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Statistical Analyses of AY-101 Ultrasonic Measurements of Wall Thickness 
 
Denny Weier 
PNNL Statistics Group 
10-31-02 
 
 
Summary and Conclusions:  Tank AY-101 wall thicknesses have been measured using ultrasonic (UT) 
images.  Interest is in using the available data to estimate a worst-case minimum wall thickness for 
regions of the tank that remain unexamined with the UT approach.  Each UT image can provide the wall 
thickness at a very large number of pixels, but only the minimum value for each image is used in this 
work.  Since the data arise in this manner, one of several candidate statistical extreme value distributions 
should successfully fit these reported minimum values.   
 
Given a set of multiple UT images and the resulting minimum measured wall thicknesses, extreme value 
distributions are fit to the data with subsequent extrapolations made to estimate the “minimum measured 
wall thickness” expected for the entire tank.  Such a minimum estimate incorporates both the variability in 
wall thicknesses and the uncertainty associated with the measurement method.    Uncertainties of the 
estimated parameters are also derived and used in propagation of variance methods to obtain confidence 
bounds on the estimated minimum measured wall thickness as well. 
 
Three distinct populations are identified for investigation:  the Liquid Air Interface (LAI) within Plate 2, 
Plate 3, and Plate 2 outside of the LAI.  The body of this report establishes estimates for overall minimum 
measured wall thickness for these three Tank AY-101 regions.  These minimums are respectively 0.4014, 
0.4212, and 0.4251 inches.  Ninety-five percent confidence bounds for these minimums that reflect the 
uncertainties in the estimated extreme value distribution parameters are respectively given as 0.3913, 
0.4181, and 0.4173. 
 
Note that several other tanks have similar UT data available.  To confirm measurement system 
performance, Tank AP-108 was briefly considered as well.  A display of the data for this tank is given in 
an Appendix.    
 
 
Introduction and Background:  Data in this report are obtained from the following three PNNL letter 
reports prepared by Gerald J. Posakony and Allan F. Pardini: 
 

Ultrasonic Examination of Double-Shell Tank 241-AY-101, August 21, 2001 
 
Ultrasonic Examination of Double-Shell Tank 241-AY-101 – Riser 91, June 4. 2002 
 
Ultrasonic Examination of Double-Shell Tank 241-AY-101, June 25, 2002 

 
Each data value is the minimum wall thickness resulting from an ultrasonic (UT) scan.  Most scans 
consist of a 3.5 by 12 inch image; such images consist of pixels measuring about 0.035 in. square.  
Therefore about 34,000 pixels are available in such an image, and the single reported value is then the 
minimum of the 34,000 wall thicknesses observed at these pixel locations.  This measurement scenario 
suggests that the behavior of these minimum measured wall thicknesses should therefore be adequately 
modeled by using statistical extreme value distributional theory.  This is discussed in more detail later. 
 
The objective is to determine the potential minimum wall thickness for the entire tank (and thus the tank’s 
fitness for use) based on what has been measured using UT.  The circular tank wall consists of five plates 
as listed in the following.  The given heights are at the top edges of the plates as measured from the 
bottom of the tank.  Note by subtracting the successive heights, that the heights for each of Plate 2 and 3 
cover just a bit less than a 10 foot range.  
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         Nominal 

Plate   Height  Thickness 
     

   1  418.9 in.   0.375 in. 
    2  380.8 in.   0.500 in. 
      3  262.7 in.   0.500 in. 
       4  144.5 in.   0.750 in. 

   5    36.5 in.   0.875 in. 
 
Preliminary investigation readily shows the plates of concern with respect to minimum wall thickness are 
Plates 2 and 3 with the 0.5-inch nominal thickness.  Wall thickness for these two plates is the subject of 
this report.   
 
Discussion:  The data provided in the reports listed above for Plates 2 and 3 are illustrated in Figure 1 on 
the following page.  Note that the figures and computational requirements in this report were done using 
JMP software (see JMP(2002)). The three reports are referred to in the figure and throughout the 
remainder of the report as being respectively for years 2001, 2001.5, and 2002, which indicate the order 
in which the measurement activities were conducted.   
 
Vertical axes in the figure are remaining minimum measured wall thickness as determined by the 
ultrasonic (UT) measurement.  Horizontal axes represent the heights on the tank walls of the UT images.  
The top of the tank is therefore to the right on the axis.  The specific height reported for each image is 
along the top boundary of the image.  Therefore a 12-inch vertical image reported at 258 inches actually 
scans the tank wall from height 246 to 258. 
 
Note in the table above that the boundary between Plates 2 and 3 is at height 262.7.  UT measurements 
recorded at height 262 are therefore at the top edge of Plate 3, but contained entirely within the plate.  
Note in Figure 1 the presence of the Liquid Air Interface (LAI) within Plate 2 from heights approximately 
340 to 360.  This is the level at which the top of the stored waste was located for many years.  The 
interaction of waste, condensation, and air on the tank wall is thought to have accelerated corrosion at 
this level.  Note also in Figure 1 that considerable differences in measured wall thickness can be 
observed between Plate 2 (outside of the LAI) and Plate 3, that is, on either side of height 262.  
  
Note that the 2001 data consists of 15 by 12 UT images while the 2001.5 and 2002 consisted of 3.5 by 12 
inch images.  The exception is that most of the LAI measurements in 2002 were also 15 by 12, or 12 by 
15, or even 12 by 30.  This will be discussed in more detail in further discussion of the LAI. 
 
Each measurement in 2001 in some sense represents the minimum of four measurements in the 2001.5 
and 2002 data.  This is since four adjacent 3.5 by 12 inch images approximate a 15 by 12 inch image.  By 
reporting the minimum wall thickness for each image, four measurements would be generated for the four 
3.5 by 12 images, but only a single measurement, the minimum of these four, would have been 
generated for the 15 by 12 image.   Therefore less variability generally would be expected in the 2001 
data.  Yet more variability is shown for 2001 in Figure 1.   
 
The differing image size, and discussions with Cogema personnel involved in taking the UT 
measurements led to the decision to omit the 2001 data from the Plate 2 (outside the LAI) and Plate 3 
analyses.  For the 2001 data a grinding tool was drug up and down the exterior of the wall where the UT 
measurement device traveled.  This wasn’t very successful at removing the hard, accumulated material 
on the wall surface.  This left a very rough surface on which the UT device rested.  For the 2001.5 and 
2002, a high-pressure water device was instead used to clean the wall and gave a much smoother 
surface that was described as being pretty clean.  The greater variability in the 2001 data, when less 
variability would be expected due to the larger image size, is likely due to the rough surface.  Since 
considerable data are available without including the 2001 data, it was omitted except for in the LAI 
region.  The decision to include 2001 data for the LAI is discussed later. 
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  Figure 1:  Wall Thickness By Height for Nominal 0.5 inch Plates 
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The 2001.5 and 2002 data for Plates 2 and 3 is shown in Figure 2, by riser in the top four figures, and 
combined over all four risers in the bottom figure.  Note the consistent and substantial differences 
between Plate 2 (outside the LAI) and Plate 3.  Plate 3 can be seen to average about 0.465 in. while 
Plate 2 outside the LAI can be seen to average about 0.490 in.  Such consistent difference is likely due to 
inherent differences in the two plates.  The simplest explanation would be that Plate 2 had nominal 
thickness generally about 0.025 inches greater than Plate 3 and that subsequent corrosion in fact 
affected the plates similarly (other than in the LAI).  
 
The combined bottom figure suggests that the data should be divided as coming from three distinct 
populations:  Plate 3, Plate 2 outside the LAI, and the LAI.  That is the approach used in this report.  
Henceforth in this report, “Plate 2” will refer to Plate 2 outside of the LAI.  Three cases then need to be 
examined; they are Plate 3, Plate 2, and the LAI.  The initial step is to better define the boundaries of 
these three groups. 
 
Figure 3 displays the 2001.5 and 2002 data a bit differently to help define the population boundaries.  
Each diamond represents the location of the mean measured minimum UT wall thickness (over all four 
risers) observed at the associated height.  The vertical extent of the diamond indicates the uncertainty 
associated with the estimate of the mean at that height.  The means at each height are listed in the 
adjacent table. 
 
To better examine Plate 3, Figure 4 gives the corresponding illustration only for that plate.  The only 
unusual feature is the greater mean at the plate edge at height 262.  The mean at this height is 
statistically significantly greater than the two smallest means, which are located at heights 180 and 240.  
No other pairs of means would be considered significantly different.  This raises the question as to 
whether height 262 should be included when the primary interest is predicting minimum wall thickness (in 
the direction towards the bottom of Figure 4).  Analyses were in fact performed both with and without the 
measurements for height 262, and which approach was used made virtually no difference in the minimum 
wall thickness inference.  Remaining discussion for Plate 3 in this report does not include the data for 
height 262.   
 
Figure 5 shows Plate 2 results to facilitate identifying the extent of the LAI.  Figures 6, 7, and 8 are used 
for this same purpose.  Figure 5 contains no 2001 data for the LAI.  Note from Figure 1 that the 2001.5 
data have few LAI measurements.  The 2002 LAI data are a mix of 3.5 by 12, 15 by 12, 12 by 15, and 
even 12 by 30 images.  Significant additional amounts of LAI data are available in the 2001 data, all 
based on 15 by 12 images.  Since we already have a mix of image sizes, and since a significant amount 
of 2001 LAI data are available relative to the amount of 2001.5 and 2002 LAI data, the 2001 LAI data are 
included in Figure 6.  In spite of the potentially rougher wall surface, the 2001 LAI data behave much like 
the other LAI data.  Perhaps the material buildup on the wall exterior was less of a problem higher on the 
tank wall. 
 
This gives a mix for the LAI of several image sizes as just described.  In particular, the 3.5 by 12 inch 
images, which constitute the measurements at the 334, 346, 358, 370 heights, are now in the minority.  
To get a more homogeneous mix of measurements based on more closely similar UT images, the 
groupings of the 3.5 by 12 images were examined and only the minimum of four adjacent values was 
used to emulate what would have been obtained with 15 by 12 inch images.  This results in a reduced 
number of values considered at those four heights.  Generally the larger values at these heights are 
deleted in this manner.  In particular, twenty-two 3.5 by 12 images were omitted from what will 
subsequently be identified as the LAI.  These twenty-two values would not have been reported with 15 by 
12 images.  (Discussion continues after Figure 8.) 
 
 

 7



 

 8

Figure 2:  Wall Thickness By Height 
        (2001 data not included)                                  
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Figure 3:  Plates 2 & 3 Thickness By Height  (no 2001 data)          
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Figure 4: Plate 3 Thickness By Height (no 2001 data) 
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Note: Height 262 is statistically significantly different from heights 180 and 240. 
 
 
 
 
 
Figure 5:  Plate 2 Wall Thickness By Height (no 2001 data)                 
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Figure 6: LAI Wall Thickness By Height (with 2001 data; 
 mixes 15 inch and 3.5 inch UT blocks - 3.5 at 334, 346, 358, 370) 
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Figure 7: LAI Wall Thickness By Height (with 2001 data; 
15 inch equivalent UT blocks) 
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Figure 8: LAI Thickness By Height (final) 
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Figure 7 therefore contains results that represent more consistent image sizes.  The vertical dotted lines 
are meant to delineate the proposed extent of the LAI.  Height 340 is somewhat marginal with its mean of 
approximately 0.48.  Other non-LAI Plate 2 averages are about 0.49.  Within the LAI defined in Figure 7 
and shown alone in Figure 8, the means are considerably less ranging from 0.444 to 0.466.  This is why 
height 340 will not be considered part of the LAI.  Note that since all data at height 340 is from the 2001 
report data, and the Plate 2 analyses are only using the 2001.5 and 2002 3.5 by 12 image data, the 
height 340 data are not used in the Plate 2 analyses either.   
 
Some thought was given to whether a v-shaped pattern within the LAI should be used in modeling LAI 
wall thickness, that is, with the thinnest wall towards the center of the V.  Figure 8 with the relatively 
consistent means at the different heights somewhat discounts the need for doing this.  The following 
diagram suggests why this is an appropriate approach. 
 
 

LAI 

  Top edge 

 UT 
Scan

358 
355 

340 

345 
348 

369 

Height  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assume the shaded area represents the true extent of the LAI, and the upper right figure represents a UT 
image with at least a 12-inch vertical length.  Then images at height 369 and 340 would not intersect the 
LAI as illustrated.  All the other shown heights would result in an LAI intersection.  It therefore may not 
specifically depend on whether the top edge of the image is actually anywhere from 345 to 358.  The 
worst-case LAI minimums appear to be picked up on the UT images and reported as the minimum wall 
thickness somewhat independently of the height within this range.  Therefore the LAI data is taken to 
include all images with top edge heights from 345 to 358, and a v-shaped pattern will not be used to 
model the LAI.  Note that whether such images actually have vertical length 12, 15 or even 30 inches is 
not particularly important since the worst-case LAI thicknesses are apparently still being intersected (no 
30 inch vertical images were positioned at height 369). 
 
In summary, the previous logic has led to three populations to be considered.  They are represented by 
Plate 3 (without including the top edge at height 262), Plate 2 without the LAI, and the LAI.   Note that the 
respective sample sizes for these three groupings are 407, 274, and 90.  These are the number of UT 
images, and thus minimum wall thicknesses, used to represent the three groups.  All Plate 2 and 3 
measurements come from 3.5 by 12 inch images.  The LAI measurements have been “standardized” to 
come from images with widths varying from 12 to 14 (from 4 times 3.5) to 15 inches; they will be taken in 
subsequent discussion to be 12 inches wide which is in fact the case for most of them. 
 
The resulting populations are displayed by the histograms in Figure 9.  Note that to facilitate subsequent 
modeling, the negatives of the wall thicknesses are used.  A sharper boundary is then expected on the 
left side of the distributions since the tails in this direction are bounded by the original nominal 
thicknesses.  Interest is then in inference into the right hand tails of the distributions which then represent 
the negative of the minimum wall thicknesses.   
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Figure 9:  Three Populations 
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Note the means of these distributions are clearly different from each other, decreasing in magnitude from 
Plate 2 to Plate 3 to the LAI, but that is not the focus of these analyses.  Rather inference out into the 
right hand tails of the distributions to estimate the worst-case minimum wall thickness in the uninspected 
areas of the tanks is the goal.  Therefore the tail of the distribution, and in particular the parametric form 
of the model chosen to represent the associated population, is of prime importance.   
 
Estimating out into the tail of a distribution is much more difficult than simply estimating where the 
distribution is centered (for example, the mean).  Estimating the mean, even with only a modest amount 
of data, and even more so with large amounts of data, can be done relatively independent of the shape of 
the underlying population distribution.  This is not the case for estimating tail values.  Their estimates are 
instead very dependent on the chosen shape of the distribution, even for large amounts of data.  
Additional summary information on the three sets of data is given on the subsequent three pages in 
Figures 10, 11, and 12.  (Discussion follows Figure 12.)
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Figure 10:  Plate 2 Minus Wall Thickness 
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 Normal(-0.4917,0.01564) 
 
 Weibull with Threshold(2.17536,0.03662,-0.5242) 
 
Quantiles    Smallest 5 values:  .450   .447   .445   .443  .413  
100.0% maximum -0.4130 
99.5%  -0.4243 
97.5%  -0.4574 
90.0%  -0.4720 
75.0% quartile -0.4827 
50.0% median -0.4930 
25.0% quartile -0.5020 
10.0%  -0.5110 
2.5%  -0.5160 
0.5%  -0.5226 
0.0% minimum -0.5230 
 
Moments 
Mean -0.491701 
Std Dev 0.0156413 
Std Err Mean 0.0009449 
upper 95% Mean -0.48984 
lower 95% Mean -0.493561 
N 274 
 
Fitted Normal 
 
Parameter Estimates 
Type Parameter Estimate Lower 95% Upper 95%
Location Mu -0.491701 -0.493561 -0.489840
Dispersion Sigma 0.015641 0.014432 0.017073
Goodness-of-Fit Test 
 Shapiro-Wilk W Test 

W   Prob<W 
0.960194   <.0001 

 
Fitted 3 parameter Weibull 
 
Parameter Estimates 
Type Parameter Estimate Lower 95% Upper 95%
Shape Beta 2.17536 1.94925 2.47154
Scale Alpha 0.03662 0.03393 0.04063
Threshold Theta -0.52417 -0.52733 -0.52309
Goodness-of-Fit Test 
 Cramer-von Mises W Test 

W-Square   Prob>W^2 
0.161297   0.0161 
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Figure 11:  Plate 3 Minus Wall Thickness  
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Normal(-0.4659,0.0147) 
 
 Weibull with Threshold(5.11295,0.07331,-0.5336) 
 
Quantiles     Smallest 5 values:  .431   .430   .429   .428  .406 
100.0% maximum -0.4060 
99.5%  -0.4280 
97.5%  -0.4374 
90.0%  -0.4500 
75.0% quartile -0.4570 
50.0% median -0.4650 
25.0% quartile -0.4720 
10.0%  -0.4850 
2.5%  -0.5010 
0.5%  -0.5130 
0.0% minimum -0.5170 
 
Moments 
Mean -0.465916 
Std Dev 0.0147031 
Std Err Mean 0.0007288 
upper 95% Mean -0.464484 
lower 95% Mean -0.467349 
N 407 
 
Fitted Normal 
 
Parameter Estimates 
Type Parameter Estimate Lower 95% Upper 95%
Location Mu -0.465916 -0.467349 -0.464484
Dispersion Sigma 0.014703 0.013758 0.015789
Goodness-of-Fit Test 
 Shapiro-Wilk W Test 

W   Prob<W 
0.967382   <.0001 

 
Fitted 3 parameter Weibull 
 
Parameter Estimates 
Type Parameter Estimate Lower 95% Upper 95%
Shape Beta 5.11295 4.27046 6.50758
Scale Alpha 0.07331 0.06273 0.09260
Threshold Theta -0.53359 -0.55252 -0.52344
Goodness-of-Fit Test 
 Cramer-von Mises W Test 

W-Square   Prob>W^2 
0.740589   < 0.0100 
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Figure 12:  LAI Minus Wall Thickness 

-0.53-0.51 -0.49 -0.47 -0.45 -0.43 -0.41

 
  
Normal(-0.4521,0.01833) 
 
 Weibull with Threshold(2.64407,0.05011,-0.4966) 
 
Quantiles     Smallest 5 values:   .426   .424   .414   .404   .399 
100.0% maximum -0.3990 
99.5%  -0.3990 
97.5%  -0.4068 
90.0%  -0.4303 
75.0% quartile -0.4400 
50.0% median -0.4500 
25.0% quartile -0.4673 
10.0%  -0.4760 
2.5%  -0.4859 
0.5%  -0.4890 
0.0% minimum -0.4890 
 
Moments 
Mean -0.452078 
Std Dev 0.0183274 
Std Err Mean 0.0019319 
upper 95% Mean -0.448239 
lower 95% Mean -0.455916 
N 90 
 
Fitted Normal 
 
Parameter Estimates 
Type Parameter Estimate Lower 95% Upper 95%
Location Mu -0.452078 -0.455916 -0.448239
Dispersion Sigma 0.018327 0.015985 0.021480
Goodness-of-Fit Test 
 Shapiro-Wilk W Test 

W   Prob<W 
0.968145   0.1276 

 
Fitted 3 parameter Weibull 
 
Parameter Estimates 
Type Parameter Estimate Lower 95% Upper 95%
Shape Beta 2.64407 1.94274 4.36730
Scale Alpha 0.05011 0.04030 0.07902
Threshold Theta -0.49662 -0.52395 -0.48962
Goodness-of-Fit Test 
 Cramer-von Mises W Test 

W-Square   Prob>W^2 
0.162074   0.0149 
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For Plate 2 data in Figure 10, note the extreme outlying wall thickness of 0.413.  The next smallest values 
are 0.443, 0.445, 0.447, and 0.450.  It will be very difficult for any parametric distribution with the other 
273 observed values at 0.443 or above to suddenly account for a measurement at 0.413.  It is a statistical 
outlier.  It is similarly difficult to envision a physical phenomenon that would generate 273 values at or 
above 0.443 to also generate one at 0.413. 
 
Two distribution curves are fit to the histogram data.  The one slightly more to the left is a three-parameter 
Weibull, which is related to “extreme value distributions” as discussed later.  The second curve is the 
normal.  Goodness of fit information further down the page suggests the Weibull is the better fit although 
it is not particularly strong (the smaller the “Prob<W” or “Prob>W^2” values, the poorer the distributional 
fit).  Note the rather abrupt left hand tail of the distribution ending within the ceiling of the nominal wall 
thickness.  Interest is in projecting out into the longer right hand tail to predict a minimum tank wall 
thickness for Plate 2.  This fairly abrupt tail at one end and extended tail at the other is what make the 
Weibull distribution preferred over the normal, which is a symmetric distribution.   
 
Plate 3 in Figure 11 similarly has an outlying value at 0.406.  Note again the smallest 5 measurements.  
The next smallest are now 0.428, 0.429, 0.430, and 0.431.  The other 406 measurements were found to 
be at or above 0.428, yet one was found at 0.406.  This will again be difficult to model with any parametric 
distribution.   
 
Somewhat unusual for Plate 3 is the rather lengthy tail towards the greater wall thicknesses.  While Plate 
2 seemed reasonably bounded above by the nominal wall thickness, Plate 3 has a pretty lengthy tail 
reaching to the left towards the nominal thickness.  This left-hand tail may actually be more extreme than 
the right hand tail of interest that extends towards thinner walls.  This effect is so extreme here that in the 
figure the relative positions of the normal and Weibull distributions are reversed relative to those for Plate 
2.  Goodness of fit information again indicates the Weibull better fits the data, but also as before, it does 
not have a very strong fit. 
 
The LAI data in Figure 12 show no extreme outlying values.  The more abrupt tail towards the greater wall 
thicknesses is again evident, but note it is well below any expected nominal wall thickness.  This indicates 
a relatively consistent and substantial amount of corrosion in the LAI.   Goodness of fit information here 
actually rather surprisingly indicates that a normal distribution provides a better fit than a Weibull.  This is 
because the data show the largest bulge to the right of where it would be expected for the Weibull, even 
more so than for the normal. 
 
Discussion now turns towards the concept of extreme value distributions.  If one were to take multiple 
samples of the same size n from an underlying distribution, the interest might be in how the largest (or 
smallest) result from each sample behaves.  This behavior would depend on the sample size.  And as the 
sample size n increases, interest might be in some type of limiting distribution of such maximum 
measured values.   
 
This is a very similar scenario to the wall thickness measurement process for Tank AY-101.  As discussed 
earlier, each 3.5 by 12 inch UT image could be considered a sample size 34,000 based on the number of 
pixels being considered.  The interest is not actually in the distribution of these 34,000 wall thicknesses.  
Rather what is reported is only the extreme value, in this case the minimum, which becomes the 
maximum when the negatives of the wall thicknesses are considered.  The actual distribution of the 
34,000 values would determine what extreme value distribution the minimums fit, but the specific 
determination of that underlying distribution is not needed for the current task.  This is fortunate since all 
34,000 values are not readily available for even one image, much less the many images actually involved.  
Instead the extreme value fit of the minimums across many UT images is considered directly. 
 
Given many UT images, how might the minimum measured wall thicknesses behave from one image to 
the next?  In theory, such values should generate an extreme value distribution.  To determine a worst- 
case minimum wall thickness for an entire tank, or say instead for Plate 3, an extreme value distribution 
could be fit to the 407 observed minimum wall thicknesses resulting from the 407 UT images.  Then since 
much of Plate 3 remains uninspected, a worst-case minimum wall thickness could be extrapolated for all 
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of Plate 3 by determining how many UT images would be needed to inspect the entire Plate.  That is the 
approach used here.  This approach was simlarly used earlier in Anantamula (2002) when five LAI wall 
thickness measurements were taken to have an extreme value distribution; his work was based on an 
approach used at Savannah River (SRP) on essentially the same application.  
 
Before data investigation discussion continues, the different types of extreme value distributions are 
discussed.  Statistical literature shows that depending on the particular underlying parametric distribution 
of a particular phenomenon (for example, the 34,000 wall thicknesses from a single UT image), the 
limiting (that is, for very large n) extreme value distribution will take on one of three forms.  This 
discussion is from Johnson et al (1995, Vol. 2). 
 
Typically three forms of extreme value distributions are considered.  They are represented by the 
following cumulative distribution functions: 
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In the above, X is a random variable.  The given expressions are the probabilities that X takes on a value 
less than or equal to t (note that the derivative of F(t) with respect to t is the probability density function of 
X).  α, β, and k are parameters that can be estimated from the data, although the estimation schemes can 
get rather complex due to the nature of the expressions.  The Type 1 distribution is the more commonly 
applied and was used in Anantamula (2002) and the SRP work after which it was modeled.   
 
For a data set of size n, cumulative probabilities related to F(t) in the above can be represented as i/(n+1) 
for i = 1, 2, . . ., n, and then paired with the ordered n measurements in the data set.  With the appropriate 
log transformations of the above expressions, each can be reduced to a straight line relationship in terms 
of the parameters α, β, and k, and the values F(t).  Scatterplots of the resulting transformed values should 
fit a straight line if the particular distribution really does fit the data.  This approach will be used in 
subsequent discussion. 
 
Note that for each of the distributions above, the distribution of –X is also considered an extreme value 
distribution.  In fact for the Type 3 distribution, the distribution of –X is a three-parameter Weibull 
distribution.  That will be of particular interest since, for the three groups Plate 2, Plate 3, and LAI, the 
minus wall thicknesses discussed earlier can reasonably be fit by a three-parameter Weibull.  This is in 
fact then a Type 3 extreme value distribution.  The Type 2 distribution was similarly investigated, but it 
provided much worse fits than either the Type 1 and Type 3 distributions in each case, so it is not 
included in this discussion.  
 
To illustrate an initial example, consider the five LAI measurements from Anantamula (2002).  They are 
0.404, 0.426, 0.439, 0.440, 0.448.  While five measurements will not give much information in terms of 
picking an appropriate model, consider Figure 13.  Five measurements are not sufficient to estimate three 
parameters for a Type 3 distribution (three parameter Weibull); the required numerical methods do not 
converge to estimates.  Instead α, a threshold parameter, must be fixed at some reasonable maximum 
wall thickness and then a two-parameter Weibull fit instead.  The resulting straight-line fits in Figure 13 
evaluate which of Type 1 or Type 3 might then be more appropriate. 
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Figure 13:  Five Points Extreme Value Fits 
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With only the five points very little apparent difference exists in the fits.  On the vertical axes in the two 
figures, “Reduced” and “Reduced3” are the appropriate transformed values respectively for Type 1 and 
Type 3 that should lie on a straight line if that extreme value distribution fits this minus wall thickness 
data.  Note in the headings above the graphs the slightly larger R-square value (0.965 versus 0.940) for 
the Weibull fit.  This means the “Reduced3” transformation converts the values F(t) = i/(n+1) to a straight 
line fit slightly better than the “Reduced” transformation. This suggests the Weibull fits the data a bit 
better, but with only five points any differences certainly wouldn’t be statistically significant.  The points 
can be seen to lie very slightly closer to the line for the Type 3 fit than for the Type 1 fit. 
 
From these “Reduced” and “Reduced3” transformations, extrapolated values can be predicted to 
determine the minimum wall thickness projected for the entire LAI.  Referring back to the LAI discussion 
on page 8, it can be argued that the extent of the LAI can simply be considered as a linear horizontal ring 
around the tank.  Its vertical extent is not of particular importance since all the UT images intersected the 
LAI as discussed.  The 75-foot diameter tank has total circumference of 75π or about 236 feet.  Therefore 
if we were to exhaustively measure the LAI with adjacent 12-inch wide UT images, it would take 236 
images.  The minimum wall thicknesses reported for each would be taken to behave like these five 
measurements and thus taken to fit the corresponding distribution.  Therefore to estimate the expected 
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thinnest of the 236 minimum wall thicknesses, the extrapolation would go out to the 1/236 = .00423 
percentile in the tail of the distribution.  Given the respective estimated parameters for the Type 1 and 
Type 3 extreme value distributions shown, this process results in predicting minimum LAI wall thicknesses 
for the two distributions respectively as 0.331 and 0.366 inches (again shown in the graph headings in 
Figure 13).  Little preference between these values can be established due to the minimal amount of 
data.  The only indicator is the slightly higher R-square value for Type 3, so the 0.366 predicted value 
might be preferred. 
 
Fortunately much more data are available for which preferences might be more readily apparent for Plate 
2, Plate 3, and the LAI from the 2001 through 2002 data.  Figure 14 compares the analogous Type 1 and 
Type 3 transformed fits for these data.  Again, the closer to a straight line the better.  
 
 For Plate 2 the two extreme value fits in Figure 14 are comparable.  Neither can adequately model the 
outlying value.  It appears that the Type 1 is doing a better job accommodating the extreme value, but in 
reality these fits are determined more so by the 230 or so measurements found between 0.47 and 0.51.   
 
Little preference is evident again for these Plate 2 data.  The R-square value is larger for the Type 1, but 
that is primarily due to its coming considerably closer to the outlying point.  Other than for that single 
point, the fit may actually be better for the Type 3 case.   The predictions are rather different however.  It 
is evident how the line for the Type I case will extrapolate out lower to the right than that for the Type 3 
case.  Thus the differing predicted values of 0.3888 for Type 1 and 0.4251 for Type 3 listed at the top of 
the respective graphs.  Which is the more appropriate?  Consider that without the outlying value, none of 
the other 273 points was less than 0.443.  And recall the minimum five values 0.450, 0.447, 0.445, 0.443, 
and 0.413.  The outlying value 0.413 can’t be accommodated by the parametric distributions, and without 
it, the 0.3888 predicted value for the Type 1 case seems overly conservative.  The Type 3 predicted value 
0.4251 might then be considered the more sensible estimate. 
 
Note that to perform the Plate 2 extrapolation, the total area of Plate 2 outside of the LAI was determined.  
The total area for each of Plate 2 and 3 is 9ft. 10in. times 75ft times π.  The UT images associated with 
the LAI were taken to extend 27 inches vertically, so 27in. times 75ft times π was subtracted from the 
Plate 2 total to give the total area in Plate 2 outside the LAI.  This total was then divided by the area in a 
3.5 by 12 inch UT image.  This results in approximately 6127 total UT images needed to cover all of Plate 
2 outside the LAI.  Thus the 1/6127 = 0.000163 (or 0.999837) percentiles in the tails of the two extreme 
value distributions were determined and provide the predicted values as given. 
 
The Plate 3 data are clearly better fit by the Type 3 extreme value distribution than by the Type 1.  Note 
again the lines are actually determined by the nearly 400 measurements between 0.44 and 0.50, and the 
Type 1 fit is very poor here.  It coincidentally makes the line come quite close to the outlying value, which 
again cannot be reasonably modeled by these distributions since it is so dramatically different from the 
other measurements.  The Type 3 fit is not all that great, but it is better than the Type 1.  
 
To perform the Plate 3 extrapolation, the one-foot height associated with the omitted height 262 data was 
subtracted from the entire Plate 3 surface area.  This gives a required 7150 UT scans of size 3.5 by 12 
inches to cover the associated portion of Plate 3.  Thus extrapolations were made out to the 1/7150 = 
0.00014 percentile (or 0.99986).  
 
The differing predictions behave again as for Plate 2.  Without the outlying value, 406 measurements 
were at or greater than 0.428 with the minimum five being 0.431, 0.430, 0.429, 0.428, and 0.406.  The 
Type 1 estimate 0.3606 is just not reasonable in this case, and it reflects the poor fit of the Type 1 data to 
the line.  Note the R-square differences of 0.966 to 0.892.  The Type 3 prediction 0.4213, but for the 
outlying value, again seems the more reasonable.  Note that this predicted value is considerably closer to 
the “end of the data”, that is, the four smallest values other than the outlier, for Plate 3 than for Plate 2.   
 
Note again the histograms in Figure 9.  The longer tail for Plate 2 extends towards the thinner wall 
thicknesses while the longer tail for Plate 3 extends the other direction.  The right hand tail towards  
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   Figure 14:  Extreme Value Fits  
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thinner walls ends somewhat more abruptly for Plate 3 than for Plate 2, so the extrapolation goes 
relatively further out for Plate 2. 
 
For the LAI, the Type 3 fit is again better visually and with R-square value of 0.976 compared to 0.947 for 
the Type 1.  Again the Type 1 prediction might seem overly conservative at 0.3756 as compared to 
0.4014 for the Type 3.  Recall the minimum five values 0.426, 0.424, 0.414, 0.404, and 0.399.  No 
outlying value is included as for Plates 2 and 3.  The Type 3 estimate is 0.0014 in. short of including the 
thinnest observed wall thickness.   
 
Recall 90 “equivalent” UT measurements were accumulated from the 2001, 2001.5, and 2002 data that 
are taken to have generally 12 inch widths.  236 such measurements would cover the entire LAI.  This is 
means a dramatically greater proportion of the LAI has been measured than has Plates 2 or 3.  As a 
result, the extrapolation is not nearly as severe. 
 
To this point in the discussion, an argument can be made that the Type 3 extreme value distribution 
better fits the minimum measured wall thicknesses on UT images than does the Type 1 extreme value 
distribution.  However, all the minimum wall thickness predictions made so far are simply point estimates 
with no associated uncertainties.  Certainly the estimates based on 400 UT scans should be given more 
credibility than those based on only 5 UT scans.  But nothing in the estimation process discussed so far 
makes that distinction.  The distinction comes when the uncertainties of the parameter estimates in the 
distributions are considered, and in turn, their impact on the uncertainties in the predicted values. 
 
For the two-parameter Weibull, closed form expressions are available for the uncertainties of the 
parameter estimates (see Johnson et al (1995 Vol. 1)).  Such uncertainties would include the variances of 
the parameter estimates and their covariance as well since the parameter estimates are not independent.  
The covariance becomes important when the uncertainties are propagated through the functional form of 
the parameters that is needed to obtain the extreme value predicted estimate and its uncertainty.  
Standard Taylor series variance propagation methods are used to do this, and results will include the 
covariance terms as well as those involving the variances.   
 
For the Type 3 extreme value (three-parameter Weibull), numerical estimation methods are required to 
obtain the parameter estimates as well as their estimated variances and covariances.  Similar variance 
propagation can then be performed.  The 2-parameter case is included primarily to see the performance 
of uncertainty bounds for the five-point case, which cannot use the 3-parameter approach.  Both the 2-
parameter and 3-parameter cases were computed for the Plate 2, Plate 3 and LAI data.  The 2-parameter 
case was done for comparison to the five-point result; the 3-parameter case gives the recommended 
“final” answers. 
 
Uncertainty results are given below, but first an important reminder is mentioned.  Note in the following 
the term “Minimum Measured Wall Thickness Prediction”.  Refer again, for example, to the bottom 
illustration in Figure 2.  The data there reflects the “measured wall thicknesses”, not necessarily the “true 
wall thicknesses”.  The considerable variability in the data has two causes.  The first is the true variability 
of the actual wall thicknesses.  The second is in the inability to perfectly measure those wall thicknesses, 
that is, uncertainty due to measurement error.  When extrapolation out into the tail of the resulting 
distribution is performed, the obtained estimate is of the minimum “measured wall thickness”.  This 
estimate takes into consideration the variability both in the actual minimum wall thicknesses and in the UT 
measurement process of those thicknesses. 
 
The measurement error in this application is a nuisance parameter.  Ideally extreme value predictions 
would only be based on the variability of the actual minimum wall thicknesses without incorporating the 
associated measurement uncertainty as well.  But without somehow separating out measurement error, 
the values being given here are predictions of minimum “measured” wall thicknesses.  This 
accommodates a “worst-case” combination of wall thinning and underestimation of that thinning due to 
measurement error.  Realize therefore that actual wall thicknesses are likely not as thin as the estimates 
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indicate.  Rather they are “worst case” projections of how small a measured wall thickness can get 
relative to both the variability in the walls and the measurement error.  If the measurement process were 
well understood, some attention could be given to “backing out” measurement error as a nuisance 
parameter to get a less severe prediction of actual wall thinning. 
 
Recall once again the smallest five values in each case as shown: 
 

Smallest 5 values measured 
 

LAI (5 measurements)    .448  .440  .439  .426  .404 
 

LAI (90 measurements)    .426  .424  .414  .404  .399 
 

Plate 3 (407 measurements without HT 262)  .431  .430  .429  .428  .406 
 

Plate 2 (274 measurements without LAI)      .450  .447  .445  .443  .413 
 
Now consider the following columns in order from left to right as discussed below. 
 

                  Minimum “Measured Wall Thickness” Predictions 
 

                                Estimates                                95% Confidence Bounds 
            Type 1        Type 3                                 
           Extreme      Weibull          Weibull               Weibull            Weibull 
             Value     3-parameter   2-parameter       2-parameter    3-parameter             

 
LAI (5 points) 0.3311           - - -     0.3660      0.2531                 - - -  
 
LAI  0.3756         0.4014    0.4014      0.3925              0.3913  
 
Plate 3  0.3606         0.4213    0.4212      0.4182              0.4181  
 
Plate 2  0.3888         0.4251    0.4251      0.4176              0.4173  

 
 
The “Type 1 Extreme Values” in the first column are as given previously in Figures 13 and 14.  They are 
the minimum measured wall thickness predictions based on the best fit possible from a Type 1 extreme 
value distribution.  Generally they are very conservative, probably much too conservative due to the poor 
fits shown earlier.  The “Type 3 Weibull 3-Parameter” column gives the corresponding extreme value 
results as given in Figure 14.  Recall that the three parameter Weibull could not be used with only the five 
data points in the first case due to lack of convergence.  These predicted values are proposed as being 
more reasonable and based on better fits. 
 
To include a 5-point estimate based on Weibull distributions, a “Weibull 2-Parameter” case was included 
in the next column that used a “threshold parameter” for wall thickness of 0.45 for the five points.  The 
estimated threshold parameters in each case were similarly used for the other 2-parameter Weibull cases 
for purpose of comparisons.  It can be seen very similar estimates to the 3-parameter approach are 
thereby obtained for those cases with the 0.3660 estimate then available for the five point case. 
 
Again to this point, these are all point estimates that in no way address uncertainties in the estimation 
process.  This was the case in the SRP approach used in Anantamula (2002).  The added feature here is 
the 95% confidence bounds given in the last two columns.  The “Weibull 2-Parameter” bounds are 
generated from variance propagation as previously described.  The impact of the considerable 
uncertainty resulting from only having five points can be seen in the bound estimate of 0.2531 that 
corresponds to the point estimate of 0.3660.   
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To understand the meaning of this lower bound, consider the bottom illustration in Figure 13.  Say the 
process is repeated with five new points obtained, a new line or distribution fit to the new five, and a new 
minimum wall thickness prediction made.  Then another five points and the process repeated - and on 
and on.  How variable can the five points, the line, and ultimately the predicted minimum thickness be?  If 
100 such samples size 5 were used one at a time to generate 100 predicted minimums, 95 of them would 
be expected to be greater than 0.2531 based on the particular five data points that have actually been 
observed.  The associated statement would be that with 95% confidence, the predicted minimum LAI wall 
thickness, based on the five measurements, is expected to be greater than 0.2531 inches.  This shows 
the considerable uncertainty due to the small sample size involved in the 0.3660 point estimate. 
 
The 2-parameter Weibull lower bound for the LAI case is not as extreme since now about 90 
measurements are used instead.  Analogously, repeated samples of size 90 would be expected to give 
predicted minimum measured wall thicknesses greater than 0.3925 ninety-five percent of the time.  Not 
nearly as much uncertainty is associated with the 0.4014 LAI estimate due to the larger sample size.  The 
Plate 3 and Plate 2 bounds are even closer to the point estimates since then 274 and 407 measurements 
respectively are available. 
 
Note that even though the 2-parameter Weibull Plate 2 point estimate (0.4251) is greater than the Plate 3 
estimate (0.4212), the Plate 2 bound is less than the Plate 3 bound.  This is due to two things.  The first is 
the smaller sample size (274 compared to 407) and therefore greater uncertainty in the estimated 
parameters.  The second is as mentioned before that in Figure 9 the minimum wall thickness tail of the 
estimated Plate 2 distribution appears a bit heavier than that of the Plate 3 distribution, so uncertainties 
would result in stronger movements out into the tail of the Plate 2 distribution. 
 
For the three cases other than the five points case, numerical methods generate uncertainties for the 3-
parameter case as well.  Slightly more uncertainty is involved when the uncertainty associated with the 
extra parameter also has to be considered.  Note in comparing the closeness of the 2 parameter bounds 
to the 3 parameter bounds, results are directly related to the sample sizes: the larger the sample size, the 
less difference.  The final column of 3-parameter Weibull bounds gives the proposed minimum measured 
wall thickness predictions. 
 
The conclusion is that the respective 95% lower confidence bounds from the 3-parameter Weibull case 
(Type 3 extreme value) should adequately bound the expected measured minimum wall thicknesses in 
Plate 2, Plate 3, and the LAI.  These bounds are the final column in the following and were given in the 
Summary and Conclusions sections at the beginning of this report: 

 
Proposed Minimum Measured Wall Thickness 

 
Case Predicted Minimum     95% Confidence Bound 

 
 LAI           0.4014   0.3913 

   
 Plate 3           0.4213   0.4184      

 
   Plate 2           0.4251   0.4173 

 
 
Note that only the two outlying values, that were obviously going to be difficult to model, one each in Plate 
2 and Plate 3, are less than these predictions.  The approach used to obtain these bounds is more 
rigorous than that applied in the SRP approach followed in Anantamula (2002) in that:  
 

1. Alternative extreme value distribution fits were evaluated and used, and  
2. Lower confidence bounds for the minimum measured wall thickness were generated  
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APPENDIX:  Tank AP-108 Wall Thicknesses 
 
The following data were obtained from Ultrasonic Examination of Double Shell Tank 241-AP-108, by 
Allan F. Pardini and Gerald J. Posakony, Pacific Northwest National Laboratory, September 2000  
 
All AP-108 wall thickness data for Plates 1 through 4 are shown grouped together in Figure A1.  Wall 
thicknesses are again on the vertical axis while the height in inches (above the top edge of the knuckle) 
on the tank wall is on the horizontal axis.  The top of the tank is therefore to the right on the figures.  Note 
thicknesses for Plates 1 and 2 are as shown since their nominal thickness is indeed 0.5 in.  For Plate 3 
nominal thickness is actually 0.5625 in., but 0.0625 was subtracted to “adjust” the nominal to 0.5 to 
preserve the scale on the figures across the plates of differing thickness.  Actual wall thicknesses are 
therefore 0.0625 thicker than shown for Plate 3.  Similar adjustment was made to Plate 4, which has 
nominal thickness 0.75 in.  Actual wall thicknesses for Plate 4 are therefore 0.25 greater than the figures 
indicate. 
 
Note the “significant” difference in the thicknesses of Plates 1 and 2.  Similar differences were noted 
between Plates 2 and 3 for Tank AY-101 with the lower plate also being the thinner of the two.  Here 
Plate 2 averages 0.497 (including the indicated outlying value 0.462 near the top edge of the plate) while 
the upper Plate 1 is thicker with a mean of 0.537.  It was suggested that such dramatic differences 
between plates is likely due to differences in the original nominal thickness of the plates even though both 
had 0.5 inch target nominal thickness. 
 

Figure A1: AP-108 Thickness By Height 
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smaller dots.  The paths would not be considered different from eac
bit of systematic drift between the two paths might be indicated in P
greater values than Path 1. 
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 the UT measurements are indicated 
l significant calibration differences 
te days, but the Figure A2 results 
s differences are not observed. 

cates Path 1 through the bolder dots 
le) indicates Path 2 through the 
h other over Plates 1, 2, and 3, but a 
late 4 with Path 2 having consistently 
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Figure A2: AP-108 Thickness By Height by Vertical Path 
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 Path 1 

Path 2  
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	Fitted Normal
	Fitted 3 parameter Weibull

	Fitted Normal
	Fitted 3 parameter Weibull
	Fitted Normal
	Fitted 3 parameter Weibull
	
	
	2 Parameter Weibull



	Now consider the following columns in order from left to right as discussed below.
	Minimum “Measured Wall Thickness” Predictions
	Type 1        Type 3
	Extreme      Weibull          Weibull               Weibull            Weibull
	
	
	Proposed Minimum Measured Wall Thickness

	CasePredicted Minimum     95% Confidence Bound





