.2114 0.2386 
10 docs / 20 terms 0.2114 0.2436 
I(n)L2-nnn 0.2624 0.2624 
3 docs / 10 terms 0.2128 0.2417 
3 docs / 20 terms 0.2128 0.2540 
5 docs / 10 terms 0.2128 0.2409 
5 docs / 20 terms 0.2128 0.2554 
10 docs / 10 terms 0.2128 0.2324 
10 docs / 20 terms 0.2128 0.2439 
Table 8.  Mean average precision achieved 

by two query expansion models 

Table 8 lists the mean average precision values obtained 
with these search models.  The rows labeled “Okapi-npn” 
or “I(n)L2-nnn” form the baseline (with Porter's stemming) 
and indicate the MAP before query expansion schemes 
were applied.  Rows starting with “k doc / m terms” 
indicate the number of top-ranked documents and the 
number of terms used to enlarge the original query.  The 
remaining rows indicate the corresponding MAP values 
achieved by the three query expansion approaches.  This 
parameter setting was of course only applied to the 
Rocchio scheme.  As explained in Section 4.1, the domain-
specific query expansion will add, in mean, 10 new terms 
to each query.   

We were surprised to learn that both query expansion 
approaches resulted in lower MAP values.  When 
compared with the baseline (performance achieved without 
query expansion) and when using the Rocchio's scheme, 
differences were however usually not statistically 
significant.  For the domain-specific query expansion, only 
36 queries were expanded.  If we only consider this query 
subset, mean average precision for the I(n)L2 model is 
0.2906 without query expansion, and with our domain-
specific query expansion a MAP of 0.2211, a relative 
decrease of -23.9%.  A query-by-query analysis revealed 
that our domain-specific query expansion improved the 
retrieval performance for 13 queries, but decreased 
performance for other 36 queries. 

5.5 Official Runs 
Table 9 lists the MAP for our two official runs, together 
with their various components.  The run labeled 
“UniNeHug2” was based on the probabilistic model I(n)L2 
using the Rocchio query expansion technique (10 
documents / 20 terms).  The second official run 
(“UniNeHug2c”) was based on data fusion of the two 
result lists using the Z-score fusion model [12].  Within this 
scheme, we normalized the retrieval status values (or 
document scores) for each document Dk provided by the ith 
result list, as computed by the following formula: 

Z-score RSVk = αi . [((RSVk-Meani) / Stdevi)+ δi], 

δi = ((Meani- Mini) / Stdevi ) (6) 

within which Meani denotes the average of the RSVk, Stdevi 
the standard deviation, and αi reflects the retrieval 
performance of the underlying retrieval model.  
 

IR Models MAP 
1.  I(n)L2-nnn 0.2624 
2.  Rocchio (10 doc/20 term) UniNeHug2 0.2439 
3.  Domain-specific QE 0.2128 
4.  Domain-specific QE + 10 doc/ 20 terms 0.2150 
5.  Data fusion (2 & 4),  UniNeHug2c 0.2375 
6.  Data fusion (2 & 4),  Round-robin 0.2395 
7.  Data fusion (2 & 4),  ∑ RSVk 0.2322 
8.  Data fusion (2 & 4),  RSVk/ Max 0.2424 

Table 9.  MAP of our official runs 

In this data combination, the first result list is simply the 
“UniNeHug2” run.  The second was provided by the IR 
model I(n)L2, involving both our domain-specific and 
Rocchio (10 documents / 20 terms) query expansion 
approaches.  The 4th row in Table 9 lists our evaluation of 
this IR scheme, showing a performance level of 0.2150.  
When fusing this result list with UniNeHug2, we fixed the 
coefficients αi = 1 for the UniNeHug2 run and αi = 1.5 for 
the 4th run.   



The MAP (0.2375) of the resulting combined run 
(“UniNeHug2c”) was slightly inferior to that of the best 
single model (MAP: 0.2439).  Rows 6 to 8 of Table 9 list 
the MAP achieved using other data fusion operators, where 
the resulting MAP is fairly close to performance levels 
achieved by the UniNeHug2c run. 

6. CONCLUSION 
During the TREC-2005 Genomic evaluation campaign, we 
evaluated five different stemming procedures.  The 
empirical evidence collected shows that when stemming 
procedures are applied to the MEDLINE collection, retrieval 
effectiveness improvements are not statistically significant.  
Differences in performance between the various stemmers 
are also usually not statistically significant.  Moreover, 
when analyzing high precision searches (measured by 
average precision after 10 documents), we discovered that 
a light stemming approach does not perform better than the 
other more aggressive stemmers.   
The inclusion of the MeSH headings when indexing the 
scientific articles improves retrieval performance 
significantly by about 9%, on average.  Compared to other 
similar test-collections however, this enhancement is rather 
limited.   
During this evaluation campaign, we also proposed a 
domain-specific query expansion.  Both our domain-
specific and Rocchio query expansion techniques did not 
however result in higher retrieval performance (although 
with the Rocchio scheme the performance difference is not 
always statistically significant).  
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8. APPENDIX 
To assign an indexing weight wij reflecting the importance 
of each single-term tj in a document Di, we might use the 
various approaches shown in Table 10, where n indicates 
the number of documents in the collection, t the number of 
indexing terms, dfj the number of documents in which the 
term tj appears, document length (the number of indexing 
terms) for Di is denoted by nti, and avdl, b, k1, pivot and 
slope are constants.  For the Okapi weighting scheme, K 
represents the ratio between the length of Di measured by li 
(sum of tfij), and the collection mean is noted by avdl.  In 
our experiments, we fixed b=0.55, k1=1.2, 
avdl=146=mean dl, and c=1.5.   
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Table 10.  Weighting schemes 
 
 
 


