Massachusetts Institute of Technology Low Engine Friction Technology for Advanced Natural Gas Reciprocating Engines

Victor W. Wong, Principal Investigator, MIT Tom J. George, Project Manager, DOE/NETL Ronald Fiskum, Program Sponsor, DOE/EERE COOPERATIVE AGREEMENT DE-FC26-02NT41339 Awarded April 1, 2002 (24 Month Duration) \$910,068 Total Contract Value (\$ 728,063 DOE)

PROJECT OBJECTIVES

- To reduce parasitic losses of Advanced Natural Gas Reciprocating Engines by reducing piston/ring assembly friction
- To minimize concomitant effects on wear, durability, and oil consumption

via

- Assessing opportunities and establishing fundamental design and performance relationships via computer modeling and experiments
- Validating concepts and strategies and demonstrating system operation in a full-scale engine

PROJECT SCHEDULE

(Low Engine Friction Technology for Advanced Natural Gas Reciprocating Engines)

Program Period: April 1, 2002 - March 31, 2004			
#	MAJOR TASKS	Calendar Year 2002 Calendar Year 2003 2004 A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M	Comments
1	Develop Program Plan		Completed
2	Assess Opportunities		Completed
	Preliminary analyses & empirical observations		
3	Design & Perf Analysis		Extend 1 mo
3.1	(a) Modify and adapt lub. models		Done Early
3.2	(b) Apply models to study friction		Extend 3 mo
	Develop and explore low friction		Extensive analyses
	concepts. Perform parametric studies.		Multiple designs
3.3	(c) Recommend design options		to propose thru Jun
	Request prototype components for tests		Extend 1 mo
4	Demonstrate Design		Colorado St U
4.1	Establish baseline test engine measurements		Extend 3 mo
4.1.1	- install engine and make standard measurements		Extend 3 mo
4.1.2	- instrument and test engine with special diagnostics		Extend 3 mo
4.2	Test components in controlled engine		Accelerate to stay
	experiments to validate design concepts		on schedule
4.3	Demonstrate complete low-friction engine system		To be performed
5	Analyze Results and Iterate		To be Performed
5.1	- Analyze more in-depth various design options		To be Performed
5.2	- Refine models and iterate tests as necessary		To be Performed
6	Program Operation		Continuous
6.1	Conduct/prepare periodic reviews and reports	\blacksquare	2 team reviews
6.1.1	- Monthly team conferences (involving students)		Monthly telecfs
6.1.2	- Deliver semi-annual/annual reports	$\nabla \bullet \nabla \nabla$	1 semi-annual report
6.1.3	- Deliver Final Report		

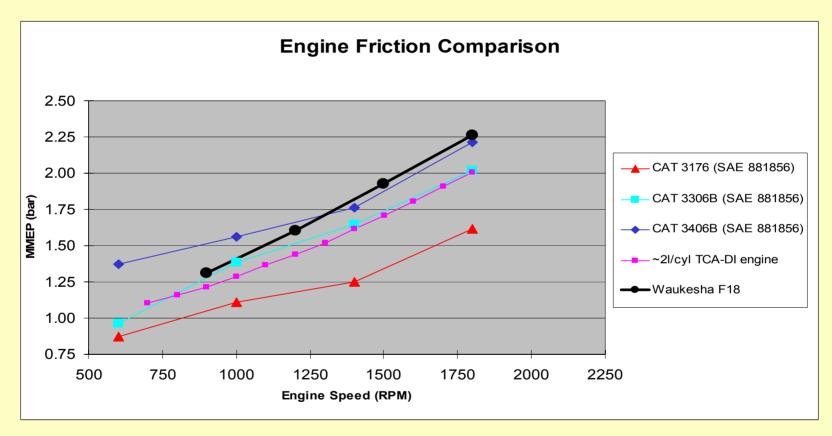
Accomplishments

Initial assessment supports that goal of 30% power cylinder friction loss reduction is possible, but challenging, involving a combination of design parameters.

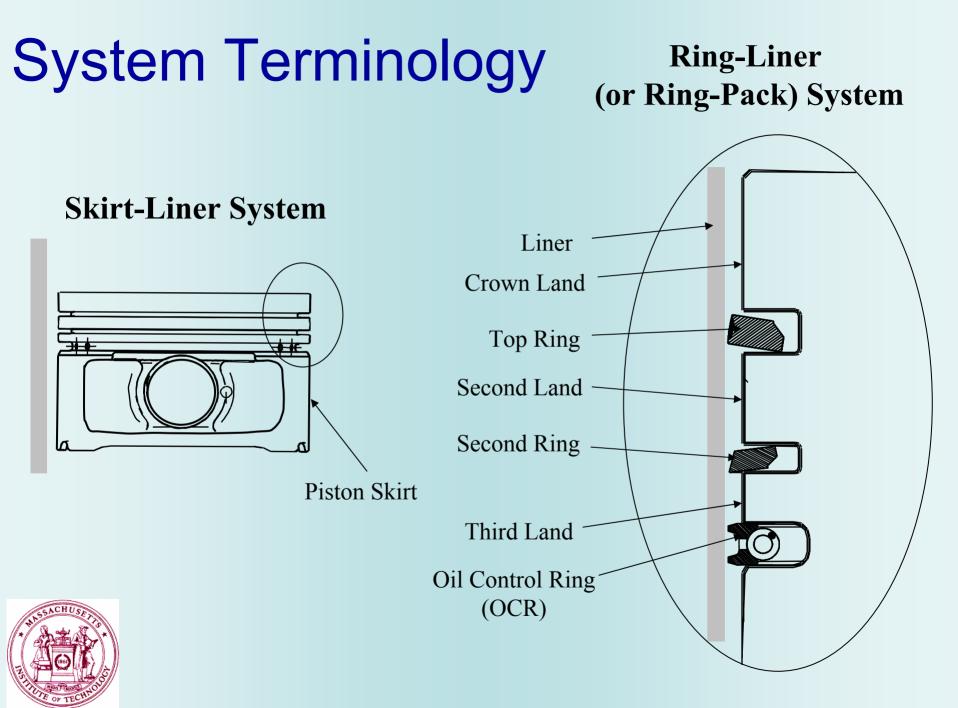
Preliminary analyses point to top ring and oil control ring as primary friction contributors.
Developed models for ANGRE engines.

Full-scale test engine operational with basic instrumentations installed, baseline testing is beginning.

First reduced-friction parts to be recommended and procured May/June 2003

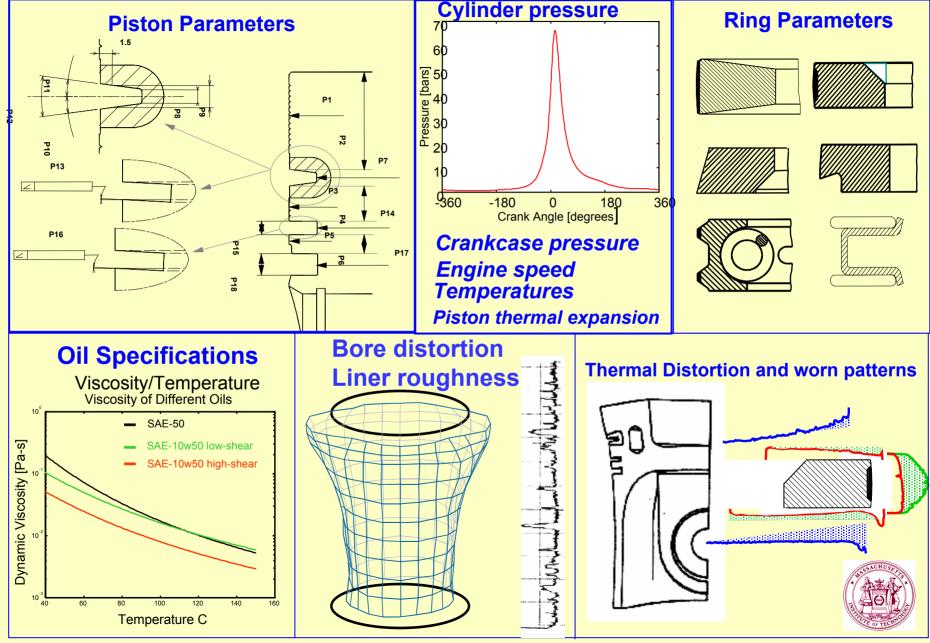

TECHNICAL APPROACH

- Assess Piston/Ring-Pack Design Strategies for Minimum Friction Loss
- Establish Fundamental Design and Performance Relationships
- Design and Demonstrate Low Friction Concept Via:
- Computer Modeling
- Concept Validation
- System Demonstration

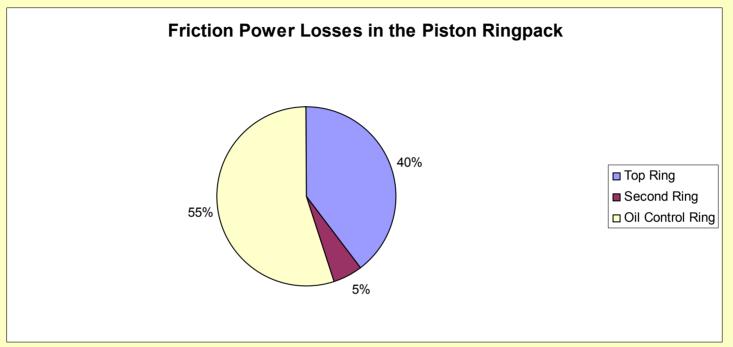


Engine Comparisons

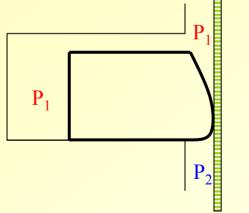
Potential for improvement



- At 1800 rpm, motoring friction is higher in Waukesha VGF18
- Even higher friction is expected in firing conditions



Considering design and operating parameters

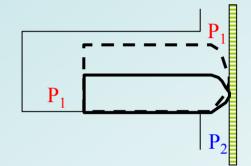

Main Ring-pack Friction Contributors

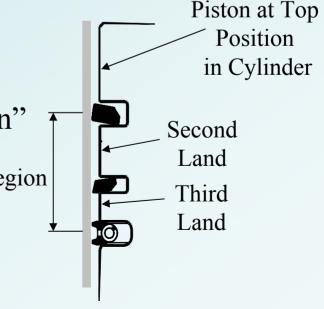
> Top ring and oil control ring are main contributors to friction in ringpack

Friction Reduction Strategies

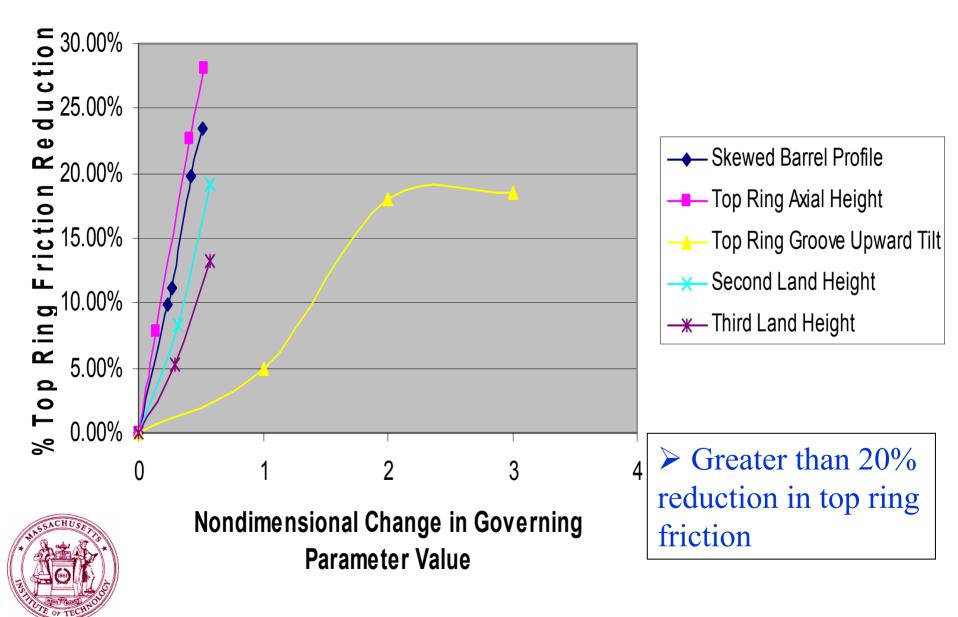
- 1. Introduce top ring groove upward tilt
 - Goal is to minimize area over which high pressure difference acts
- 2. Manufacture top ring with a skewed barrel profile
 - Goal is to minimize area over which high pressure difference acts

 \mathbf{P}_1

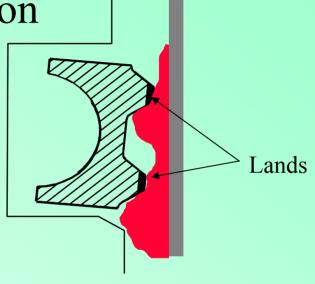

P₁


 P_2

Friction Reduction Strategies Top Ring


- 3. Reduce top ring axial height
 - Goal is to minimize area over which high pressure difference acts
- 4. Reduce second land and third land heights
- Goal is to minimize length of "dry region" where little oil exists on the liner Dry Region

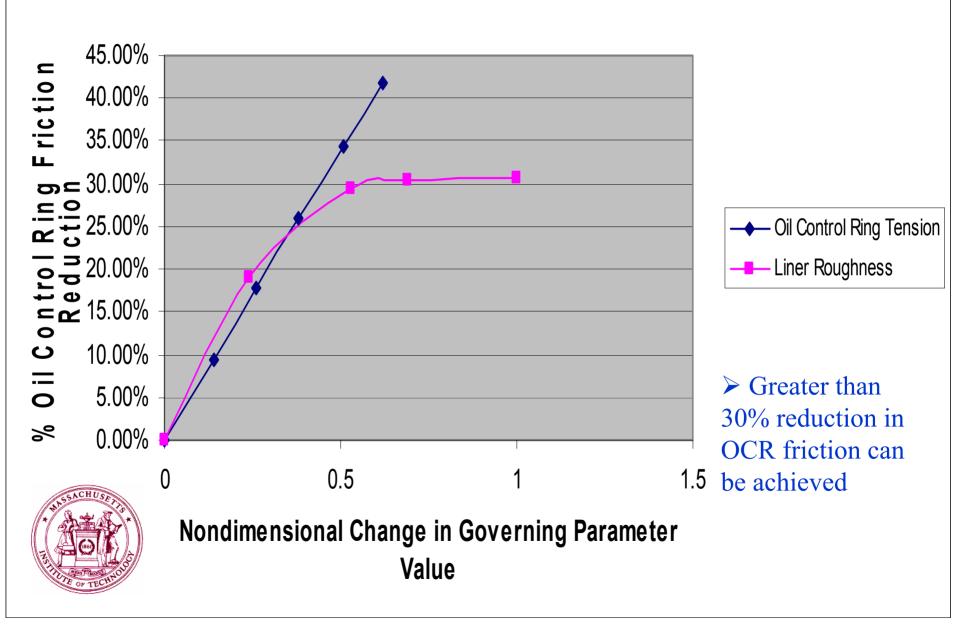
Top Ring Friction Reduction

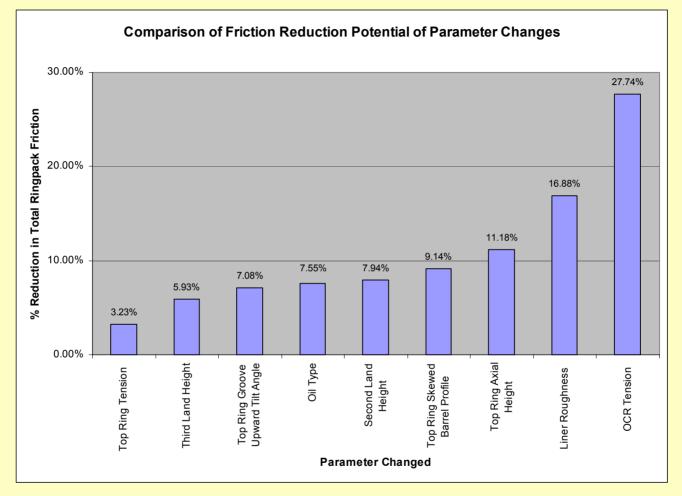


Friction Reduction Strategies Oil Control Ring

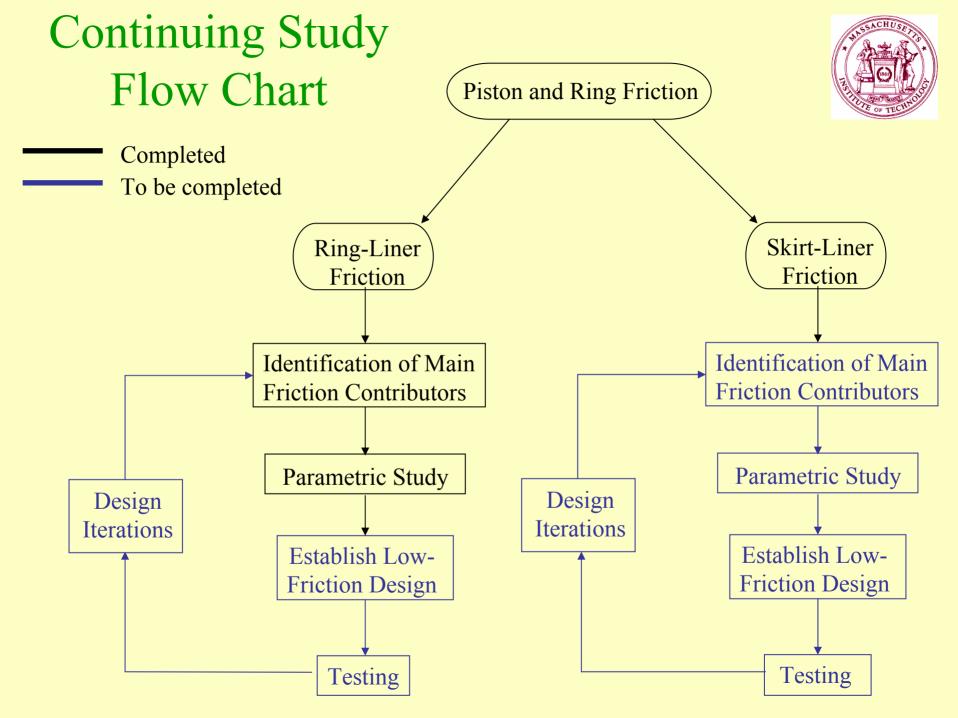
1. Reduce oil control ring tension

• Goal is to reduce high force acting on small lands, which creates high unit pressure on oil film, reducing oil thickness


- 2. Reduce liner roughness
- Goal is to reduce friction generated by rough surfaces in contact
 Ring



Liner


Oil Control Ring Friction Reduction

Summary of Results

- THISSACHUSET
- Application of all parameter changes in combination results in a reduction of total ringpack friction of 50%

Current Focus Areas

- 1. Development of low-friction ring-pack design guidelines based on parametric study results
- Identify limitations on changes in ring-pack design parameters (evaluate potential increases in wear, oil consumption, blow-by, etc.)
- 2. Piston-skirt liner friction study

Engine Instrumentation (1/2)

Fully Instrumented Engine

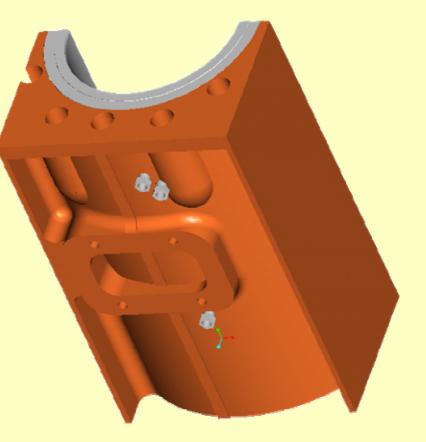
Pressure Measurement Using Rosemount 3051 Pressure Transmitters

- •Blow-by
- Intake Air Pre-Turbo
- Intake Air Post-Turbo
- Intake Air Intercooler Differential
- Intake Manifold
- •Fuel
- •Exhaust Manifold
- •Exhaust Post-Turbo

Engine Instrumentation (2/2)

Fully Instrumented Engine

- Temperature Measurement Using Omega K-type Thermocouples
 - •Blow-by
 - Intake Air Pre-Turbo
 - Intake Air Post-Turbo
 - •Intake Air Post Intercooler
 - Intake Manifold
 - •Fuel
 - •Cylinder Exhaust (all 6 cylinders)


- •Exhaust Manifold
- •Exhaust Post-Turbo
- •Jacket Water in and out
- •Intercooler Water in and out
- •Oil Cooler Oil in and Out
- •Oil Cooler Water in and out
- •Dyno Cooling Water in and Out

Inter-ring Pressure Transducers

Pressure Transducers to be Mounted Offset of Cylinder Centerline in order to Miss Head Stud
Special Mag-Drill Base Plates and Cutting Tools on Order To Facilitate Machining

Testbed Facilities: Environmental Control

- Used to control temperature & humidity
- Allows for Simulation of a wide Variety of Atmospheric Conditions

Emissions Measurement: 5-Gas Bench for Criteria Pollutants

Hydrocarbons – Flame ionization detector NOx Chemiluminescence Oxygen Paramagnetic $CO \& CO_2$ Non-dispersive infrared

FTIR for HAPs

- HAPs measured with Fourier Transform Infrared (FTIR) Spectrometer
- Measures absorption in infrared spectrum
- Measures ≈40 compounds

Blow-by Measurement

- •Blow-by Measurement Using J-Tec Associates VF 563B Inline Blow-by Meter
- •Accuracy of ± 2% ≈ .32 SCFM
- •Repeatability of ± 0.5% of Reading

Oil Consumption Measurement

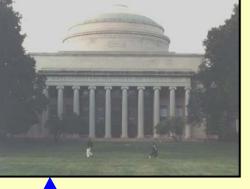
- Oil Consumption
 Measurement Using AVL
 403S Oil Consumption
 Meter
- Automatic Refill
- •Refill Level Accuracy of 2mm
- •Refill Quantity Accuracy of ±1gm and ±1% Quantity Refilled

Summary of Tests and Validation

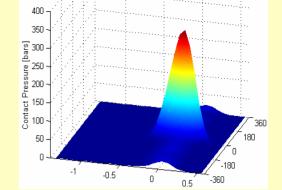
- •Waukesha F18GL Engine Installed and Operational
- •Blow-by Measurement Device Installed and Operational
- Inter-Ring Pressure Transducer Mounting Design Complete
- •Oil Consumption Measurement Strategy Finalized
- Baseline Testing Scheduled for Mid April

Project: Low-Engine-Friction Technology for Advanced Natural Gas Reciprocating Engines

Sloan Automotive Engine Laboratory Massachusetts Institute of Technology Faculty/Staff: Victor W. Wong, T. Tian, J. B. Heywood Graduate Students: Grant Smedley, Ertan Yilmaz


Sub-Contractor:

Engines and Energy Conversion Laboratory Colorado State University Faculty/Staff: Bryan Willson, Ted Bestor Graduate Students: Nathan Lorenz, Tim Bauer Undergraduate Student: Travis Mathis


With support from Waukesha Engine Dresser, Inc. Edward Reinbold, Rick Donahue, Jim Drees

Questions?

Value

piston/rings

Technology for Advanced Natural Gas Reciprocating Engines

00000