
UNRESPONSIVENESS-TOLERANT COLLECTIVE COMMUNICATION

BY

SCOTT DOV PAKIN

B.S., Carnegie Mellon, 1992
M.S., University of Illinois at Urbana-Champaign, 1995

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2001

Urbana, Illinois

%PPKEXP-1.0%ту╧╙
1 0 obj<< /PPKCert 2 0 R >> endobj2 0 obj<< /Type /PPKCert /V 65536 /Cert <30820204308201aea00302010202042d2d4401300d06092a864886f70d0101040500308188310b300906035504061302555331333031060355040a132a556e6976657273697479206f6620496c6c696e6f697320617420557262616e612d4368616d706169676e312e302c060355040b1325436f6e63757272656e742053797374656d73204172636869746563747572652047726f7570311430120603550403130b53636f74742050616b696e301e170d3939303431363131343434365a170d3034303431343131343434365a308188310b300906035504061302555331333031060355040a132a556e6976657273697479206f6620496c6c696e6f697320617420557262616e612d4368616d706169676e312e302c060355040b1325436f6e63757272656e742053797374656d73204172636869746563747572652047726f7570311430120603550403130b53636f74742050616b696e305c300d06092a864886f70d0101010500034b003048024100cb7403f03cb9ed0b13352f60faf9a90c172c9868e0d59ccb24664299327bd8d2ece634d03cd894be372f575316fc326eb53e6d5912a0585df3c665ea2d6ff19f0203010001300d06092a864886f70d010104050003410099cfb8b16a444c58f8e4fe9ca64650b4b39d4a00ad6e2c455a61ed0fbfb27ed3d3d7a809f854b40f296a534cf860aac70d38d7a4bda4744333db0e4d3bf7741a>>> endobjxref0 3 0000000000 65535 f
0000000019 00000 n
0000000058 00000 n
trailer<</Size 3/Root 1 0 R >>startxref1156%%EOF

Scott Pakin
Scott Pakin's Adobe Acrobat public key

© Copyright by Scott Pakin, 2001

Signatures
Andrew A. ChienMehdi Harandi

Signatures
Andrew A. ChienLaxmikant V. Kale'Josep TorellasSteve Lumetta

Abstract

Collective communication is an important mechanism for parallel programs to effi-
ciently synchronize, distribute data, reorganize the layout of distributed data struc-
tures, and maintain a coherent view of global state. Collective-communication op-
erations have traditionally been implemented in the context of parallel computers,
which makes assumptions that do not hold for high-performance PC clusters. Due
to the structure of user-level messaging layers and the characteristics of COTS hard-
ware and system software, processes are frequently unable to service the network
in a timely manner. As a result, collective-communication operations perform only
as well as their slowest (i.e., least responsive) participant. As cluster sizes scale up-
wards, the problem is exacerbated, with there being an increasing likelihood that
some process is unresponsive to the needs of the group.

For my thesis, I have created and implemented new unresponsiveness-tolerant
collective-communication mechanisms. The idea is to enable responsive processes
to work around unresponsive ones. That is, unresponsive processes should not
cause a collective-communication operation to block unless it is absolutely impossi-
ble for the program to make progress without a contribution from the unresponsive
processes. In addition, those unresponsive processes will complete the collective
operation immediately upon again becoming responsive.

I have evaluated my new mechanisms on a PC cluster interconnected with a
VIA-based network. The specific contributions of my thesis are a quantification of
the levels of unresponsiveness in PC clusters and a classification of their source, a
series of techniques designed to tolerate unresponsiveness that stems from each of
these sources, and an evaluation of how well each technique performs towards the
final goal of increasing the performance of collective-communication-centric parallel
applications.

Being a graduate student is like becoming all of the Seven Dwarves.
In the beginning you’re Dopey and Bashful. In the middle, you are
usually sick (Sneezy), tired (Sleepy), and irritable (Grumpy). But at
the end, they call you Doc, and then you’re Happy.

Ronald T. Azuma
SO LONG, AND THANKS FOR THE PH.D., 2000

iii

Acknowledgments

I would like to thank everyone who supported me intellectually, socially, emotion-
ally, academically, and/or financially during my many years of graduate school at
the University of Illinois at Urbana-Champaign. The list of people who deserve my
gratitude is Brobdingnagian, and I am sure to offend a large number of people by
not naming them here. Nevertheless, their contributions to my education are greatly
appreciated.

Let me start by acknowledging a number of my groupmates, in roughly chrono-
logical order of their joining the Concurrent Systems Architecture Group. Vijay
Karamcheti and John Plevyak were clearly the head and heart of CSAG, and I truly
looked up to them. While I learned a great deal from Vijay and John, I regret not hav-
ing taken even more advantage of their knowledge, experience, and wisdom when
I had the opportunity. Julian Dolby and Xingbin Zhang were terrific officemates,
and we had a number of fascinating discussions over the years. Julian, in particular,
gave me much to think about in terms of compilers, programming languages, and
life in general. Mario Lauria was a wonderful sounding board for research ideas.
He always asked the right questions and voiced the right concerns; I greatly enjoyed
working with him on the Fast Messages project. Finally, I had a lot of good discus-
sions with Geetanjali Sampemane, both in the office and over myriad lunches—not
to mention that her Linux expertise certainly came in handy on many occasions.

I would be remiss if I neglected to acknowledge Patrick Sobalvarro, with whom I
had the pleasure of working with on implementing dynamic coscheduling. Patrick’s
honesty and integrity made quite an impression on me. I’m glad my advisor invited
Patrick over from MIT to work with me on some joint research.

Speaking of my advisor, Andrew Chien led a fine research group. From all of
the paper-readings, discussions, and presentations he had us do, I truly felt like I
was getting an education, not merely a degree. It was clear from the seminar classes
I took that Andrew’s students are better read than the average UIUC graduate stu-
dent, are better able to raise intelligent points during lectures and discussions, and
have a better and deeper grasp of research material. I appreciate all of the intel-
lectual discussions we had together. Andrew can read a paper or hear an idea and
very quickly analyze it and provide insight that anyone else would miss. This abil-
ity of his has definitely helped cultivate my critical eye towards research. I further

iv

feel that my writing and presentation skills have improved greatly under Andrew’s
supervision.

Lastly, I would like to thank my family for their support, understanding, and
patience. I know I put a lot of stress on my wife, Anya, with all of the times I came
home from the office late and exhausted, yet she never ceased to give me love and
encouragement. I love you all very much.

DEDICATION

To myself, without whose inspired
and tireless efforts this book would
not have been possible.

Al Jaffee

v

Table of Contents

Abstract . iii

Acknowledgments . iv

1 Introduction . 1

2 Background . 8
2.1 Collective communication . 8
2.2 Cluster technology . 11

2.2.1 Software . 12
2.2.2 Network (VIA) . 13

3 Problem Statement . 15
3.1 Context . 15
3.2 Problem . 17
3.3 Solution space . 19
3.4 Thesis statement . 24
3.5 Success criteria . 25

4 Nonblocking Barriers . 26
4.1 Intoduction . 26
4.2 Algorithm . 31
4.3 Example . 35
4.4 Ordering semantics . 36

4.4.1 Definitions . 36
4.4.2 Reordering rules . 38
4.4.3 Implications . 41
4.4.4 Restrictions . 44

4.5 Alternative implementations . 46
4.5.1 Single logical clock . 46
4.5.2 All-hardware implementation 47

4.6 Alternative techniques . 52
4.6.1 Intrabarrier unresponsiveness tolerance 53
4.6.2 Explicit unresponsiveness detection 55
4.6.3 Operating system support . 56

4.7 Discussion . 57

5 Experiments . 60
5.1 Experimental setup . 60

5.1.1 Applications . 61

vi

5.1.2 Workloads . 67
5.2 Preliminary experiments . 70

5.2.1 Total unresponsiveness . 71
5.2.2 Characterizing unresponsiveness 77
5.2.3 Summary . 83

5.3 Nonblocking barrier performance . 85
5.3.1 Bookkeeping overhead . 85
5.3.2 Performance gain from nonblocking barriers 87
5.3.3 Sources of performance gain 93

5.4 Performance robustness . 96
5.4.1 Compatibility with other unresponsiveness-tolerating tech-

niques . 98
5.4.2 Robustness to cluster scale . 103

5.5 Comparative performance . 105
5.6 Discussion . 107

6 Related Work . 110
6.1 Collective-communication libraries . 110
6.2 Collective-communication algorithms 111
6.3 Collective communication in clusters 111
6.4 Wide-area collective communication 113
6.5 Application/runtime-system techniques 114
6.6 Evaluating unresponsiveness . 116

7 Conclusions . 117
7.1 Summary . 117
7.2 Experience gained . 119
7.3 Future work . 120
7.4 Perspective . 122

7.4.1 Problem importance . 122
7.4.2 Advantages of nonblocking barriers 123
7.4.3 Applicability . 124
7.4.4 Notification mechanism . 124

7.5 Contributions . 125

References . 128

Colophon . 141

Vita . 142

vii

List of Tables

2.1 Assumptions of the parallel and distributed computing models . . . 8

4.1 Analogous operations . 38
4.2 Ordering semantics for nonblocking barriers 39
4.3 Hardware/firmware/software implementation tradeoffs 58

5.1 Platform characteristics . 60
5.2 Benchmarks used in Chapter 5 . 61
5.3 Selected cholesky performance numbers 63
5.4 Variables used in Algorithms 5.2–5.4 63
5.5 Independent variables . 70
5.6 Experimental setup for mg . 76
5.7 Giganet cLAN1000 NIC parameters 87
5.8 Sets of unresponsiveness-tolerating techniques used in radix-sort fig-

ures . 99
5.9 Factor of responsive radix sort time (16 processes) 108

viii

List of Figures

1.1 Sample 32-node multicast tree in which all nodes are responsive to
the network . 4

1.2 Sample 32-node multicast tree in which node 3 is temporarily unre-
sponsive . 5

2.1 Sample parallel program that uses collective communication 10
2.2 PC cluster architecture . 12

3.1 Unresponsiveness observed in a PC cluster 18
3.2 Correlation between the number of barriers in each time range and

the number of context switches observed 20
3.3 Components of an endpoint . 21

4.1 Basic, logarithmic-time, 8-process barrier 27
4.2 Basic, logarithmic-time, 8-process barrier, in which process 7 is tem-

porarily unresponsive . 28
4.3 Packet formats used for nonblocking barriers 35
4.4 Bookkeeping for a sample sequence of operations 37
4.5 Processor consistency in the context of nonblocking barriers 40
4.6 Dependencies between barrier and non-barrier operations 42
4.7 Timelines for traditional and optimistic collective communication . . 43
4.8 Prohibited group-communication pattern 44
4.9 Bookkeeping with a single logical clock 47
4.10 Hardware for an unresponsiveness-tolerant barrier (send side) 49
4.11 Hardware for an unresponsiveness-tolerant barrier (receive side, final

stage) . 50
4.12 Hardware for an unresponsiveness-tolerant barrier (receive side, in-

termediate stages) . 51
4.13 Sample prototype of a VIA barrier function 53
4.14 A nonblocking barrier . 54
4.15 A three-way handshake . 56

5.1 Communication structure of the Cholesky code 62
5.2 Data dependencies in radix sort . 69
5.3 Binary versus flat trees . 70
5.4 Time spent in barriers as a function of “computation” time 72
5.5 Measured vs. predicted tally of slow barriers 73
5.6 Barrier program efficiency . 75
5.7 Computation time for MG class A, 8 nodes 77
5.8 Correlation between the number of barriers in each time range and

the number of context switches observed 78

ix

5.9 radix sort performance lost to unresponsiveness 79
5.10 Speedup of the cholesky code . 80
5.11 Impact of internal contention (naive reductions) 81
5.12 cholesky performance relative to ideal 83
5.13 cholesky performance in light of a CPU-intensive competitor 84
5.14 Performance of the “naive” prefix scan 86
5.15 Communication pattern for a prefix-scan operation 88
5.16 Performance of the cluster-optimized prefix scan 89
5.17 Comparison of measured vs. analytic prefix scan time (polling notifi-

cation) . 91
5.18 Performance of the cluster-optimized prefix scan with one competitor

per node . 92
5.19 Performance gain from tolerating unresponsiveness in the cluster-

optimized prefix scan . 93
5.20 Performance gain from tolerating unresponsiveness in radix sort . . 94
5.21 Cumulative time blocked on receives in radix sort 95
5.22 Time blocked on receives in radix sort, expressed as the difference in

the percentage tally of receive times 97
5.23 Radix sort performance (polling notification) 100
5.24 Radix sort performance (blocking notification) 102
5.25 Performance improvement in radix sort as a function of the number

of processes . 104
5.26 Comparison of nonblocking barriers to implicit coscheduling 106

7.1 Best reported performance on the SPEC CFP95 benchmark over time 119

x

List of Algorithms and Procedures

4.1 Unresponsiveness-tolerant barrier . 33
4.2 Nonblocking receive that supports unresponsiveness-tolerant barriers 34
5.1 Barrier microbenchmark . 61
5.2 Prefix-scan (data parallel) . 64
5.3 Prefix-scan (naive) . 65
5.4 Prefix-scan (optimized for clusters) . 66
5.5 Radix sort (data parallel) . 66
5.6 Radix sort (message-passing) . 68

xi

1 Introduction

Clusters of personal computers are rapidly becoming a dominant platform for high-
performance computing. Even former supercomputer-only shops such as NCSA are
migrating users from parallel computers to PC clusters [78]. The reason for doing
this is not only that PCs have an excellent price:performance ratio, but also that
the latest generation of PC microprocessors and local-area networks is performance-
competitive with supercomputers.1

However, PC clusters are a qualitatively different—and more complex—
platform from parallel supercomputers. While parallel supercomputers generally
either sport a small run-time system on each node or share a single heavyweight
operating-system image across all the processors, PC clusters run an independent,
heavyweight, commodity operating system on each node. Operating system inde-
pendence implies that the operating systems are not designed for global, coordi-
nated resource management and scheduling. And their heavyweight, commodity
nature is an issue because it impacts predictability. User processes share the ma-
chine with each other and with operating system dæmons, which run at unpre-
dictable times for unpredictable durations. As the size of the cluster increases, it
rapidly approaches certainty that some process in a program is descheduled at any
given time. Memory hierarchies that extend out to disk cause memory access times
to vary from a fraction of a microsecond to tens of milliseconds. In short, commod-
ity operating systems make it virtually impossible to reason about response times.
Another difference between parallel supercomputers and PC clusters is that the for-
mer are entirely homogeneous, while PC clusters frequently have different clock
speeds, system architectures, and amounts of memory on each node.2 This hetero-
geneity further diminishes predictability, because processes may observe different
performance depending upon exactly which node they run on.

PC clusters are also qualitatively different from traditional distributed systems.
Distributed systems are designed around wide-area communication—in which the

1SPEC CPU performance, from http://www.spec.org/osg/cpu95/results (2Q1999):

SGI Origin 2100 supercomputer (250 MHz MIPS R10000): 15.3 CINT95, 25.2 CFP95
PC based on Intel MS440GX chipset (555 MHz Intel Xeon): 23.6 CINT95, 16.9 CFP95

2Because of the rate of growth of PC performance, it is virtually impossible to obtain “old” PCs
when incrementally expanding a cluster. Additional supercomputer nodes are available only from a
single vendor, which is slower to introduce node upgrades.

1

http://www.spec.org/osg/cpu95/results

network, not the endpoints, is the bottleneck—and, hence, give higher precedence to
fault tolerance and security than to performance. Modern PC clusters, however, are
interconnected with networks fast enough to shift the performance bottleneck from
the network fabric to software running at the endpoints. These networks are fairly
reliable—Myrinet, for instance, has a bit error rate of 1 bit error per 1× 1015 bits [16].
In addition, security is less of an issue because a PC cluster resides in a single ad-
ministrative domain. Hence, there is little concern that a malicious administrator
will configure one node to sabotage the other nodes. The key difference from a
programming perspective is that PC cluster software can do without costly checks
for fault detection, dropped or corrupted messages, and protocol violations. Fur-
thermore, modern PC clusters do not have to sacrifice CPU time to reduce network
involvement, e.g., by aggregating messages.

The distinguishing characteristics of PC clusters are that they:

• are composed primarily of commodity hardware,

• may include a small number of non-commodity parts integrated with the rest
of the system across standard interfaces (e.g., a special network card on a PCI
bus),

• run unmodified, commodity operating systems, and

• execute interactive applications, not just batch-submitted.

The primary use of PC clusters is for large, resource-demanding parallel appli-
cations. To simplify coding and improve performance, a number of parallel ap-
plications utilize collective-communication operations. In contrast to point-to-point
messages, which have a single sender and a single receiver, collective communica-
tion operations enable sending one-to-many, many-to-one, and many-to-many mes-
sages. By using operations in these basic categories, processes can replicate state
and ensure that updates to one copy are correctly perceived by all the other extant
copies. The following are examples of collective operations:

• multicast/broadcast — send a message from one process to many

• barrier — synchronize processes

• gather — concatenate data from each process into an aggre-
gate on one process

• scatter — divide one process’s message into many pieces and
send each to a different process

2

• reduce — perform an associative operation across the ele-
ments of a distributed array and provide the result
to a single process

• shift/circular shfit — move data from each process to its neighbor, wrap-
ping around in the case of circular shift

In addition, there are various combinations of the above, such as gather-to-all (a
gather followed by a broadcast) and reduce-to-all (a reduction followed by a broad-
cast).

The key problem that occurs when performing collective operations in a PC
cluster is that not all of the participants are actively servicing the network in uni-
son. Because a collective operation cannot complete until all participants have con-
tributed to it, the latency of the entire operation is determined by the slowest mem-
ber. The highly-variable response times in PC clusters therefore bring the average
collective-operation performance close to its worst-case value.

Collective operations utilize group semantics in many parallel-communication
libraries [9, 41, 50, 73, 80]. That is, a group of processes collectively decides to
perform a particular operation. These libraries assume that process groups are
semi-permanent; processes do not spontaneously join or leave a group without con-
sensus from the rest of the group. Processes that crash, are killed by an external
entity, or that lose network connectivity generally terminate the entire application.3

Group semantics are a reasonable practice for parallel applications because a sin-
gle set of programmers produces the entire application and has a priori knowledge
of the application’s communication pattern. Distributed applications, however, are
quite different from parallel applications. In a distributed application, there is com-
paratively little global coordination of activity. Processes contain different code,
written by different (possibily mutually-hostile) sets of programmers. Furthermore,
distributed applications take a more pessimistic view of the world than parallel ap-
plications. They assume that processes die sporadically, networks are severed and
reconnected at random, and messages are frequently lost or corrupted. Hence, col-
lective operations must be implemented with specially designed—and generally
costly and non-scalable—algorithms such as CBCAST or ABCAST [12] to ensure
global state consistency, even in the face of disaster.

As in a parallel computer, these collective operations are highly sensitive to un-
responsiveness. However, the problem is exacerbated in a distributed system be-
cause a high degree of unresponsiveness is indistinguishable from failure. Failure-

3PVM [41] is a notable exception.

3

recovery code can require a significant amount of communication and time to com-
plete. For example, Vogels, et al. discovered that under heavy load (read as: node
unresponsiveness), the Microsoft Cluster Service could take as long as a minute to
broadcast a single message to 32 nodes [103]. (In contrast, a 10-node broadcast typi-
cally took 2–5 seconds.)

The key untapped problem for both parallel and distributed systems is endpoint
responsiveness. If a process does not participate in a collective operation promptly,
it will delay the entire operation and, therefore, degrade overall application per-
formance. The context of my thesis research is high-performance, latency-sensitive
parallel applications that:

• rely on user-level collective communication and run on a large PC cluster,

• are interconnected with a high-speed network, and

• contain an insufficient number of threads to hide much communication la-
tency.

As a motivating example of how unresponsiveness is manifested, consider a
multicast operation. To multicast a message to a number of receivers, the root of
the multicast tree must send the message to each of its children; those children, in
turn, forward the message to each of their children; and so on, until all nodes have
received the message. Once a node receives the message and forwards it onward, it
is no longer needed for the multicast operation and can resume computing. This is
illustrated in Figure 1.1.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ti
m

e

Figure 1.1: Sample 32-node multicast tree in which all nodes are responsive to the
network

If a node high up in the multicast tree is busy computing and is not servicing
the network, it will delay all the nodes downstream of it in the multicast tree. Fig-
ure 1.2 depicts the same tree as in Figure 1.1, except that node 3 is late to receive and
forward the multicast message. As a result, nearly half the nodes in the network

4

are idled, waiting to receive the multicast. One would expect similar behavior re-
gardless of whether the multicast is implemented in hardware or software. This is
because hardware can buffer only a finite amount of data before requiring instruc-
tion from the host program.

1

2

4

8

16 17

9

18 19

5

10

20 21

11

22 23

3

6

12

24 25

13

26 27

7

14

28 29

15

30 31

Ti
m

e

Figure 1.2: Sample 32-node multicast tree in which node 3 is temporarily unrespon-
sive

There are three sources of node unresponsiveness in a PC cluster that can lead
to the poor behavior illustrated in Figure 1.2:

1. Process descheduling — delays of tens to hundreds of milliseconds

2. OS interrupt handling — delays of hundreds of microseconds to a
few milliseconds

3. Application load imbalance — application-dependent delays

Note that process descheduling can occur even if there are no other obvious user
processes running on the node; dæmons and services running on behalf of the oper-
ating system awake at unpredictable intervals and perform activities that need the
CPU, memory, I/O, and other resources, taking those resources away from the par-
allel application. OS interrupt handling includes page fault handling, device driver
scheduling/running time, complex kernel thread interactions caused by contention

5

for shared resources (such as locks and semaphores). Application load imbalance is
sometimes a result of an application neglecting to service the network in a timely
manner, possibly to avoid polluting the memory hierarchy.

While application load imbalance decreases performance on any system, the
other forms of unresponsiveness are problematic primarily on high-performance
PC clusters. Distributed system performance is frequently limited by the (slow)
network or disk, so additional multi-millisecond latencies do not noticeably de-
crease overall performance. Parallel computers generally devote special-purpose
hardware and/or custom or modified operating systems to reduce unresponsive-
ness. For instance, coordinated scheduling [82] eliminates process misscheduling,
but is inappropriate for a commodity PC cluster environment because it generally
requires modifications to the operating system scheduler or special synchronization
hardware. Similarly, parallel computers frequently delegate most system services
to service or I/O nodes and run only a vestigial run-time system on the compute
nodes, while PC clusters run the latest version of some unmodified, commodity OS
on each node.

For my thesis, I tackled the problem of performance loss due to node unrespon-
siveness in PC clusters. This is an important problem because:

1. PC clusters are rapidly becoming a popular high-performance platform,

2. performance degradation will increase with larger clusters and faster proces-
sors/networks, and

3. the problem has not previously been solved.

In point 3, I do not consider a solution to be one that merely pretends that PC clusters
are parallel computers and loads them with custom operating systems and/or spe-
cialized hardware. Doing so strips PC clusters of their defining characteristics—low
cost, ease of upgrading, simplicity of integrating or adapting to new technologies,
availability of software, etc.—and is therefore an unsatisfying solution.

Coordinated thread scheduling (such as gang scheduling [82], dynamic
coscheduling [95], and implicit coscheduling [5]) is not sufficient to eliminate the
problem of unresponsiveness in PC clusters. Even if all the threads in a parallel
job are coscheduled, communication operations within those threads may not be.
While a single misscheduled thread can induce tens to hundreds of milliseconds of
unresponsiveness at once, real-world occurrences such as cache misses, page faults
(which may need to be satisfied by disk), intra-application load imbalance, resource
contention (e.g., for a network interface), and hardware interrupts each introduce
small amounts of unresponsiveness that can add up quickly. Hence, coordinated

6

thread scheduling needs to be augmented with new mechanisms and algorithms for
tolerating individually-small, but collectively-large, sources of unresponsiveness.

The result of my thesis project is a demonstration that it is, in fact, possible to
improve the performance of PC clusters by making collective-communication op-
erations tolerant of endpoint unresponsiveness. The specific contributions of my
work are the following:

1. a set of communication/network interface architecture features that enable
latency-tolerant collective communication,

2. an implementation of various collective-communication operations that is ro-
bust to the forms of unresponsiveness listed on page 5,

3. a quantitative evaluation of the performance of a set of applications that rely
on collective communication and run atop VIA [24, 35].4

The remainder of this dissertation is structured as follows. Chapter 2 presents
the requisite background information needed to understand my thesis work and to
put it in context. Chapter 3 provides the motivation for my work and states the
precise problem I attempted to solve. Chapter 4 lists the constraints guiding my so-
lution and describes the approach I eventually took. Performance measurements of
my implementation and an analysis of the results are shown in Chapter 5. Chapter 6
covers projects and research results related to those presented in this dissertation.
Finally, Chapter 7 draws some conclusions from my thesis work.

Perhaps an editor might begin a reformation in some such way as
this. Divide his paper into four chapters, heading the 1st, Truths.
2nd, Probabilities. 3rd, Possibilities. 4th, Lies. The first chapter would
be very short, as it would contain little more than authentic papers
and information from such sources as the editor would be willing to
risk his own reputation for their truth. The second would contain
what, from a mature consideration of all circumstances, his
judgment should conclude to be probably true. This, however,
should rather contain too little than too much. The third and fourth
should be professedly for those readers who would rather have lies
for their money than the blank paper they would occupy.

Thomas Jefferson
LETTER TO JOHN NORVELL, 1807

4Specifically, I used Giganet’s VIA implementation [1].

7

http://www.giganet.com

2 Background

In order to understand the research presented in this dissertation, one must first be-
come acquainted with some of the concepts behind both collective communication
and PC clusters. Although collective communication was introduced in Chapter 1,
Section 2.1 illustrates the differences between the parallel-computing view of collec-
tive communication and the distributed-computing view, to help clarify some of the
decisions made in this thesis. Section 2.2 describes the hardware and software com-
ponents that comprise a PC cluster, paying special attention to the communication
subsystem, as this is central to unresponsiveness tolerance.

2.1 Collective communication

Collective communication has been studied extensively and in a variety of con-
texts [8, 20, 31, 49, 60, 73, e.g.]. Collective communication research is generally
performed using one of two models: parallel computing or distributed comput-
ing. Table 2.1 contrasts the key assumptions made by programmers writing to each
of those models. In summary, the parallel computing model assumes a more con-
trolled environment and therefore takes a more “optimistic” view of the system. The
distributed computing model utilizes collective communication primarily for fault
tolerance.

Table 2.1: Assumptions of the parallel and distributed computing models

Parallel computing Distributed computing
assumption assumption

Network speed Fast Slow
Host speed Fast Fast
Network reliability High Low
Host reliability High Low
A priori process coordination Yes No
Network, host, or process
homogeneity

Yes No

8

To demonstrate how a parallel program might use collective communication,
Figure 2.1 lists a simple parallel program1 written in Fortran [52] with the MPI mes-
saging library [73]. The program, pi, computes π and utilizes a pair of collective
communication operations in the process. The way the program works is as follows.
First, the user starts up some number of copies of the executable. (This is external
to the text of the program.) MPI assigns each process a rank in the computation,
which stays fixed for the duration of the run; it is assumed that processes neither
join nor leave the computation after the call to MPI INIT. Second, process 0 reads
a number of intervals, n, from the user and broadcasts that number to all numprocs
processes with MPI BCAST. MPI BCAST is a collective operation. All processes make
the call in unison, all processes agree that process 0 is producing the data that the
remaining processes will consume, and all processes block until their participation
in the broadcast is no longer needed. Third, each process computes

∫ 4
1+x2 over a

unique, nonoverlapping subset of 0, . . . , 1. Fourth, process 0 sums the results of
all processes using a (collective) reduction operation, MPI REDUCE. Similar to MPI -

BCAST, MPI REDUCE requires all processes to participate, agree on a destination, and
block until completion. Finally, process 0 outputs the sum as an approximation of
π.

To demonstrate how, in contrast to the previous example, a distributed appli-
cation might use collective communication, consider a distributed computational
steering environment. The idea is that a large application runs on a collection of
machines, and one or more users control the run-time behavior of that application
in real time using a graphical or virtual-reality interface [90]. For example, consider
a computationally-steered cardiac defibrillator electrode design program [86]. The
goal is to find the best place to implant electrodes within a human body to defibril-
late a patient suffering from, for example, cardiac arrhythmias. This is accomplished
by simulating a human thorax and letting a user interactively place defibrillation de-
vices at various places on the virtual thorax and letting a distributed set of machines
simulate the result.2

Such a system might use collective communication in a variety of ways, mostly
different from that in the pi program listed in Figure 2.1. First, it must deal with
users who act spontaneously and therefore cause control messages to be sent at un-
predictable times. Contrast this with the pi example, in which all processes simul-
taneously call MPI BCAST/MPI REDUCE. Second, the computational steering system
must broadcast results to a number of users that varies over time. In contrast, MPI
uses a static process model; no processes can join or leave a computation during

1The example in Figure 2.1 was taken almost verbatim from the book Using MPI [44].
2SCIRun, on which this cardiac defibrillator code runs [86] allows only a single user at a time. For

the ensuing discussion in this dissertation, we assume that multiple people could use such a system
simultaneously.

9

c***

c pi.f - compute pi by integrating f(x) = 4/(1 + x**2)

c

c Each node:

c 1) receives the number of rectangles used in the

c approximation.

c 2) calculates the areas of it’s rectangles.

c 3) Synchronizes for a global summation.

c Node 0 prints the result.

c

c Variables:

c

c pi the calculated result

c n number of points of integration.

c x midpoint of each rectangle’s interval

c f function to integrate

c sum,pi area of rectangles

c tmp temporary scratch space for global summation

c i do loop index

c***

program main

include ’mpif.h’

double precision PI25DT

parameter (PI25DT = 3.141592653589793238462643d0)

double precision mypi, pi, h, sum, x, f, a

integer n, myid, numprocs, i, rc

c function to integrate

f(a) = 4.d0 / (1.d0 + a*a)

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

print *, "Process ", myid, " of ", numprocs, " is alive"

sizetype = 1

sumtype = 2

10 if (myid .eq. 0) then

write(6,98)

98 format(’Enter the number of intervals: (0 quits)’)

read(5,99) n

99 format(i10)

endif

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

c check for quit signal

if (n .le. 0) goto 30

c calculate the interval size

h = 1.0d0/n

sum = 0.0d0

do 20 i = myid+1, n, numprocs

x = h * (dble(i) - 0.5d0)

sum = sum + f(x)

20 continue

mypi = h * sum

c collect all the partial sums

call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,

$ 0,MPI_COMM_WORLD,ierr)

c node 0 prints the answer.

if (myid .eq. 0) then

write(6, 97) pi, abs(pi - PI25DT)

97 format(’ pi is approximately: ’, F18.16,

+ ’ Error is: ’, F18.16)

endif

goto 10

30 call MPI_FINALIZE(rc)

stop

end

Figure 2.1: Sample parallel program that uses collective communication

its execution. Third, because nodes, which may be geographically distributed, can
hang or become disconnected from the network, the computational steering system
must prevent the entire application from aborting when a small piece (say, one of
the users’ interactive environments) stops. Fourth, and related to the previous point,
the computational steering system must handle retries, timeouts, and out-of-order
message delivery in a sensible way. Finally, the computational steering system must
ensure a global ordering on user actions. Otherwise, two users might simultane-
ously choose to remove all defibrillators from the thorax and then place their defib-
rillator somewhere. Without total ordering, different users might see either of the
two defibrillators. In the pi program, this is not an issue, because MPI BCAST and
MPI REDUCE are effectively proceeded by a barrier operation, which forces a total
ordering on the collective-communication operations.

In summary, collective communication research is generally performed with ei-
ther a parallel-computing mindset or a distributed-computing mindset. The two
focus on completely different sets of issues. In parallel computing, the primary is-
sue is performance; programs are expected to exist in a “best case” environment and
merely need to run as fast as possible. In distributed computing, the primary issue is

10

maintaining consistent global state in the face of uncoordinated state modifications
as well as processes and networks that sporadically produce erroneous data or fail
altogether. Performance is of a secondary concern.

I performed my thesis research in the context of parallel computing and with the
parallel-computing goal of maximizing performance. However, some of the mech-
anisms I developed should be readily applicable to distributed computing, as well.
For example, a distributed computing application can maintain consistent global
state by periodically introducing global barrier operations to ensure message causal-
ity. This is what was done for parallel discrete-event simulation with predictive
barrier scheduling [67] and noncommittal barrier synchronization [79].

2.2 Cluster technology

A PC cluster (Figure 2.2) is composed of a number of nodes—independent com-
puters each containing memory, CPU disk, and a network interface card (NIC)—
interconnected by a network. The identifying characteristics of a PC cluster are:

1. Each node’s CPU memory, disk, and network are based on COTS (commodity
off-the-shelf) technology. A corollary is that the NIC resides on the I/O bus
and there is no cache-coherent shared memory across nodes (although there is
within a multiprocessor node).

2. There may be multiple CPUs and/or multiple disks per node, but only one OS
kernel.

3. The network—including the NIC—can send and receive with both low latency
(the time required to send a minimally-sized message from one node to an-
other) and high bandwidth (the amount of data transferable per unit time).

4. The network has a low bit-error rate.

5. Nodes are mostly homogeneous. That is, the architectures are binary-
compatible, but may sport different CPU speeds, numbers of CPUs, amounts
of memory, numbers/sizes of disks, bus speeds, and possibly even types of
network interfaces.

Note that the above characteristics classify a number of parallel computers as
clusters. For example, the IBM SP2 [2] is composed of homogeneous RISC Sys-
tem/6000s, runs a single AIX kernel, and utilizes a custom, high-speed network
with a low bit-error rate. It is therefore considered a cluster for the purpose of this
dissertation.

11

Network

CPU

Disk Disk Disk
Network#
Interface#

Card

I/O bus

Memory

Memory bus

CPU CPU CPU

Disk Disk Disk
Network#
Interface#

Card

I/O bus

Memory

Memory bus

CPU CPU CPU

Disk Disk Disk
Network#
Interface#

Card

I/O bus

Memory

Memory bus

CPU CPU CPU

Disk Disk Disk
Network#
Interface#

Card

I/O bus

Memory

Memory bus

CPU CPU CPU

Disk Disk Disk
Network#
Interface#

Card

I/O bus

Memory

Memory bus

CPU CPU CPU

Disk Disk Disk
Network#
Interface#

Card

I/O bus

Memory

Memory bus

CPU CPU

CPU

Disk Disk Disk

I/O bus

Memory

Memory bus

CPU CPU

Network#
Interface#

Card

Figure 2.2: PC cluster architecture

2.2.1 Software

The identifying characteristics of a PC cluster’s software environment are:

1. The operating system is a commodity workstation operating system, such as
Windows NT [29] or Linux [91], as opposed to a small, custom run-time system
or simple loader.

2. If the system software is modified, the modifications do not break existing
applications (i.e., the interface remains the same).

3. Each node in the cluster runs a separate copy of the operating system.

The distinction in point 1 is that COTS OSes support features such as multipro-
cessing, virtual memory, demand paging, and multiple, concurrent users, while the
special-purpose system software is designed to “stay out of the way” of applica-
tions, giving them direct access to most of the node’s resources while providing
only a minimal number of system services.

12

2.2.2 Network (VIA)

As a sweeping generalization, the performance bottlenecks in a cluster are the soft-
ware and the I/O bus; the network and CPUs are generally “fast enough”. Industry
has been gradually improving I/O speeds over time, introducing faster standard
buses, such as PCI [94]. Academia has been studying ways to improve the oper-
ating system and communication run-time software. While there has been much
work in improving the operating system’s protocol-handling code [17, 33, 87], the
operating system as a whole remains a significant source of performance loss [23].
Hence, the real key to high-performance cluster communication is to remove the
operating system from the critical path of communication. To this end, a num-
ber of researchers have been investigating user-level communication and custom,
high-speed protocols [34, 71, 85, 89, 99, 104]. By bypassing the operating system,
user-level messaging layers can improve bandwidth, latency, and overhead by up
to several orders of magnitude. Four of these messaging layers—Illinois Fast Mes-
sages (FM) [85], Active Messages (AM) [71], U-Net [104], and VMMC-2 [34]—led to
the development of Compaq, Intel, and Microsoft’s new network interface standard,
the Virtual Interface Architecture (VIA) [24, 35]. VIA is an interesting architecture
because of its industry support3 and because it:

• contains a notion of reliability; endpoints can be notified if a packet is lost,
dropped, or corrupted,

• was designed for high-speed,4 user-level communication, and

• supports one-sided communication (PUT and GET), in addition to the more
traditional two-sided communication (SEND and RECEIVE).

However, VIA has no built-in support for collective communication.
The VIA model is connection-oriented, with connections going between commu-

nication endpoints called virtual interfaces (VIs). Each process allocates one or more
VIs from its local NIC and connects each of them to exactly one remote VI. There is a
distributed-systems mentality to these connections: the “server” VI is allowed to ac-
cept or deny a connection request from the “client” VI. To send a message, a process
registers (i.e., pins) a region of memory within its address space. It then enqueues a
send descriptor onto a queue that is accessible by the NIC and notifies the NIC that
it has data waiting to be sent. Similarly, the receiving process registers a region of

3Approximately 85 companies are named as contributors on http://www.viarch.org/html/
Contributors/vi contributors.htm.

4Giganet, Inc. claims their cLAN1000 VIA host adapter achieves latencies of 3.5 µsec and band-
widths over 110 MB/s (http://www.giganet.com/pdf/cLAN HostAdapter.pdf)

13

http://www.viarch.org/html/Contributors/vi_contributors.htm
http://www.viarch.org/html/Contributors/vi_contributors.htm
http://www.giganet.com
http://www.giganet.com/pdf/cLAN_HostAdapter.pdf

memory into which to receive the message, enqueues a receive descriptor, and noti-
fies the NIC of the descriptor’s existence. The receiver is notified of message arrival
by either polling or blocking, and it is possible to block on multiple connections at
once.

One unique feature of VIA is its support of multiple reliability levels. When a
process establishes a network connection, it specifies as its reliability level one of:
unreliable delivery, reliable delivery, or reliable reception. In unreliable delivery,
messages may be dropped or misordered with no notification to either VI. In re-
liable delivery, messages that are lost or corrupted in the network or arrive out of
order not only notify the VI of the problem, but also tear down the connection. Re-
liable reception is just like reliable delivery, but does not transfer a new message
until it knows that the previous message was delivered intact. Note that “reliable”
in VIA terminology is somewhat of a misnomer; it implies only notification—not
retransmission—of lost messages. Furthermore, if a receive descriptor has not
been posted by the time a message arrives on a reliable connection, the message
is dropped, the connection is torn down, and an error is signalled on the VI. In
Chapter 4, we will see how VIA’s reliable communication is used as a basis for
unresponsiveness-tolerant collective communication.

Always design a thing by
considering it in its next larger
context—a chair in a room, a room
in a house, a house in an
environment, an environment in a
city plan.

Eliel Saarinen
TIME, JUNE 2, 1977

(quoted by his son, Eero)

14

3 Problem Statement

The focus of my research is to improve the performance of parallel programs run-
ning on PC clusters. Section 3.1 characterizes the hardware and software context in
which the thesis work was executed. Section 3.2 describes an important new prob-
lem that arises in that context. The space in which I attacked that problem is detailed
in Section 3.3. This leads to the precise thesis statement in Section 3.4. Finally, Sec-
tion 3.5 explains how to validate the success of my approach.

3.1 Context

The context of my work is performance-demanding, parallel applications. Such ap-
plications are traditionally designed for integrated parallel computers, recent exam-
ples being machines such as the T3E [93]. These computers tend to run only a simple
run-time system on each node instead of a full operating system. Besides making
more of the node’s resources available to the application, this setup presents a sim-
ple resource model to the user:

1. All nodes running the user’s job will do so uninterrupted.

2. Nothing external to the user’s job will pollute the memory hierarchy.

In short, users can assume that the system is always responsive. This assump-
tion simplifies programming. Applications need not handle the case in which a
group of processes needs to synchronize, but is delayed by some processes being
descheduled. They need not handle the case in which a group of processes plans to
distribute data among the group, but one of the participants’ working set is paged
out to disk. And they need not handle the case in which periodic operating system
activity causes processes to stall at regular intervals, delaying any process that needs
to coordinate with a stalled process.

While integrated parallel computers simplify programming and reasoning about
program performance, they have a crucial drawback. These systems tend to be
expensive—beyond the budgets of many researchers and application scientists. A
less-costly alternative that is rapidly gaining in popularity is PC clusters composed
of commodity hardware and software. Because of fierce marketplace competition
to sell node hardware, prices are low and performance is high. As a result, the

15

price:performance ratio of the cluster as a whole exceeds that of an integrated par-
allel computer. For example, the HPVM [21] cluster performs within a factor of two
to four of the Origin 2000 [64] and T3E [93] supercomputers, at roughly a sixth of
the cost [22].

PC clusters are an important, emerging new platform. Many supercomputer
centers, such as the National Center for Supercomputing Applications and the Pitts-
burgh Supercomputing Center, are building large clusters instead of (or, occasion-
ally, in addition to) buying new parallel computers [26, 43, 92]. Reasons frequently
cited, in addition to low price and high performance, are that PC clusters can not
only be scaled to arbitrary sizes, but they can also be scaled in arbitrary increments.
The tightly integrated CPU, memory, and network used in parallel supercomputers
often dictate constraints on scalability (e.g., a maximum of a few thousand proces-
sors) or increment (e.g., requiring that the total number of processors be a power
of two). PC clusters, in contrast, can scale upward commensurate with what the
organization’s budget allows.

The following are some of the fundamental characteristics of PC clusters:

• PC clusters are inexpensive relative to more tightly-integrated supercomput-
ers.

• The CPU is a commodity microprocessor and may not be altered.

• The operating system is a commodity and may not be altered.

• The network interface resides on the I/O bus and is neither integrated with
nor contains any special channels to the memory system, CPU, etc.

• The microprocessor on the NIC (if any) is less powerful than the host CPU,
and the NIC has little (if any) on-board memory.

• Interrupts from a device to the CPU are expensive.

Treating the above characteristics as constraints provides focus to my research
and adds a degree of realism. These constraints prevent me from postulating solu-
tions that alter the fundamental characteristics of PC clusters or that require unob-
tainable resources or attributes thereof. Some of the implications of my constraints,
however, are that cluster-wide coordinated scheduling, if used, must be built atop
the base operating system scheduler (as in Sobalvarro, et al. [95], for example). The
NIC cannot buffer more than a small amount of data relative to the link speed. And
NIC-to-host interrupts are not allowed on the critical path of communication.

16

3.2 Problem

Although the scalability features and price:performance ratio of PC clusters are ap-
pealing, PC clusters present an important new problem: unresponsiveness. While
parallel supercomputers tightly integrate the CPU, memory, and NIC, interprocess
communication on a PC cluster must interact with various hardware and software
layers. These layers vie for the system’s resources, causing those resources occa-
sionally to become inaccessible to a running application. The result is that processes
become unresponsive to each other.

In the absence of communication, unresponsiveness is a nonissue. However,
when a process requires a result produced by an unresponsiveness process in order
to make progress, it must wait until that process becomes responsive again. Even
worse, when a collective-communication operation is being performed, any num-
ber of processes may block waiting for an unresponsive peer. Hence, although PC
clusters can exhibit comparable peak performance to integrated parallel supercom-
puters [22], unresponsiveness can impact the sustained performance.

Figure 3.1 evinces the severity of the problem. The figure shows the perfor-
mance of a radix sort (which relies heavily on collective communication) running
on an 8-node cluster. The first graph in the figure contains two bars. The Responsive

bar represents the performance observed on a cluster specially configured to be as
responsive as possible. The radix sort program was run at the highest OS priority
that would not cause priority inversion problems with the network device driver. In
addition, each node was given a spare processor for the sole purpose of absorbing
operating system activity. This is not standard operating procedure for a cluster, as
it wastes 50% of the processors and adversely affects scheduling fairness on each
node. However, the Responsive configuration does show how the cluster would per-
form if it were used more like a dedicated parallel computer.

The No Load bar in the first graph of Figure 3.1 shows the performance when
radix sort is run normally, with no additional load on the cluster. As the figure
shows, the No Load run is 9.9% slower than the Responsive run. This is an important
observation: Even on a cluster that is running a single user job and nothing else,
unresponsiveness noticeably impacts performance. However, performance can get
much worse. The second graph in Figure 3.1 additionally shows what happens
when radix sort is run either with a competitor for the CPU (a simple spin-loop)
running on each node (One competitor/node) or with two radix sort processes run-
ning on each node (Two processes/node). The One competitor/node bar is 5.3 times
as tall as the Responsive bar, and the Two processes/node bar is 6.1 times as tall as the
Responsive bar. Ideally, each of those bars should be only twice as tall as Responsive,
as only two processes are sharing each CPU. The reason is that a single descheduled

17

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

Responsive No load

Fa
ct

or
of

R
es

p
on

si
ve

ti
m

e

The above graph depicts a detailed view
of these two bars.︷ ︸︸ ︷

0%

100%

200%

300%

400%

500%

600%

700%

Responsive No load One
competitor/node

Two
processes/node

Fa
ct

or
of

R
es

p
on

si
ve

ti
m

e

Figure 3.1: Unresponsiveness observed in a PC cluster

18

process delays even the processes that are scheduled, as they must block waiting for
the unresponsive process to be rescheduled, so they can communicate with it. The
conclusion to draw from Figure 3.1 is that unresponsiveness is a problem even on
an unloaded system, and it becomes a serious problem in the presence of load.

3.3 Solution space

Unresponsiveness is a multifaceted problem, and there are many ways to approach
solving it. This section describes the approach my thesis takes and justifies it as the
most propitious tack to take. Phrases that distinguish the specific space in which my
thesis work is performed are shown in bold.

At the top level, there are two possible ways to deal with unresponsiveness. Ei-
ther it can be tolerated, or it can be removed altogether. While removing unrespon-
siveness may sound more favorable at first, doing so in the context of PC clusters has
a number of drawbacks. Primarily, removing unresponsiveness generally requires a
dedicated system, specially modified operating system, or wasted resources. (Recall
that the measurements for the Responsive bar in Figure 3.1 were taken while running
with abnormally high process priorities and on a dedicated system with half of the
CPUs essentially wasted.) Those conditions degrade many of the benefits of using
COTS components, such as the good price:performance ratio or the ability to take
advantage of the timesharing features of a commodity operating system.

A second problem with removing unresponsiveness is that only unresponsive-
ness external to the user’s application can be removed without requiring application
modifications. If unresponsiveness is caused, for example, by load imbalance within
the application, it can be removed only if the application is rewritten to schedule
tasks in a more flexible manner. However, this is not always possible or practical.

Because removing unresponsiveness violates COTS properties and may require
application modifications, my thesis will instead tolerate unresponsiveness.

There are two places to look for unresponsiveness: in the network or in the
nodes. With modern high-speed networks such as Myrinet [16] and Giganet [1],
the network is effectively infinitely fast. More precisely, a network link bandwidth
of 2+2 gigabits/second (i.e., 2 Gbps in each direction) is roughly twice as fast as
a 64-bit/33 MHz PCI (I/O) bus. Because in a COTS-based PC cluster, all network
traffic must cross the I/O bus, those numbers indicate that the I/O bus will be-
come a performance bottleneck long before the network does. Figure 3.2 provides
further evidence that the network is not the primary source of unresponsiveness.
Instead, unresponsiveness lies within the endpoints and is highly correlated to

19

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

10
-1

9
20

-2
9

30
-3

9
40

-4
9

50
-5

9
60

-6
9

70
-7

9
80

-8
9

90
-9

9
10

0-
19

9
20

0-
29

9
30

0-
39

9
40

0-
49

9
50

0-
59

9
60

0-
69

9
70

0-
79

9
80

0-
89

9
90

0-
99

9
10

00
-1

99
9

20
00

-2
99

9
30

00
-3

99
9

40
00

-4
99

9

Barrier time (µsecs)

C
or

re
la

ti
on

of
b

ar
ri

er
s

to
co

n
te

xt
sw

it
ch

es

Figure 3.2: Correlation between the number of barriers in each time range and the
number of context switches observed

context-switch activity. The data used for Figure 3.2 comes from the following ex-
periment:

1. Perform a large number of back-to-back barrier operations, measuring each of
them individually on each process.

2. Log the number of context switches that occurred during the entire run.

3. Tally the barrier times into a histogram (number of 10–19 µsec barriers, num-
ber of 20–29 µsec barriers, etc.).

4. Repeat with varying delays between barrier operations.

Figure 3.2 then plots the correlation of the vector of context switch tallies to the
vector of 10–19 µsec barrier tallies, the correlation of the vector of context switch
tallies to the vector of 20–29 µsec barrier tallies, and so forth up to the tally of 4–
5 msec barriers.

The figure clearly shows that there is a large inverse correlation between the
number of context switches observed on a given run and the number of barriers
from that run that took the expected amount of time (10–29 µsecs) to complete.
Similarly, there is an almost perfect correlation between the number of context
switches observed on a given run and the number of barriers in that run that took
100–1000 µsec to complete. The conclusion we can draw is that context switches—or
rather, the system services that the context switches to—are the likely cause of unre-
sponsiveness, and that this unresponsiveness typically lasts for 100–1000 µsecs. The

20

Operating
system

Network switch

Network
device
driver

Messaging libraries

VIA interface

Network interface
hardware/firmware

Applications

Modifiable

Not modifiable

Workstation
architecture

Figure 3.3: Components of an endpoint

strong correlation corroborates the claim that the best place to fight unresponsive-
ness is in the endpoints. Hence, my thesis will tolerate unresponsiveness at the

endpoints.

Within the endpoints are a variety of hardware and software components that
can potentially be modified to tolerate unresponsiveness. However, not all of these
are appropriate to change. Figure 3.3 illustrates the components of an endpoint and
differentiates between those that are reasonable to modify and those that are not. As
the figure shows, I did not investigate any techniques to tolerate unresponsiveness
that required changes to the following:

Applications Users are generally averse to modify their source code. In order to
promote acceptance of my solution to the problem of endpoint unrespon-
siveness, my thesis must not require source-code modifications. Hence, ap-
proaches that require unique programming languages or new programming
paradigms are ill-favored for my thesis.

Operating system + workstation architecture Because I am assuming a COTS en-
vironment, my work would have less impact if it required changes to the fun-
damental components of a system. Because PC clusters are quintessentially
COTS, the use of COTS technology is a fundamental contstraint in PC clus-
ters.

21

Even while preserving the application source code, operating system internals,
and the basic workstation architecture, there remain a number of endpoint compo-
nents that are suitable for investigation:

• Messaging libraries

• Network device driver

• Network interface hardware/firmware

• Software interface to the NIC

Any of the above are reasonable to modify, as they all stand a chance of successfully
counteracting endpoint unresponsiveness. Each of those components has access to
both local node state and network state. This broad view can be exploited to make
the system tolerant of unresponsiveness. Furthermore, any changes made to the
components in the above list will not affect application source code, nor do they
require turning a PC cluster into something it is not. Hence, it should be compara-
tively easy for my work to impact future PC cluster projects.

Communication is the key to tolerating unresponsiveness. That statement is ac-
tually tautologous; if there were no communication in an application, there would
be no possibility of unresponsiveness, as unresponsiveness is defined in terms of
communication. My thesis therefore focuses on communication. Communication
can be categorized into two main divisions: point-to-point and collective. Both types
of communication are important to parallel programs. However, collective commu-
nication is the better one for my thesis to focus on for two reasons, one technical,
one not:

1. Collective communication provides more opportunity for optimization.

2. Collective communication is widely considered an important problem.

If one of the two processes involved in a point-to-point communication operation is
unresponsive, the other process will be delayed. However, if one of the P processes
involved in a collective-communication operation is unresponsive, all of the remain-
ing processes—of which there could be any number—may be delayed. Hence, un-
responsiveness has a greater potential impact on collective communication than on
point-to-point communication. A second argument for why collective communica-
tion offers more opportunity for optimization is that collective communication is a
higher-level way to reason about communication. Because the programmer makes

22

more information available to the system, the system is able to use that additional in-
formation to relax communication ordering, reschedule communication operations,
and generally exploit the additional knowledge of future communication events.

Apart from the technical issues, collective communication is a better target than
point-to-point communication, because improving collective-communication per-
formance is an important concern to researchers and application scientists. Accord-
ing to an ongoing survey1 of LAM/MPI users, 38% of the users surveyed wanted
to see “faster/better optimized MPI collective functions.” 26% of users said they
would use MPI-2’s extended collective-communication operations if implemented.
(The LAM implementation of MPI does not currently support the MPI-2 specifi-
cation.) And, on a question asking users to rank the features they would most
like LAM/MPI to support, improved collective-communication performance was
the most popular response. The conclusion to draw from this survey is that users
do consider collective communication important and believe that their applications
would run faster if collective-communication performance were improved.

Because of the opportunity for optimization and the importance of the issue, my
thesis focuses on collective communication.

There are a large number of collective-communication operations, some of which
were enumerated on page 2. For the purpose of tolerating unresponsiveness, how-
ever, barrier synchronization [53] is the most important collective-communication
operation to study. First, barriers are important to performance. Proprietary mete-
orological codes studied at Cray Research were found to run 7% slower when, in-
stead of using the T3E’s barrier hardware, they utilized a 15 µsec-slower all-software
barrier [93]. Second, barriers are the most challenging collective-communication
operation in which to tolerate unresponsiveness. Because a barrier is a synchro-
nization operation, it runs only as fast as the slowest (in this context, least respon-
sive) participant. Hence, tolerating unresponsiveness in barriers may lead to un-
derstanding of the problem as a whole. Finally, barriers are a useful abstraction
for parallel programming. They are commonly used to separate phases of an ap-
plication, to ensure ordering and data consistency across processes. In fact, bar-
riers are the central abstraction in Valiant’s bulk-synchronous model of comput-
ing [101]; no nontrivial bulk-synchronous program can exist without them. Barriers
are also used extensively in single program, multiple data (SPMD) models, such
as High-Performance Fortran (HPF); compilers generally insert a barrier after ev-
ery parallel loop (FORALL in HPF). Because of the importance of barrier operations

1The survey is located at http://www.mpi.nd.edu/lam/user survey/. The results highlighted in
this dissertation correspond to survey results dated January 24, 2001 and earlier.

23

http://www.mpi.nd.edu/lam/user_survey/

within the class of collective-communication operations, my thesis focuses on bar-

riers.

As stated, the approach my thesis takes is to tolerate unresponsiveness in the
endpoints by focusing specifically on barrier operations and without requiring ap-
plication modifications or violating the cluster’s COTS properties. Within this solu-
tion space, the key assumptions my thesis makes are:

• The communication subsystem has no a priori knowledge of how long each
communication operation will take, nor of the expected time between opera-
tions.

• The operating system lacks support for real-time scheduling.2

• Applications are not heavily multithreaded. That is, they do not always have
more work to do while waiting for a remote process to become responsive.
(Other applications on the same node may have other work to do, however.)

• There is not necessarily any coordinated thread scheduling across nodes.

Although my thesis will not assume coordinated thread scheduling, its presence
could probably still improve application performance. That is, coordinated thread
scheduling is complementary to unresponsiveness tolerance. However, coordinated
scheduling does not replace unresponsiveness tolerance because it eliminates only
unresponsiveness external to the application, not unresponsiveness caused by the
application structure itself.

3.4 Thesis statement

My thesis is stated as follows:

Parallel application performance can be improved by tolerating un-
responsiveness at the endpoints. By altering the implementation of
collective-communication operations, especially barriers, this goal can
be achieved without requiring application modifications and without vi-
olating the COTS properties of PC clusters.

2Here, “real time scheduling” means using a real-time scheduling algorithm such as Earliest Dead-
line First [70], as opposed to merely supporting a fixed-priority scheduling class with a higher base
priority than the timeshared class, as is common in modern commercial operating systems such as
Windows NT [29] and Solaris [98].

24

3.5 Success criteria

The following are the criteria to use to determine whether I have successfully vali-
dated my thesis:

1. Have I developed a technique to tolerate unresponsiveness?

2. Does my technique improve performance?

3. Does my technique preserve the cluster’s COTS characteristics?

4. Does my technique preserve the application’s source code?

In short, I must demonstrate that a new technique that solves the performance
penalty caused by unresponsiveness and does so without sacrificing the benefits
of commodity-based PC clusters, such as the basic architecture or the ability to use
an off-the-shelf operating system.

[W]e demand rigidly defined areas
of doubt and uncertainty!

Douglas Adams
THE HITCHHIKER’S GUIDE TO THE

GALAXY, 1979

If you think the problem is bad now,
just wait until we’ve solved it.

Arthur Kasspe

25

4 Nonblocking Barriers

Whereas Chapter 3 framed the problem and the space in which my thesis devises
a solution, Chapter 4 describes the specific approach I took to solve the problem.
The primary technique I developed, and the key contribution of this thesis, is a
new mechanism called a “nonblocking barrier.” Nonblocking barriers enable unre-
sponsiveness that is observed during a barrier operation to be tolerated. Of course,
nonblocking barriers meet the success criteria stated in Section 3.5.

Chapter 4 describes the basic concept underlying nonblocking barriers (Sec-
tion 4.1). It presents the detailed nonblocking-barrier algorithm and provides an
example of how the algorithm works (Sections 4.2 and 4.3). Section 4.4 delves into
more detail regarding the nonblocking barriers’ ordering semantics and draws an
analogy between those semantics and the semantics of release-consistent shared
memory. The chapter then describes alternative implementations and their relative
merits and shortcomings (Section 4.5). Section 4.6 presents alternatives to nonblock-
ing barriers and explains how they fail to meet this dissertation’s stated success
criteria. Finally, Section 4.7 elaborates further on some of the points made in this
chapter.

4.1 Intoduction

A barrier is a synchronization operation. Its semantics dictate that no process
may leave the barrier until all processes have entered the barrier. One common
way to implement a barrier is to have each participating process synchronize with
each of its peers in a butterfly network (Figure 4.1).1 More formally, in each stage
s ∈ [0, dlg Pe − 1], each process, p ∈ [0, P − 1], exchanges a message with process
p ⊕ 2s. Figure 4.2 illustrates the problem with this traditional approach: If a single
process is unresponsive, the entire barrier operation’s completion is detained until
the unresponsive process becomes responsive again. Even worse, it can take up to
lg P additional steps to complete the barrier (during which time, any other process
may become unresponsive, as well).

The key insight my thesis makes is that barrier semantics are actually stricter
than necessary. The crucial observation is that, in the absence of communication, it
is not possible to detect whether any of the partipants have entered or left the bar-

1An alternative is to perform a null reduction followed by a null broadcast.

26

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Ti
m

e

000 001 010 011 100 101 110 111

Figure 4.1: Basic, logarithmic-time, 8-process barrier

rier or whether synchronization has occurred. It is therefore permissible to allow
processes to run ahead of the barrier, as long as there is no telltale communication
that would enable other processes to detect that. As will be described shortly, non-
blocking barriers relax the normally strict barrier semantics, but do so in such a way
that they are indistinguishable from traditional barriers, in the absence of hidden
channels [61].

The novelty of altering barrier semantics surreptitiously is that it requires no
application modifications. Barrier semantics are changed only conservatively. In a
sense, nonblocking barriers provide “covert multithreading”. Like ordinary multi-
threading, they enable work that would normally be performed after a barrier com-
pletes to overlap barrier idle time induced by an unresponsive peer. However, the
programmer does not realize that his application is being multithreaded automati-
cally behind the scenes. He can therefore reason about his program as if it still used
its original, simpler, single-threaded semantics.

The closest piece of related work to my thesis work is Nicol’s noncommittal bar-
rier synchronization work [79]. Nicol also observes that a single slow participant can
greatly degrade barrier performance. In his solution, a process can exit a barrier and
continue computing as soon as it has completed its pre-barrier computation. If the
process later determines that barrier semantics were violated—by pre-barrier work
arriving after exiting the barrier—the process handles its pre-barrier work, rolls the

27

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Ti
m

e

(Node 7 becomes responsive.)

Figure 4.2: Basic, logarithmic-time, 8-process barrier, in which process 7 is temporar-
ily unresponsive

28

entire application back to its pre-barrier state, and retries the barrier. This process re-
peats as many times as necessary until no pre-barrier work arrives after the barrier.
The crucial difference between my thesis work and noncommittal barrier synchro-
nization is that the latter requires application modifications, while my work does
not. As iterated repeatedly in Chapter 3, a requirement for community acceptance
of a new technique is that it not require source-code modifications. Noncommit-
tal barrier synchronization generally requires extensive modifications. Applications
must be rewritten to periodically checkpoint their state, roll the entire distributed
computation state back to a previous checkpoint, and possibly even garbage-collect
states that are known never to be needed again. None of these tasks are simple, and
not all applications can be written in such a style.

A second piece of related work is MAGPIE [58], from Vrije Universiteit. MAGPIE

examines supporting collective communication efficiently across both clusters and
wide-area networks. It uses one set of communication algorithms within a cluster, to
maximize parallelism, and a different set between clusters, to minimize bandwidth
demands. This is similar to my thesis work if one draws an analogy between “local
cluster” and “responsive” and between “remote cluster” and “unresponsive.” The
difference is that MAGPIE treats unresponsiveness as a static characteristic: some
processes are always unresponsive; others are always responsive. In contrast, my
thesis proposes that unresponsiveness is a transitory condition; any process can be-
come unresponsive at any time and for an arbitrary length of time.

A final example of related work is the broad category of load balancing.
Charm++/Converse [55, 56] is one instance of a system with load balancing inte-
grated into the runtime system. The user writes fine-grained object-oriented code
in Charm++, a distributed, C++-like language in which objects communicate with
explicit message passing. The runtime system then exploits global system state, ob-
servations of objects’ communication patterns, and application-provided triggers to
periodically load balance the application across processors. While load-balancing
schemes such as Charm++/Converse and my thesis work all try to solve the prob-
lem of unresponsiveness, the crucial difference is that the former tackles unrespon-
siveness by preventing it, while my thesis is designed to tolerate it.

Before describing how nonblocking barriers work (in the following sections), it
is important to discuss the communication properties needed for their implementa-
tion. The following are the requisite properties:

• the ability to intercept and process a message before delivery to the application
or after transmission from the application,

• the ability to attach a small amount of metadata to a message,

29

http://www.vu.nl/

• the ability of a receiver to identify a message’s sender and peer group,

• FIFO message ordering between pairs of processes, and

• reliable message delivery.

The first property is the most important, as it can be used as a primitive to fabri-
cate all of the remaining properties. Because PC clusters are composed of commod-
ity components, it is common for a message to pass through a few layers of software
and firmware before being injected into the network. By modifying any of these lay-
ers, nonblocking barriers can intercept a message for additional processing before
or after it passes through the network. This property is somewhat unique to clus-
ters. Parallel computers such as the CM-5 [100] and T3E [93], in contrast, integrate
the network high up in the memory hierarchy, giving applications direct access to it.
While this improves latency and possibly, bandwidth, it implies that the only way
to intervene between two communicating processes on such a system is to modify
the custom, vendor-specific communication hardware.

Once intervention is possible, the remaining communication properties shown
in the above list can all be supplied, if they are not already present. Nonblocking
barriers use message metadata to store information about the sender of a message
and about the other processes involved in the same collective-communication oper-
ation. Inserting metadata into a message is trivial if the underlying layer supports
variable-sized messages. Even if it does not, the higher-level messages can be seg-
mented into sufficiently small pieces on the sending side and recombined on the
receiving side. This is the mechanism by which UDP datagrams [88], which can be
up to 65,535 bytes long, can be sent over an Ethernet [74] network, in which the
maximum frame size is only 1536 bytes.

Nonblocking barriers assume that all messages that are sent will eventually be
received. Furthermore, reception order must by FIFO between a given sender and
a given receiver. Most modern high-speed networks support FIFO delivery and
have a sufficiently low bit error rate that they can be considered reliable for most
purposes. The VIA interface lets the systems programmer decide the tradeoff be-
tween message overhead and prompt—or any—notification of bit errors [24]. If
guaranteed ordered, reliable delivery is essential, it is possible to fabricate it even on
networks that support neither by sending sequence information as message meta-
data [63].

As my thesis work was carried out in the context of VIA, it is instructive to note
which of the communcation requirements shown in the above list are supported
by VIA and which are not. First, there is ample opportunity to intercept an appli-
cation’s communication before it reaches the network. Because VIA is merely an

30

interface specification, it is left to the implementation as to which components are
implemented in hardware and which in software. However, few programs access
the VIA interface directly; most utilize a higher-level API, such as MPI [73] or the
Berkeley sockets interface [66]. Hence, messages can be intercepted in hardware,
firmware, or the network device driver. Second, VIA supports gather and scatter
of message data between the network and local memory, which makes metadata
attachment easy. Third, the VIA specifications dictate that message order is FIFO.
And finally, my thesis work uses the VIA dropped-packet notification to ensure that
all messages are delivered.

4.2 Algorithm

First, we present some terminology:

send Specify that a message is to be sent at some arbitrary time in the future (i.e.,
post a send without necessarily completing it).

receive Accept a message at the destination node, without yet making the message
available to the destination process.

deliver Make a received message available to the destination process.

Note that the above are the standard distributed-system definitions of receive and
deliver—as used, for example, by Babaoğlu and Marzullo [83]—as opposed to the
permuted definitions used by the VIA committee [24].

To preserve traditional collective-communication semantics while still being able
to execute collective-communication operations optimistically, we must impose the
following invariant on any mechanism we develop:

Invariant 1 All sends posted after a barrier is must be delivered after the barrier.2

The above implies that messages can be sent and received at any time. However, a
message can be delivered only in the same or a later phase3 of the program than the
one in which it was sent.

We can now state the key concept underlying this work: a process can continue
computing and communicating after entering a barrier, but it is forbidden from de-
livering messages until all other processes have entered the barrier as well. In a
traditional barrier, no process may leave the barrier until all processes have entered

2Also true, but less useful in the context of this dissertation, is the invariant that all sends delivered
before a barrier must have been posted before the barrier.

3Here, “phase” means a barrier-delimited sequence of operations, akin to a superstep in Valiant’s
bulk-synchronous model [101].

31

the barrier. Nonblocking barriers merely relax this constraint, while still honoring
the standard barrier semantics by maintaining the invariant stated on the previous
page.

We can now turn to a specific algorithm for implementing nonblocking barri-
ers. One way to implement nonblocking barriers is for each process to keep track
of the current time with something similar to an array of logical clocks [61], with
“barrier” being the event that increments the logical time. Each process holds one
“send” and one “receive” clock per peer. The send clock is incremented every time
a process starts a barrier that involves the given peer. The send time is included in
every message sent to that particular peer. The receive clock is incremented every
time a process completes a barrier that involves the given peer. No point-to-point
message can be delivered until its timestamp is less than or equal to the receive clock
corresponding to the sender.

To tolerate unresponsiveness, the nonblocking-barrier scheme relies on a
message-driven style of communication [54]. When an application program invokes
the Barrier() function, the communication library merely initiates the first stage
of the barrier operation and returns immediately. When a process receives a bar-
rier message, the message contains enough information for that process to continue
with the next stage. Algorithms 4.1 and 4.2 list, respectively, the pseudocode for
nonblocking barriers proper and for the associated message-receive function.

The algorithms work as follows. The barrier function proper (Algorithm 4.1)
starts by filling in all the fields of a barrier message (shown in Figure 4.3(b)). It
then sends the message to its first peer, and increments the tally of the number of
barriers started that involve each peer.4 The final if statement in Algorithm 4.1 may
be a bit counterintuitive. It increments each peer’s receive timestamp if the barrier
that was just started had previously finished. This is necessary because nonblocking
barriers enable an unresponsive process to receive notification that some number of
its peers have completed a barrier even before the unresponsive process entered the
barrier. (As will be described on the following page, the message receive function
contains the opposite test: It increments each peer’s receive timestamp if a barrier
that just finished had previously started.) As soon as the barrier function sends the
first message and increments the various counters, it returns to the caller, enabling
it to make progress in its computation.

Algorithm 4.2 is the nonblocking receive function that corresponds to the bar-
rier function in Algorithm 4.1.5 The algorithm starts by receiving a message from
the network, returning NULL if none is available. There are then two cases: Either

4The send timestamp, TSsend, is an alias for barriers started.
5A blocking version of the receive function, not shown in this dissertation, is almost identical.

32

Algorithm 4.1 Unresponsiveness-tolerant barrier
Given: Participants (list of IDs)

� Find our and our first peer’s offsets into Participants, and fill in all the fields in
an outgoing message (m).

for p← 0 to |Participants| − 1 do
m.participants[p] ← Participants[p]
if Participants[p] = selfID then

self ofs← p
end if

end for
first peer← self ofs ⊕ 1
if first peer ≥ |Participants| then

return
end if
m.type← BARRIER

m.stage← 0
m.source← self ofs
m.dest← first peer
m.numparticipants← |Participants|
m.TS← barriers started[peerID]

� Send the message, and update the appropriate timestamps.
Send m to Participants[first peer]
for p← 0 to |Participants| − 1 do

peerID← Participants[p]
barriers started[peerID] ← barriers started[peerID] + 1
if barriers started[peerID] ≤ barriers finished[peerID] then

TSrecv[peerID] ← TSrecv[peerID] + 1
end if

end for

the message is a point-to-point message or a barrier message. In the former case,
the receive function enqueues the new message and then returns the oldest message
in the queue, but only if its timestamp is sufficiently recent. This queueing is nec-
essary because one of the goals of my thesis work is to improve performance while
preserve existing communication semantics—both collective and point-to-point. Be-
cause VIA guarantees ordered delivery, returning a newer message when an older
one is available would violate those semantics.

If the incoming message is a barrier message, Algorithm 4.2 increments (in place)
the stage number. If there are more stages remaining in the barrier, the receive func-
tion forwards the barrier message onto the next peer. If this is the final stage of the
barrier (i.e., stage dlg(m.numparticipants)e), the receive function increments its tally
of the number of barriers that finished for each peer. For each finished barrier that
previously started, the peer’s receive timestamp is incremented.

33

Algorithm 4.2 Nonblocking receive that supports unresponsiveness-tolerant
barriers

if message is available from network then
m←message from network

else
return NULL

end if

if m.type = PT2PT then
ENQUEUE(Q, m)
m′ ← PEEK(Q)
if m′.TS > TSrecv[m.src] then

return NULL

else
return POP(Q)

end if

else if m.type = BARRIER then
m.stage← m.stage + 1
if 2m.stage < m.numparticipants then

� Internal barrier stage
m.src←m.dest
m.dest←m.dest ⊕ 2m.stage

if m.dest < m.numparticipants then
Send m to m.participants[m.dest]

end if
else

� Final stage of the barrier
for p← 0 to numparticipants do

peerID← Participants[p]
barriers finished[peerID] ← barriers finished[peerID] + 1
if barriers started[peerID] ≤ barriers finished[peerID] then

TSrecv[m.peerID] ← TSrecv[m.peerID] + 1
end if

end for
end if

end if

34

0 7 8 15 16 23 24 31

PT2PT

Timestamp

(a) Point-to-point messages

0 7 8 15 16 23 24 31

BARRIER

Stage # of participants

Source offset Destination offset

Participant list
} 32 bits per

participanthhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhh

(b) Barrier messages

Figure 4.3: Packet formats used for nonblocking barriers

4.3 Example

Consider the following sequence of events, performed among processes A, B, C,
and D:

1. Program initializes.

2. Processes A and B synchronize.

3. Processes C and D synchronize.

4. Processes B and C synchronize.

Figure 4.4 illustrates the bookkeeping that is performed when those events are per-
formed using nonblocking barriers. In the figure, the last synchronization time be-
tween each pair of processes (i.e., TSsend and TSrecv) is shown to the right of each
step. When the program initializes, all logical clocks are reset to 0. After processes A

35

and B synchronize, they each increment their logical clocks to indicate that the last
time the two of them synchronized, it was before logical time 1. Processes C and D
do likewise after the two of them synchronize. Finally, processes B and C increment
their logical clocks again after they synchronize with each other.

With the bookkeeping illustrated in Figure 4.4, if process B sends a point-to-
point message to process A after the sequence completes, the message will be
timestamped at logical time 1—the logical time at which processes A and B last
synchronized—and will be received no earlier than logical time 1. Therefore, pro-
cess A can correctly deliver process B’s message, even though process B has been in-
volved in two barriers total, versus process A’s one. The significance of process A’s
being able to send a point-to-point message to process B in the context of this exam-
ple will become apparent in Section 4.5.1.

4.4 Ordering semantics

The insight behind nonblocking barriers is that they relax some of the strict order-
ing constraints imposed by traditional barriers. This section details the specific rules
that nonblocking barriers use to tolerate unresponsiveness. First, we present some
definitions. Then, we state the reordering rules and argue that the rules are anal-
ogous to those used by release-consistent shared memory [42]. Finally, we discuss
the implications of these rules on user applications.

4.4.1 Definitions

In the context of shared-memory consistency models, it is common to describe
when a memory access is performed. The analogue in the context of my research
is when a collective-communication operation—specifically, a barrier, reduction, or
multicast—has initiated or completed. It is important to separate initiation and com-
pletion when discussing nonblocking barriers, because nonblocking barriers, unlike
traditional barriers, are a split-phrase operation; they allow other work to proceed
between initiation and completion. However, only initiation is application-visible.
Nonblocking barrier completion occurs asynchronously and is triggered by message
arrival. The following are the definitions for “initiated” and “completed” that will
be used on subsequent pages to describe the rules for ordering semantics:

• A process considers a multicast to be completed if:

1. it is the root of the multicast, and it has sent the message to its immediate
children, or

36

A B C D

1. Program initializes. A 0 0 0 0

B 0 0 0 0

C 0 0 0 0

D 0 0 0 0

A B C D

2. Processes A and B synchronize. A 1 1 0 0

B 1 1 0 0

C 0 0 0 0

D 0 0 0 0

A B C D

3. Processes C and D synchronize. A 1 1 0 0

B 1 1 0 0

C 0 0 1 1

D 0 0 1 1

A B C D

4. Processes B and C synchronize. A 1 1 0 0

B 1 2 1 0

C 0 1 2 1

D 0 0 1 1

Figure 4.4: Bookkeeping for a sample sequence of operations

37

2. it is not the root of the multicast, and it has received and delivered the
multicasted message.

• A process considers a reduction to be completed if:

1. it is the root of the reduction, and it has received and delivered the re-
duced value(s), or

2. it is not the root of the reduction, and it has sent its data to its parent.

• A process considers a barrier to be initiated after the first barrier message is
sent to the process’ first peer.

• A process considers a barrier to be completed after the final barrier message is
received and delivered from the process’ final peer.

In the above, “sent” means that a message transmission was posted, although not
necessarily received by the destination. While the preceding definitions make no
mention of point-to-point operations, “send”+”receive” can be considered a single,
paired operation that is a special case of either multicast or reduce.

4.4.2 Reordering rules

The reordering rules for nonblocking barriers can be mapped directly onto the re-
ordering rules for release-consistent shared memory. This is an important result,
because it shows that nonblocking barriers make “intuitive” sense. That is, rea-
soning about nonblocking barriers’ ordering semantics is not substantially different
from reasoning about release consistency’s ordering semantics.

Table 4.1 illustrates the correspondence between the operations used in release-
consistent shared memory and those used in the context of nonblocking barriers.
Table 4.2 then does the same thing for the reordering rules in the two contexts.

Table 4.1: Analogous operations

Release consistency Nonblocking barriers

LOAD REDUCE

STORE MULTICAST

ACQUIRE BARRIER completion (implicit)
RELEASE BARRIER initiation

38

Table 4.2: Ordering semantics for nonblocking barriers

Release consistency Nonblocking barriers

Before an ordinary LOAD or STORE ac-
cess is allowed to perform with respect
to any other processor, all previous AC-
QUIRE accesses must be performed.

Before an ordinary MULTICAST or RE-
DUCE operation is allowed to complete,
all previous BARRIER operations must
have completed.

Before a RELEASE access is allowed to
perform with respect to any other pro-
cessor, all previous ordinary LOAD and
STORE accesses must be performed.

Before a BARRIER operation is allowed
to initiate, all previous MULTICAST and
REDUCE operations must have com-
pleted.

Special accesses (ACQUIREs, RELEASEs,
and chaotic accesses) are processor con-
sistent with respect to one another.

BARRIER initiations and completions
are processor consistent with respect to
one another.

While the first two rules in Table 4.2 are straightforward, the final rule needs
some additional explanation. The definition of processor consistency is that all pro-
cessors agree on the order of STORE accesses from a given processor, but may dis-
agree on the order of STORE accesses from different processors [42, 77]. Figure 4.5
illustrates how the same concept applies to nonblocking barriers. The figure shows
a timeline of two concurrent barrier operations. Barrier 1 involves processes 0–3;
barrier 2 involves processes 2–5. Barrier messages are labeled b1 and b2 to indicate
which barrier they correspond to. Barrier initiations are labeled “(I1)” or “(I2)”, and
barrier completions are labeled “(C1)” or “(C2)”.

The important observation to make from Figure 4.5 is that various processes
disagree on the ordering of certain events. For instance, process 2 sees barrier 1
complete before barrier 2, while process 3 sees barrier 2 complete before barrier 1.
(Recall that a process increments its logical clock only when it has both initiated
and completed a particular barrier. The initiation and completion operations can
occur in either order, however.) Furthermore, process 2 completes barrier 2 before
initiating barrier 1, while process 3 initiates barrier 1 before completing barrier 2. Be-
cause of those discrepancies, nonblocking barriers are clearly not sequentially con-
sistent [62], as that requires global agreement on the order that the barrier initiations
and completions occur. However, all processes do agree on the order of barrier ini-
tiations from any given process. For instance, processes 2 and 3 agree that process 3
initiated barrier 1 before barrier 2.

We can therefore say that the components of a barrier operation—initiation and
completion—are effectively processor consistent. And together with the remain-
ing nonblocking-barrier rules in Table 4.2—essentially the release-consistency rules

39

0 1 (I1) 2 3 4 (I2) 5 (I2)

0 1 2 (C1) 3 4 5

0 1 2 (C2) 3 4 5

0 1 2 3 (I1) 4 5

0 (C1) 1 2 3 4 5

0 (I1) 1 2 3 (C2) 4 5

0 1 2 (I1) 3 4 5

0 1 (C1) 2 3 (C1) 4 5

0 1 2 (I2) 3 (I2) 4 5

0 1 2 3 4 (C2) 5 (C2)

b1

b2

b2
b1

b2

b1

b1
b1

b2
b1

b1

b1
b2

b2
b2 b2

Ti
m

e

Figure 4.5: Processor consistency in the context of nonblocking barriers

40

with the terms from Table 4.1 substituted in—we can conclude that a system using
collective communication operations along with nonblocking barriers is effectively
release consistent.

4.4.3 Implications

The result of the ordering semantics listed in Table 4.2 is that certain operations can
execute between barrier initiation and barrier completion. Specifically, computation
and fan-out collective-communication operations—multicasts, from the root’s per-
spective, and reductions, from the perspective of all processes except the root—can
execute as soon as a barrier is initiated, without having to wait for the barrier to com-
plete. Figure 4.6 contrasts the ordering requirements for traditional and nonblock-
ing barriers. When traditional barriers are used (Figure 4.6(a)), processes make no
progress between barrier initiation and completion. Once a barrier completes, then
other communication and computation can proceed (in program order). However,
when nonblocking barriers are used (Figure 4.6(b)), barrier completions are decou-
pled from barrier initiations and execute asynchronously. The root of a reduction
must still wait for a barrier to complete before the reduction can complete. How-
ever, all the other processes in the reduction can send their data and immediately go
on. Similarly, the root of a multicast does not have to wait for a preceding barrier to
complete, although the non-roots do.

One implication of the ordering semantics for nonblocking barriers is that the
applications that stand the most to gain from nonblocking barriers are those that do
the most work between a barrier and the subsequent fan-in operation. Figure 4.7
shows a sample timeline illustrating a “good” sequence of operations for nonblock-
ing barriers: BARRIER, SEND (representing any fan-out operation), COMPUTE, and
RECEIVE (representing any fan-in operation). In Figure 4.7(a), the system is respon-
sive. Hence, barriers reach completion quickly, so there is minimal (but still some)
opportunity for operations to overlap with the barrier. In Figure 4.7(b), some set of
processes is unresponsive. Traditional barriers must therefore block until the unre-
sponsive processes become responsive again. In contrast, nonblocking barriers can
execute SEND operations and perform computation during the otherwise idle time.
RECEIVE operations must still block until the barrier has completed.

The worst-case situation for nonblocking barriers, based on their ordering seman-
tics, is when messages are received immediately after a barrier. This is, unfortu-
nately, a common occurrence in a number of applications, which use barriers as a
fence operation for messages—essentially a promise that no more messages will be

41

BARRIER
initialize

BARRIER
complete

MULTICAST
(root)

MULTICAST
(non-root) Computation

REDUCE
(root)

REDUCE
(non-root)

BARRIER
initialize

BARRIER
complete

MULTICAST
(root)

MULTICAST
(non-root) Computation

REDUCE
(root)

REDUCE
(non-root)

(a) Traditional barriers

BARRIER
initialize

BARRIER
complete

MULTICAST
(root)

MULTICAST
(non-root) Computation

REDUCE
(root)

REDUCE
(non-root)

BARRIER
initialize

BARRIER
complete

MULTICAST
(root)

MULTICAST
(non-root) Computation

REDUCE
(root)

REDUCE
(non-root)

BARRIER
initialize

BARRIER
initialize

(b) Nonblocking barriers

Figure 4.6: Dependencies between barrier and non-barrier operations

42

Time -

Traditional: BARRIER SEND COMPUTE RECEIVE

Nonblocking: BARRIER

SEND COMPUTE RECEIVE

(a) Responsive remote processes

Traditional: BARRIER SEND COMPUTE RECEIVE

Nonblocking: BARRIER

SEND COMPUTE RECEIVE

(b) Unresponsive remote processes

Figure 4.7: Timelines for traditional and optimistic collective communication

forthcoming in that iteration of the program. The main loop of such applications is
as follows:

1. Send a number of point-to-point messages

2. Synchronize all processes with a barrier

3. Receive the point-to-point messages

4. Compute based on the data just received

Nonblocking barriers are unable to improve performance in that case, because there
are no fan-out operations between the barrier and the subsequent receives.

As indicated by Table 4.2 on page 39, when writing an application, a program-
mer ought to be able to reason about nonblocking barriers on a PC cluster in much
the same way that he can reason about release consistency in a shared-memory ma-
chine. By extension, the same types of applications designed to perform well (not
to mention, run correctly) in a release-consistent shared-memory system are likely
to observe better performance in a PC cluster with nonblocking barriers than with
traditional barriers.

43

Master group

Slave groups

A

a1 a2 a3

B

b1 b2 b3

Barrier

Figure 4.8: Prohibited group-communication pattern

4.4.4 Restrictions

There are two restrictions on programs that utilize nonblocking barriers:

1. There can be no hidden communication channels [61].

2. Synchronization must be explicit if processes communicate across branches of
a hierarchical group [13].

If a program violates either of those constraints, it may observe incorrect behavior
when traditional barriers are replaced with nonblocking barriers. Communication
over hidden channels (e.g., the filesystem) is invisible to the nonblocking-barrier al-
gorithm. As stated on page 29, the ability to intercept, modify, and possibly, delay
messages is fundamental to nonblocking barriers. Without that ability, the algo-
rithm cannot maintain Invariant 1 (page 31), so messages sent after a barrier might,
incorrectly, be delivered before the barrier.

The second restriction, that synchronization must be explicit if processes com-
municate across branches of a hierarchical group, is more complicated and requires
some explanation. Consider a program in which processes A and B form a master
group, processes a1, a2, and a3 are slaves to A, and processes b1, b2, and b3 are slaves
to B. Suppose that the program performs the following communication operations,
which are illustrated in Figure 4.8:

• At the start of a phase, each master multicasts work to its slaves.

• The work assigned to a slave may involve point-to-point communication
across slave groups (e.g., from one of A’s slaves to one of B’s).

• Each master waits until all of its slaves have completed their tasks (e.g., by
using a reduction operation).

44

• The masters perform a barrier to separate one phase from the next.

Given those communication operations, it is possible when using nonblocking bar-
riers for a point-to-point message sent in one phase to arrive, incorrectly, while the
recipient is still in an earlier phase. The following sequence of events illustrates how
this missequencing can occur:

1. A and B multicast Phase 1 work to their slaves.

2. b1 sends a Phase 1 message to slave a1, but the message is delayed in the net-
work.

3. B’s slaves notify B that they have completed their Phase 1 work.

4. A and B perform a barrier, but A is unresponsive. (It is blocked waiting for a1

to acknowledge receipt of b1’s message.)

5. Because nonblocking barriers enable B to continue without waiting for A,
B multicasts Phase 2 work to its slaves.

6. b2 sends a Phase 2 message to a1, and it arrives before b1’s Phase 1 message.

Had traditional barriers been used in the preceding sequence, B would not have
been able to prematurely exit the barrier in step 5. B therefore would not have
multicast Phase 2 work to its slaves, and b2 would not have been able to send a
message to a1. All messages would hence be delivered in the same phase in which
they were sent.

The reason that nonblocking barriers permit incorrect behavior to occur in this
situation is that synchronization among processes in separate slave groups is im-
plicit, not explicit. That is, a1, b1, and b2 never participate in a barrier, yet they still
expect to be synchronized with each other. When traditional barriers are used, the
slaves are, in fact, synchronized with each other, because they each synchronize with
a master (using a reduction), and the masters synchronize with each other (using a
barrier). When nonblocking barriers are used, however, logical, not physical, time
coordinates message delivery. Because a1 has no knowledge of the logical time at A,
it has no way of knowing that Invariant 1 will be violated if it delivers b2’s message.

A simple workaround is to have all processes—slaves and masters—participate
in each barrier. Because processes entering a nonblocking barrier can exit imme-
diately, there is no performance penalty associated with having a larger number
of processes involved in a barrier operation. A programmer does need to realize,
however, that nonblocking barriers may be inappropriate for certain complex com-
munication patterns.

45

4.5 Alternative implementations

Section 4.2 described one way to implement nonblocking barriers. However, that
is certainly not the only way that nonblocking barriers can be implemented. We
now present a couple of alternatives. Section 4.5.1 examines the consequences of
using a simpler scheme that what was previously presented, and Section 4.5.2 shows
what changes would need to be made to implement nonblocking barriers entirely
in hardware.

4.5.1 Single logical clock

Nonblocking barriers, as presented in Section 4.2, use an array of logical clocks,
one for each peer process. It is therefore instructive to ask: Would a single logical
clock suffice? That is, can nonblocking barriers be made simpler than what was
previously presented?

The single logical clock scheme works as follows. Each process has a single log-
ical clock, which acts as a barrier counter. A process increments its barrier counter
each time the process exits a barrier. And messages are timestamped with the value
of the counter and are not delivered until the value of the receiver’s counter is no less
than the value included in the message. The advantage of this scheme over the orig-
inal nonblocking barrier algorithm is that its resource usage scales better with the
number of processes. While Section 4.2 calls for one logical clock per peer, the single
logical clock scheme requires only one logical clock in toto. However, in practice,
this is not a significant savings. In the original nonblocking barrier scheme, even
a fairly large parallel program would require only a few kilobytes of memory—an
amount that can easily fit even in most NICs’ limited memory space.

The single logical clock scheme works well when all processes in the computa-
tion participate in each barrier.6 However, the drawback of using a single logical
clock is that deadlock can ensue if not all of the application’s processes are involved
in every barrier. The barrier counter at a receiving process may never advance
enough for it to receive a particular sender’s messages. As an illustration of the
problem, consider the sequence of barrier operations shown in Figure 4.9, which
was the same sequence used in Figure 4.4 on page 37.

In Figure 4.9, the sets of boxes to the right of each line show each process’ bar-
rier counter. The single logical clock scheme uses fewer resources than the original
nonblocking-barrier algorithm, and appears correct at first glance. However, con-
sider what would happen if process B were to send a message to process A after
the above sequence completes. Because a process’ barrier counter is incremented

6With MPI [73] terminology, one would say that MPI Barrier() is always passed MPI COMM WORLD

as a communicator.

46

A B C D

1. Program initializes. 0 0 0 0

A B C D

2. Processes A and B synchronize. 1 1 0 0

A B C D

3. Processes C and D synchronize. 1 1 1 1

A B C D

4. Processes B and C synchronize. 1 2 2 1

Figure 4.9: Bookkeeping with a single logical clock

after each barrier completes, the message is timestamped with “2”, the time on pro-
cess B’s barrier counter. However, process A will receive the message at time 1 on
its logical clock. Because 1 < 2, process A will not be able to deliver process B’s
message. If there are no more barriers in the program, process A will never be able
to deliver the message.

It is arguable whether that deadlock situation is a serious impediment to using
a single logical clock. If it is known a priori that every process in the application is
involved in every barrier, and if memory utilization is a serious concern, then the
single logical clock scheme is a viable alternative implementation to that described
in Section 4.2.

4.5.2 All-hardware implementation

Because nonblocking barriers, as described, preserve collective-communication se-
mantics, and because the bookkeeping is fairly minimal in terms of space and time
requirements, these nonblocking barriers could potentially be implemented in hard-
ware. In the context of VIA, for example, the (implementation-specific) per-process
state maintained by the VI Provider could be extended to include the appropriate
vectors of logical clocks, with one entry per VI. Whenever the NIC transmits a mes-
sage, it can include the appropriate timestamp in the message header. On the receive
side, the NIC can compare the message’s timestamp to the current reading of the
logical clock and, only if the message is deliverable, update the receive descriptor’s
Status field and—at the application’s request—raise an interrupt.

47

Figures 4.10–4.12 are a sketch of what the hardware to implement the nonblock-
ing barrier function might look like. They are a fairly faithful, but unoptimized,
translation of Algorithms 4.1 and 4.2. Figure 4.10 represents the hardware needed to
implement the second stanza of Algorithm 4.1. However, the hardware version can
update all the barriers started and TSrecv counters in parallel, for greater efficiency.
Figure 4.11 is essentially the same as Figure 4.10, but it corresponds to the receive
side instead of the send side. Specifically, it implements the processing of messages
in the final stage of a barrier, and is the hardware equivalent of the second half of
the third stanza of Algorithm 4.2. The receive hardware receives from the receive
buffer instead of the transmit buffer, and updates barriers started. Because both the
send side and the receive side increment counters in TSrecv, the adders at the bottom
of each figure would actually be combined in practice. Finally, Figure 4.12 handles
the delivery of point-to-point messages. The top half of the figure corresponds to
the second stanza of Algorithm 4.2, and the bottom half of the figure corresponds to
the first half of Algorithm 4.2’s third stanza.

While many details, such as error handling and the handling of numeric
wraparound, have been omitted, the purpose of Figures 4.10–4.12 is to make the
following key points:

1. The bookkeeping needed for nonblocking barriers exhibits a lot of parallelism.
Only one clock cycle and a number of gate delays is added to the critical path.

2. Nonblocking barriers require little hardware to implement, the hardware is
straightforward to design, and various logic blocks can be reused in multiple
locations.

The first point implies that the performance of the common-case, point-to-point
communication, will not be degraded noticeably by adding unresponsiveness-
tolerant hardware. The second point implies that the hardware shown in Fig-
ures 4.10–4.12 is apt to be inexpensive in terms of materials and nonrecurring en-
gineering costs. Hence, the hardware could reasonably be added to an existing
hardware VIA implementation. The main hardware cost is the storage for the the
receive FIFO and the various counters (barriers started, barriers finished, and TSrecv),
whose size is proportional to the number of VIs. To put the number of VIs in per-
spective, the Giganet cLAN1000 adapter used in this thesis supports 1024 VIs. A
particularly hardware-stingy implementation of nonblocking barriers—or one that
supports an immense number of VIs—could save on hardware at the expense of
I/O bus crossings by keeping only a small cache of VIs on the NIC, and paging
them in and out of main memory over the I/O bus. This sort of caching technique

48

TX
buffer

QD
+

QD
+

QD
+

QD
+

...

barriers_started

Participants
(bit vector)

...

barriers_finished

A
B

>=<

A
B

>=<

A
B

>=<

A
B

>=<

QD
+

QD
+

QD
+

QD
+

...

TSrecv

Figure 4.10: Hardware for an unresponsiveness-tolerant barrier (send side)

49

RX
buffer

QD
+

QD
+

QD
+

QD
+

...

barriers_finished

Participants
(bit vector)

...

barriers_started

A
B

>=<

A
B

>=<

A
B

>=<

A
B

>=<

QD
+

QD
+

QD
+

QD
+

...

TSrecv

Figure 4.11: Hardware for an unresponsiveness-tolerant barrier (receive side, final
stage)

50

RX
buffer

+

Type
0: PT2PT

1: BARRIER

Stage

C

D
Shift1

A
B

>
=
<

#Participants
Dest

A
B

>
=<

TX
logic

New dest
New src

New stage

Enable

Data and
metadata

FIFO

IN PUSH

POP OUT

Data and
metadata

...

TSrecv

M
U
X

src

A
B

>=<

TS

Too early

Bus
logic

enable

Data (but no metadata)

Figure 4.12: Hardware for an unresponsiveness-tolerant barrier (receive side, inter-
mediate stages)

51

has been implemented previously in network interface firmware by, e.g., AM-II [71].
The advantages of a hardware approach are:

• Better scaling with the number of VIs per NIC

• Better CPU utilization

• Improved unresponsiveness tolerance

• Better buffer utilization

Scaling is improved, because hardware can take advantage of the inherent par-
allelism in the barrier bookkeeping to reduce bookkeeping from an O(n) operation
to an essentially O(1) operation. As the hardware shown in Figure 4.12 does not
notify the host of message arrival if the message is too early (i.e., arrives before
a preceding barrier completes), processes that block on message arrival will not
awake from blocking by false positives and will therefore yield better CPU utiliza-
tion. Hardware-implemented barriers can make the system more tolerant of un-
responsiveness, because host involvement is necessary only to initiate the barrier
operation. The hardware handles the remainder of the work, even if the the host
process subsequently becomes unresponsive. Finally, a hardware implementation
of nonblocking barriers reduces some of the VIA buffer resources needed by the
host, specifically, message descriptors and registered (i.e., pinned) message buffers.
It can do this because barriers require only temporary buffering. Once the hardware
has processed an incoming barrier message and either forwarded it onwards or up-
dated the barriers finished and TSrecv counters, it can immediately and automatically
recycle the message state. In a software implementation of nonblocking barriers,
the communication library must provide a message buffer and message descriptor
for each potential outstanding barrier, and these resources persist until the process
services the network and consumes them.

To support a hardware implementation of nonblocking barriers, the VIA API
(VIPL) must be augmented with a barrier function, which will notify the NIC that it
needs to perform the appropriate bookkeeping. Figure 4.13 shows what the proto-
type of such a function might look like. Note that VIA applications that do not use
barriers can run unmodified; only those that wish to take advantage of nonblocking
collective communication must use the new barrier function.

4.6 Alternative techniques

The previous section presented two additional ways to implement nonblocking bar-
riers. In this section, alternatives to nonblocking barriers are discussed. First, the

52

VipBarrier

Synopsis

VIP RETURN
VipBarrier(

IN VIP VI HANDLE *ViHandles,
IN VIP ULONG HandleCount,
IN VIP ULONG TimeOut

)

Parameters

ViHandles: Array of Virtual Interfaces to synchronize with.

HandleCount: The number of entries in ViHandles.

TimeOut: The count, in milliseconds, before a peer is deemed
unresponsive, or VIP INFINITE if no time-out is de-
sired.

Figure 4.13: Sample prototype of a VIA barrier function

idea of tolerating unresponsiveness within each barrier operation is considered (Sec-
tion 4.6.1). Next, Section 4.6.2 discusses a mechanism for explicitly detecting un-
responsiveness. This mechanism can be used to explicitly reschedule communica-
tion events, in order to minimize idle time. Finally, in Section 4.6.3, we describe
how an OS-centric approach to tolerating unresponsiveness would differ from the
communication-centric approach taken by nonblocking barriers. For each approach
presented in Sections 4.6.1–4.6.3, we argue that nonblocking barriers are a superior
(or, at least, complementary) technique for tolerating unresponsiveness.

4.6.1 Intrabarrier unresponsiveness tolerance

While nonblocking barriers tolerate unresponsiveness between barriers, it is also pos-
sible to tolerate unresponsiveness within each barrier operation. One way to do this
is to have each process that detects an unresponsive peer (e.g., with an expired time-
out) notify all subsequent peers of the unresponsiveness. When the unresponsive
process becomes responsive again, it multicasts its presence to the rest of the pro-
cesses in the barrier. Figure 4.14 illustrates the execution of this idea applied to
an 8-process barrier, in which process 7 is initially unresponsive. In the first stage,
process 6 does not receive a message from process 7 within some specified timeout
period, so it concludes that process 7 is unresponsive. In the second stage, process 6

53

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

7

7 7 7
Stop!Ti

m
e

(Node 7 becomes responsive.)

Figure 4.14: A nonblocking barrier

tells its peer, process 4, that the barrier cannot complete until it hears from process 7.
Meanwhile, process 5 discovers for itself that process 7 is unresponsive. In the third
and final stage of the barrier, processes 4, 5, and 6 tell, respectively, processes 0, 1,
and 2 that process 7 is unresponsive, while process 3 discovers process 7’s unre-
sponsiveness for itself.

When process 7 becomes responsive again, it initially tries to continue with the
barrier, oblivious to its own prior unresponsiveness. Its stage 1 peer, process 6, tells
it that all the other processes have finished their participation in the barrier, and
hence, process 7 can leave the barrier immediately. Process 6 then multicasts to the

54

rest of the processes that process 7 is once again responsive and that all participants
can complete the barrier.

While this approach does not prevent an unresponsive process from delaying
barrier completion, it does ensure that a barrier operation is penalized only once.
By effectively converting the barrier into a multicast during otherwise idle time, the
barrier becomes more robust to future unresponsiveness. However, there are two
limitations to this approach:

1. It has limited applicability.

2. It does not enable processes to make progress while waiting for an unrespon-
sive peer.

Because barriers generally take comparatively less time than the surrounding com-
putation, it is unlikely that many processes will become unresponsive within the
small window of time the barrier is executing. And because processes can make no
other progress during a long segment of idle time, only mimimal unresponsiveness
can be tolerated. Due to those limitations, the idea of tolerating unresponsiveness
within a barrier was abandoned in favor of tolerating unresponsiveness between
barriers, as is done in the nonblocking barrier approach.

4.6.2 Explicit unresponsiveness detection

Another approach to tolerating unresponsiveness is to have processes explicitly de-
tect unresponsiveness and reschedule communication around it. That is, within a
collective-communication operation, each process has a number of peers it needs
to communicate with. If a process starts communicating with the peers that are re-
sponsive at the time, the hope is that the unresponsive peers will once again become
responsive by the time their turn to communicate comes around.

One way to implement explicit unresponsiveness detection is with timeouts
in the point-to-point communication protocol. Many messaging layers are imple-
mented using a three-way handshake to transmit data (Figure 4.15). In the first step
of a three-way handshake, the sender notifies the receiver of its intent to send a
message. In the second step, the receiver allocates local buffer space and alerts the
sender when it is ready. And in the third step, the sender transmits the data. A
three-way handshake is a useful tool, because it is an easy way to implement flow
control; the sender cannot transmit a message until the receiver has space to store it.
But a three-way handshake can additionally be used to detect unresponsiveness. If
a sender does not receive the receiver’s acknowledgement within some timeout pe-
riod (i.e., 2(L + 2o) plus a small amount of compute time in the LogP model [28]), it
can conclude that the receiver is probably unresponsive. The sender can then move

55

on to another receiver that it needs to communicate with, and later return to the
unresponsive process (which, one hopes, is no longer unresponsive). This explicit
unresponsiveness detection mechanism can be used for intrabarrier unresponsive-
ness tolerance (Section 4.6.1).

? ?

XXXXXXXXXXXXz������������9XXXXXXXXXXXXz

A B

Request
to send

Allocate resources and
acknowledge request

Receive
acknowledgement

and send data

Receive data

Figure 4.15: A three-way handshake

The primary disadvantage of explicit unresponsiveness detection is that perfor-
mance is sensitive to the timeout value. If the timeout value is set too large, then
an unresponsive receive will introduce excessive idle time to the sender, thereby de-
creasing the application’s efficiency. If, on the other hand, the timeout value is set
too small, then receivers will frequently appear unresponsive when they are, in fact,
responsive. These false positives will add extra overhead to the sender, and may
cause a livelock situation, if the sender cycles among the possible receivers indefi-
nitely in search of a responsive one.

4.6.3 Operating system support

Rather than tolerate unresponsiveness at the communications level, an alternative
is to enlist the operating system in unresponsiveness tolerance. This generally in-
volves rescheduling kernel-level threads to hide unresponsiveness behind useful
work. For example, the operating system can support scheduler activations [3],
which provide callbacks to applications, granting to their (fast) user-level threads
many of the benefits of (slow) kernel threads, such as preemption and the ability
to block on I/O. A parallel application could use these facilities to give higher pri-
ority to threads involved in a collective-communication operation, but to sched-
ule additional worker threads that make progress while the threads performing
collective-communication operations are blocked. The benefit of this approach is
that it provides applications with considerable flexibility to tolerate unresponsive-
ness. The problem is that it violates the properties stated on page 21: it requires

56

not only application modifications, but also operating system modifications.7 These
modifications hamper acceptance of an unresponsiveness-tolerating technique that
is centered around something like scheduler activations. Programmers may be un-
willing or unable to convert their applications to a specially multithreaded version.
And cluster administrators may be unwilling to run a specialized operating sys-
tem, because specialized operating systems are unable to keep pace with their COTS
counterparts.

A second approach that relies on operating system support is to use coordi-
nated thread scheduling [82] across nodes to ensure that all threads involved in a
collective-communication operation are granted the CPU coincidentally. The goal in
this approach is to prevent unresponsiveness, rather than tolerate it. The advantage
of using coordinated thread scheduling to combat unresponsiveness is that, like my
thesis work, it does not require application modifications. In addition, some forms
of coordinated scheduling, such as dynamic coscheduling [96], can be implemented
without OS modifications [95]; rather, they use device drivers and NIC firmware
to influence the operating system’s thread scheduler. The disadvantage of using co-
ordinated scheduling techniques to make collective communication responsive is
that coscheduling threads does not necessarily imply that collective communication
is responsive. There may be load imbalance within the threads that coordinated
scheduling can do nothing about. Nevertheless, coordinated thread scheduling can
complement nonblocking barriers. The coordinated thread scheduler can prevent
some unresponsiveness by keeping all of an application’s threads running in paral-
lel,8 while nonblocking barriers can tolerate whatever unresponsiveness remains.

4.7 Discussion

This chapter presented nonblocking barriers, a novel approach to tolerating end-
point unresponsiveness in PC clusters. Section 4.2 provided a detailed algorithm
for implementing nonblocking barriers. While the algorithm represents a natural
expression of an all-software implementation, Section 4.5.2 outlined how it can be
adapted to produce an all-hardware implementation. Nonblocking barriers are a
sufficiently flexible mechanism that they can be implemented at either extreme of
the hardware-software spectrum. Table 4.3 summarizes some of the tradeoffs in-
volved in implementing nonblocking barriers in hardware versus firmware versus
software. In the context of tolerating unresponsiveness, a real strength of a hard-
ware or firmware implementation is responsiveness, while software is prone to un-

7No current commodity operating system supports scheduler activations.
8In emergent coscheduling schemes, such as dynamic coscheduling [96] and implicit coschedul-

ing [5], it is possible that some threads will occasionally not be coscheduled with the rest.

57

responsiveness, due to operating system and memory hierarchy behavior. Software
and firmware are more flexible than hardware in terms of the ability to alter the
implementation; if an implementation of nonblocking barriers needs to support
larger clusters, it would be much quicker to change the data structures used by
software/firmware than it would to fabricate new hardware. Software has access
to the host CPU and system memory, which are assumed to be faster and larger, re-
spectively, than anything available on a device (Section 3.1). Hardware can achieve
better performance by exploiting the parallelism in the nonblocking-barrier algo-
rithm, while software is limited to instruction-level parallelism or the sacrifice of
additional CPUs. Firmware could conceivably exploit parallelism, but no current,
commodity NIC contains firmware that is structured in a manner favorable to non-
blocking barriers. Finally, the additional performance achievable by hardware is
offset by its higher cost relative to firmware and software.

Table 4.3: Hardware/firmware/software implementation tradeoffs

Attribute Hardware Firmware Software

Responsive ✔ ✔ ✘

Flexible ✘ ✔ ✔

Fast processor/large memory ✘ ✘ ✔

Efficiently exploits parallelism ✔ ? ✘

Low cost ✘ ✔ ✔

It is worthwhile to consider an implementation of nonblocking barriers that is
implemented as a combination of hardware, software, and firmware. The way
to think about a combined approach is in terms of the various responsibilities as-
signed to each of hardware and software. The hardware’s responsibility should be
to keep the software from being interrupted by premature message arrivals, i.e.,
messages sent after a barrier, but received before it. In the all-software scheme,
every time a message arrives, the software must process it, determining if it is de-
liverable, and buffering it if it is not. The software’s responsibilities in a combined
hardware/software scheme are to distinguish communication operations as being
collective and to handle establishment and tear-down of peer groups. In addition,
software can be used to cache hardware state if the NIC’s memory is insufficient
to hold all of it itself. By assigning the software the management responsibilities
and the hardware the responsibility for most of nonblocking-barrier work, further
enhanced performance may be realizable.

A second discussion point is that while this dissertation has so far focused on col-
lective communication itself, collective-communication operations are implemented
in terms of point-to-point messages, and there are design decisions involving those.

58

The most crucial design decision concerns message-notification semantics. Two
common ways to detect message arrival are blocking and polling.9 With polling noti-
fication, a thread checks periodically and explicitly for message arrival. With block-
ing notification, a thread sleeps until a message arrives, allowing other threads ac-
cess to the CPU in the meantime. The tradeoff, in the context of this dissertation,
is that blocking increases the time that other threads are responsive, while polling
decreases the time that the current thread is unresponsive. It is important to in-
vestigate the effects of both in any dissertation that investigates unresponsivess, as
neither notification mechanism is apt to be better in all circumstances. Many of the
graphs in Chapter 5 present measurement data taken both when polling and block-
ing are used for the underlying point-to-point communication.

For every problem, there is one
solution which is simple, neat, and
wrong.

H. L. Mencken

9This leaves aside techniques such as asynchronous message handlers and combined block-
ing/polling schemes such as the Polling Watchdog [72].

59

5 Experiments

Chapter 4 introduced nonblocking barriers, a new mechanism designed to tolerate
unresponsiveness. In Chapter 5, we evaluate the performance gained by applying
nonblocking barriers. The goal is to prove the thesis statement made in Chapter 3,
namely that utilizing nonblocking barriers to tolerate unresponsiveness at commu-
nication endpoints will result in a noticeable improvement in application perfor-
mance.

The rest of Chapter 5 is structured as follows. Section 5.1 describes the exper-
imental setup used for the experiments in this chapter. Section 5.2 presents re-
sults that demonstrate that unresponsiveness is indeed a problem for collective-
communication performance. The core performance results are presented in Sec-
tion 5.3, and, in Section 5.4, these results are shown to be compatible with other
unresponsiveness-tolerating techniques and robust to cluster scale.

5.1 Experimental setup

Except where noted, all of the experiments described in this chapter were performed
on a cluster with the characteristics shown in Table 5.1.

Table 5.1: Platform characteristics

Component Characteristic

Node
Type Hewlett-Packard NetServer LPr
CPU Dual 450 MHz Pentium IIs
Memory 1 GB SDRAM
OS Windows NT 4.0, Terminal Server Edition

Network
Type Giganet cLAN (VIA)
Size 32 nodes
Topology Multistage
Communication Custom user-level messaging layer (VIA++ [84])

60

http://netserver.hp.com/netserver/products/highlights_lpr.asp
http://www.microsoft.com/ntserver/terminalserver/default.asp
http://www.giganet.com/products/clan.htm

Table 5.2: Benchmarks used in Chapter 5

Benchmark Description

barrier Perform a large number of back-to-back barriers
mg 3-D multigrid solver
cholesky Cholesky factorization
prefix scan Prefix-scan of a large vector
radix sort Sort the elements in an array

A number of graphs shown in this chapter contain error bars. Unless otherwise
indicated, these error bars correspond to plus-or-minus one standard deviation in
performance over 11 trials.

5.1.1 Applications

The experiments discussed in this chapter draw from a pool of five microbench-
marks and application kernels (Table 5.2): barrier, mg, cholesky, prefix scan, and
radix sort.

barrier The barrier microbenchmark (Procedure 5.1) models a program with al-
ternating computation and synchronization phases. For each of 10,000 iterations, it
performs (and times) a barrier operation and then idles in an empty loop to consume
CPU time and thereby simulate computation.

Procedure 5.1 Barrier microbenchmark
for all nodes (in parallel) do

repeat 10,000 do
t0 ← current time
Barrier with all the other nodes (using a log N time algorithm).
t1 ← current time
Write (t1 − t0) to a memory-mapped file
Spin for a given number of iterations (while touching an external variable to
prevent dead code elimination)

end repeat
end for

mg The mg program is a 3-D multigrid solver that is one of the NAS Parallel
Benchmarks (NPB) [6]. While the original NPB version uses MPI for communi-
cation, I used a version of the benchmark that Oxford Parallel ported to BSPlib to
showcase BSP as a competitive alternative to MPI and similar messaging layers [65].
I instrumented BSPlib so that process 0 records the time spent in the computation

61

http://www.comlab.ox.ac.uk/oucl/oxpara.html

component of each superstep. More precisely, I modified the BSPlib source code
to record the time at the beginning and ending of the bsp sync() function (i.e., the
ending and beginning, respectively, of a local computation).

cholesky cholesky is a Cholesky factorization code from the Center for Simulation
of Advanced Rockets. cholesky is written in C with the MPI communication inter-
face [73] and is configured to factor a 10,000× 10,000 matrix. The program has the
communication structure shown in Figure 5.1.

Initialization:
MPI Barrier()

Cholesky factorization:
for k in 1, 2, . . . , 10,000 do

MPI Reduce((10,000− k)-element vector)

Forward substitution:
repeat 10,000 do

MPI Reduce(1-element vector)

Backward substitution:
repeat 9,999 do

MPI Bcast(1-element vector)

Figure 5.1: Communication structure of the Cholesky code

The vast majority of cholesky’s time is spent in the factorization phase. Ta-
ble 5.3 shows a somewhat arbitrary selection of data points, intended to provide
a feel for the ratios in execution time across cholesky’s three phases. In the ta-
ble, “naive” means a flat (two-level) communication tree is used for the collective-
communication operations. “Binary” means a binary tree is used.

prefix scan A prefix scan operation1, implemented in the prefix scan program,
takes a vector x and an associative operator, �, and maps from {x0, x1, x2, . . . , xN−1}
to {x0, x0 � x1, x0 � x1 � x2, . . . , x0 � x1 � x2 � · · · � xN−1}. With O(N) processes,
prefix scan can be executed in O(lg N) time [81].

The data-parallel expression of prefix scan is fairly straightforward (Algo-
rithm 5.2). Even a naive translation of this to node code for a workstation cluster
using message-passing communication is noticeably more involved (Algorithm 5.3).
Algorithm 5.3 is, in fact, simplified from what I actually implemented. An impor-
tant omission is flow control, which is necessary because there is no flow control in

1“Prefix scan” also goes by a number of other names, including “parallel prefix” and—when addi-
tion is the operator used—”sum prefix” and “plus scan.”

62

http://www.csar.uiuc.edu/
http://www.csar.uiuc.edu/

Table 5.3: Selected cholesky performance numbers

Experiment
Time spent in each phase (H:MM:SS)

Factorization
Forward Backward

substitution substitution

16 processes, 16 nodes, 1 CPU/node,
naive reductions, binary multicasts,
blocking notification

0:07:23 0:00:01 0:00:01

4 processes, 1 node, 2 CPUs/node,
naive reductions, binary multicasts,
polling notification

1:25:36 0:03:33 0:03:43

8 processes, 8 nodes, 1 CPU/node,
binary reductions, binary multicasts,
polling notification, competition for
the CPU on all nodes

0:31:18 0:01:37 0:02:06

VIA, and without flow control, the large number of messages (O(N lg N)) would
overflow the message buffers, causing dropped connections and message loss. My
implementation of Algorithm 5.3 uses the same static window-based flow control
scheme that Fast Messages [85] uses. The added synchronization due to flow control
will be shown in Section 5.3 to have a deleterious effect on the ability of nonblocking
barriers to tolerate unresponsiveness.

The next implementation of prefix scan I implemented is more tuned for work-
station clusters and message passing. Algorithm 5.4 describes this optimized im-
plementation. The key optimization is that only the last element in each process’
local subset of the data array needs to be sent, and only the first element needs to be
received. Table 5.4 lists the variables used in Algorithms 5.2–5.4 and their assigned
meanings.

Table 5.4: Variables used in Algorithms 5.2–5.4

Variable Description

N Total number of elements to prefix-scan
P Number of processes involved in the computation
n Number of elements on each processor
p Process ID of “self”
x Local slice of the global array (indexed from 0 to n− 1)
m Message received from the network
i, j Loop variables

63

Algorithm 5.2 Prefix-scan (data parallel)
for j ← 0 to dlg Ne − 1 do

for i ← 0 to N − 1 parallel do
if i ≥ 2j then

x[i] ← x[i− 2j−1]� x[i]
end if

end for
end for

The purpose of experimenting with two different implementations of prefix scan
is as follows. By examining the performance of the naive implementation, we can
determine if a program originally targeted for a SIMD [39] machine (data-parallel,
tightly coupled, no unresponsiveness) can be naively retargeted to a workstation
cluster (message-passing, loosely coupled, much unresponsiveness) without suffer-
ing from the violated assumption of no unresponsiveness. That is, do nonblock-
ing barriers provide a sufficient illusion of responsiveness to satisfy programs that
rely on complete responsiveness? In contrast, by examining the performance of the
cluster-optimized implementation of prefix scan, we can determine if program de-
signed with clusters in mind—and therefore much less tightly coupled—can benefit
from unresponsiveness tolerance.

radix sort radix sort is a data-parallel-style radix sort routine, based on the one de-
scribed by Hillis and Steele [47] and implemented on the Connection Machine [46].
Algorithm 5.5 shows a data-parallel radix sort of this type. The COUNT() function
tallies the number of “active” processes—data-parallel terminology for processes
whose if test took the TRUE branch. COUNT() is implemented with a reduction op-
eration, using “+” as the operator. The ENUMERATE() function returns “1” to the
first active process, “0” to the second, “3” to the third, and so forth. It is imple-
mented as follows: Each active process, sets its y[k] to 1. Each inactive process sets
its y[k] to 0. Then, all processes, both active and inactive, do a prefix scan with “+”
as the operator.

Some other things to note about Algorithm 5.5 are that all processes see the
value of c after the first end if, even though only those with bit j of x[k] equal
to 0 contribute to its value. This is why two if statements are used, instead of
a single if. . . else. Also, the final assignment is an all-to-all exchange, another
collective-communication operation. Each process receives as many messages as
it sends, but this number is not known at compile time.

Algorithm 5.6 is a high-level summary of the node code used in the message-
passing version of radix sort. The key observation to make from Algorithm 5.6
is that radix sort employs a wealth of collective-communication operations: pre-

64

Algorithm 5.3 Prefix-scan (naive)
for i ← n− 1 downto 0 do

x′[i] ← INVALID

end for
for j ← 0 to dlg Ne − 1 do

for i ← n− 1 downto 0 do
i′ ← np + i + 2j

p′ ← bi′/nc
if p′ = p then

� If one message goes to self, the rest will, too.
break out of inner loop

else
if p′ < P then

Send {value = x[i], offset = i′} to p′

end if
end if

end for

for i ← n− 1 downto 0 do
i′ ← i− 2j

p′ ← b(np + i′)/nc
if p = p′ then

x[i] ← x[i′]� x[i]
end if

end for

for i ← n− 1 downto 0 do
i′ ← i− 2j

p′ ← b(np + i′)/nc
if p′ < p then

while x′[i] = INVALID do
Receive m
x′[m.value] ← m.offset

end while
x[i] ← x′[i]� x[i]
x′[i] ← INVALID

end if
end for
BARRIER()

end for

65

Algorithm 5.4 Prefix-scan (optimized for clusters)
n ← bN/Pc
for j ← 1 to n− 1 do

x[j] ← x[j− 1] + x[j]
end for

if p < N − 1 then
Send x[n− 1] to process p + 1

end if
BARRIER()
for j ← 1 to dlg Ne − 1 do

if p ≥ 2j then
Receive m
x[n− 1] ← m� x[n− 1]
if p < N − 2j then

Send x[n− 1] to process p + 2j

BARRIER()
for i ← n− 2 downto 0 do

x[i] ← m� x[i]
end for

end if
end if

end for
if p ≥ 2lg N−1 then

Receive m
for i ← n− 1 downto 0 do

x[i] ← m� x[i]
end for

end if

Algorithm 5.5 Radix sort (data parallel)
for j ← 0 to blg MAXINTc − 1 do

for all k ∈ [0, N − 1] parallel do
if bit j of x[k] is 0 then

y[k] ← ENUMERATE()− 1
c←COUNT()

end if
if bit j of x[k] is 1 then

y[k] ← ENUMERATE() + c− 1
end if
x[y[k]] ← x[k]

end for
end for

66

fix scan, reduction, multicast, and barrier, as well as an (implicit) all-to-all ex-
change. Figure 5.2 illustrates the communication dependencies in each iteration
of Algorithm 5.6’s main loop. Once the enum even[] and enum odd[] arrays and
the count even variable are initialized, the two prefix scans and the reduction can
proceed. Process 0 must wait for the reduction to complete before it can multicast
the results to the rest of the processes. Once a process has a valid version of the
prefix-scanned enum even[] and enum odd[] and of the global sum of count even, it
can create and sort its exchangeinfo[] array and perform its local exchanges. The
P reductions, in which each process learns how many exchanges it will be told to
perform, can all be performed concurrently. The all-to-all exchange requires the
result of the exchange. And a barrier is performed at the end of each iteration to
ensure message consistency.

barrier, mg, and cholesky are used in Section 5.2 to determine the extent of the
problem of unresponsiveness. These benchmarks are suited for that task because
they are easy to tune (barrier), exhibit realistic ranges of interbarrier work (mg), and
exhibit linear speedup (cholesky). prefix scan and radix sort are used in Sections 5.3
and 5.4 to examine the performance improvement garnered by nonblocking barri-
ers, because these benchmarks have a suitable structure for nonblocking barriers to
exploit, as was presented in Section 4.4.3. prefix scan is of interest because it it is
internally load-imbalanced, while radix sort is of interest because it uses a variety
of collective-communication operations, many of which can run concurrently.

When the benchmarks run, all files—the executable and, when applicable, mea-
surement logs—reside on the local hard disk. This eliminates performance artifacts
that would otherwise be caused by paging code to and from a remote server and the
concomitant interaction with the local operating system.

5.1.2 Workloads

Table 5.5 lists the independent variables used throughout Chapter 5. The number
of nodes and processes range from 1 to 16. If the number of processes is larger than
the number of nodes,2 we say that there is internal contention in the system. That
is, the processes of an application compete with each other for the CPU. It is also
possible to have external contention in the system. External contention occurs when
processes from other applications share a CPU with the application in question. In
the experiments presented in this chapter, external contention is introduced in the
form of simple “while(1);” spin loops. A process executing a spin loop may run on
none of the nodes, one of the nodes, or all of the nodes. Collective-communication
operations are composed of point-to-point primitives. A process can be notified

2The number of nodes is never larger than the number of processes (i.e., there are no idle nodes).

67

Algorithm 5.6 Radix sort (message-passing)
for j ← 0 to blg MAXINTc − 1 do

for i ← 0 to n− 1 do
enum odd[i]←if x[i] ∧ 2j 6= 0 then 1 else 0 end if
enum even[i]←1− enum odd

end for
count even = ∑ enum even
PREFIX-SCAN(enum even,+)
PREFIX-SCAN(enum odd,+)
REDUCE(count even, 0,+)
MULTICAST(count even, 0)
for i ← 0 to n− 1 do

Determine which process and global array index x[i] should go to. Store this
information in exchangeinfo[].

end for

Counting-sort exchangeinfo by target process. As a side effect, set each element
of tally[] to the number of exchanges destined for the corresponding process.

Perform all our local exchanges, copying from x[] to x′[].

� Tell each process how many messages to expect.
for i ← 0 to P− 1 do

expected←REDUCE(tally[i],i,+)
received[i] ← 0

end for

while (∃p′ such that tally[p′] 6= 0) or (received < expected) do
if ∃p′ such that tally[p′] 6= 0 then

Send as many exchanges to process p′ in a single message as the NIC al-
lows. Decrement tally[p′] by that number.

end if
if received < expected then

m←RECEIVE()
Store the data from m at the appropriate offsets into x′[]. Increment received
by the number of exchanges performed.

end if
end while
x[] ← x′[]
BARRIER()

end for

68

Local
computation

PREFIX-SCAN
(enum even)

PREFIX-SCAN
(enum odd)

REDUCE
(count even)

MULTICAST
(count even)

Local
computation

REDUCE
(tally)

REDUCE
(tally)

. . . REDUCE
(tally)

All-to-all
exchange

BARRIER()

Figure 5.2: Data dependencies in radix sort

69

Table 5.5: Independent variables

Variable Values utilized

Number of nodes 1, 2, 4, 8, 16
Number of processes 1, 2, 4, 8, 16

External competition none
spin loop on all nodes

spin loop only on node 1

Message waiting mechanism blocking or polling
Multicast algorithm binary or flat
Reduction algorithm binary or flat

of a completed send or receive by either blocking—relinquishing the CPU until a
message is sent/received—or polling—repeatedly querying the network for com-
pletion. Finally, multicasts and reductions perform their composite point-to-point
operations in either a binary- or flat-tree topology. Figure 5.3 shows the multicast
case; reductions are analogous, but with the data flowing in the opposite direction.

0

1

3 4

2

5 6

(a) Binary

0

1 2 3 4 5 6

(b) Flat

Figure 5.3: Binary versus flat trees

5.2 Preliminary experiments

The experiments in this section provide some background on the nature and extent
of unresponsiveness in PC clusters. Section 5.2.1 presents experimental data con-
firming that unresponsiveness is a problem for performance. Section 5.2.2 demon-
strates that the primary sources of unresponsiveness are context switches and in-
ternal and external CPU contention. Section 5.2.3 summarizes the findings of these
preliminary experiments.

70

5.2.1 Total unresponsiveness

The first experiment I performed was intended to determine how much unrespon-
siveness occurs “naturally” in a workstation cluster. That is, how much unrespon-
siveness is present on an unloaded system running a single user job with no explicit
competition for resources? (The operating system and system services are the only
potential source of competition.) To answer that question, I used the barrier pro-
gram, shown in Procedure 5.1 on page 61. Procedure 5.1 models a program with al-
ternating computation and synchronization phases. For each of 10,000 iterations, it
performs (and times) a barrier operation and then idles in an empty loop to consume
CPU time and thereby simulate computation. The system is perfectly load-balanced;
all nodes do the same amount of “work” between barriers. Also, there is no steady
background load on the machines, only the normally-running system services.

Ideally, the barrier time should be independent of the spin time. Figure 5.4
clearly shows that this is not the case. In Figure 5.4, each bar represents a differ-
ent amount of “computation” (i.e., spin) time used in Procedure 5.1, from 0 µsec
(i.e., back-to-back barriers) up to 10,000 µsec (10 msec).3 The height of each
bar represents the total amount of time spent performing barriers. Each bar
is partitioned into the contribution to the total by barriers of 10–99 µsec, 100–
999 µsec, . . . , 1,000,000–9,999,999 µsec and represents the mean of three runs. Ob-
servations in the 100,000 µsec-and-up range are statistical noise and can be ignored.
The experiment was performed on a four-node cluster, and the mode barrier time
was in the 20–29 µsec range. The key observation in Figure 5.4 is that barrier time
increases with computation time. Section 5.2.2 investigates the source of this perfor-
mance loss.

Having observed the somewhat counter-intuitive result that barrier time is not
independent of inter-barrier time, a logical next step is to formulate a mathematical
model of the relation between barrier time and inter-barrier time. There are two
reasons that a mathematical model is useful:

1. It simplifies reasoning about unresponsiveness.

2. It makes it possible to estimate the performance impact of unresponsiveness
on arbitrarily large clusters.

Before modeling slow barriers, we first need a definition of “slow.” I define a
“slow” P-process barrier as one that takes longer than 15 lg P µsec to complete. This
corresponds to the mean barrier time in the no-computation case plus one standard

3As implied by Procedure 5.1, these timings were actually expressed in an empirically-determined
number of spins.

71

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

45,000,000

0 100 1,000 10,000 10,000
(high

priority)

“Computation” time (µsecs)

To
ta

lt
im

e
(µ

se
cs

)

1,000,000-9,999,999
100,000-999,999
10,000-99,999
1,000-9,999
100-999
10-99

Barrier time (µsecs)

Figure 5.4: Time spent in barriers as a function of “computation” time

deviation. Clearly, when using Procedure 5.1, the total fraction of slow barrier mea-
surements can be at most P−1

P , because the last process to enter a barrier will observe
no delay time.4

Figure 5.5 plots the fraction of slow barriers as a function of the computation
time. To model this function—and thereby predict the performance for larger num-
bers of processes—we first make the following observations:

• The fraction of slow barriers is a
function of the computation time.

=⇒ We let d represent computation
time, measured in spins (for preci-
sion).

• The curves in Figure 5.5 are S-
shaped.

=⇒ We propose the basic shape of the
curve is proportional to d

d+1 .

• The function will reach an asymp-
tote at P−1

P (all processes except the
tardiest observe a slow barrier on
every iteration)

=⇒ The d in the denominator of d
d+1

should be divided by P−1
P .

Hence, we arrive at the following model:

s(d, P) ≈ d
d

(P−1)/P + α
P

(5.1)

4Note that in Procedure 5.1, there are P measurements per barrier operation, because each process
independently records its observed barrier latencies.

72

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 10 100 1,000 10,000 100,000
“Computation” time (µsecs)

Fr
ac

ti
on

of
sl

ow
b

ar
ri

er
s

(≥
P

l g
P

µ
se

cs
)

2 nodes 2 nodes (predicted)
4 nodes 4 nodes (predicted)
8 nodes 8 nodes (predicted)

Figure 5.5: Measured vs. predicted tally of slow barriers

in which s is the fraction of slow barriers (s ∈ [0, 1]), d is the number of spins
(100 spins ≈ 1 µsec in this experiment), P is the number of processes, and α is a
scaling constant. With the help of Mathematica, I determined that α ≈ 1, 876, 505
gives the best fit to my data. Figure 5.5 illustrates that the fit is qualitatively quite
good.

Recalling the asymptote at N−1
N , we can extrapolate that for a sufficiently coarse-

grained application, 95% of the barriers in a 20-node cluster will be slow, as will 99%
of the barriers in a 100-node cluster. In short, as PC clusters get larger, unresponsive-
ness will become an increasingly important obstacle to achieving good performance.

Efficiency Another way of examining the data from the barrier program is to plot
it in terms of efficiency. Efficiency is a useful metric because an efficiency graph
shows the minimum performance lost to unresponsiveness as an asymptote. If the
asymptote is at 100%, that shows that unresponsiveness ceases to be a problem at
some “computation” size. If the asymptote is less than 100%, that indicates that
unresponsiveness is always present and needs to be dealt with. I define efficiency
as:

73

http://store.wolfram.com/catalog/mathematica/

ideal barrier time + ideal computation time

measured barrier time + measured computation time

Ideal barrier time is defined as 9 lg P µsec per barrier, which is the mean bar-
rier time in the no-computation case. This is also somewhat intuitive—9 µsec per
message exchange multiplied by lg P sets of exchanges. Ideal computation time is
defined as s/150 µsec, where s is the number of spins and dividing by 150 converts
from spins to microseconds.

(1 spin
3 cycles ×

450 cycles
1 µsec = 150 spins/µsec.

)
Measured com-

putation time was calculated as total elapsed time minus the measured barrier time.
Figure 5.6 shows the efficiency of the barrier program as a function of the amount of
inter-barrier “computation,” with both one and two CPUs per node (Figures 5.6(a)
and (b), respectively). For the one-CPU runs, Windows NT was booted with the
/ONECPU option. Error bars are included to show the minimum and maximum effi-
ciency over three runs.

The key observations one should make when considering Figure 5.6 are:

• An increase in the number of processes leads to a decrease in efficiency.

• Fine-grained programs are more susceptible to performance loss than coarse-
grained programs. (1,000 µsec can be considered the threshold between “fine-
grained” and “coarse-grained” in this context.)

• Not only is efficiency low for fine-grained programs, but—as implied by the
large error bars—the variance in efficiency is high.

• A second (idle) CPU absorbs some of the cost of system services that cause
unresponsiveness and loss of efficiency. As a result, the single-CPU runs (Fig-
ure 5.6(a)) consistently observe less efficiency than the dual-CPU runs (Fig-
ure 5.6(b)).

• In both the single- and dual-CPU cases, efficiency reaches an asymptote when
computation time is sufficiently high, but that asymptote is below the 100%
efficiency mark (≈ 93% in the single-CPU case).

Application interbarrier times Having characterized the relationship between in-
terbarrier times and barrier times (and barrier efficiency), it is worthwhile to ex-
amine the actual times observed between barriers in a sample application. We use
mg as this application, because it uses barriers extensively and performs a variety
of work between barriers. The intention is to plot a histogram of mg’s interbarrier
times and observe the number of barriers in the “fine-grained” range (which see
greater delays) and those in the “coarse-grained” range (which see lesser delays).

74

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 10 100 1,000 10,000 100,000
“Computation” time (µsecs)

E
ffi

ci
en

cy

(a) One CPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 10 100 1,000 10,000 100,000
“Computation” time (µsecs)

E
ffi

ci
en

cy

(b) Two CPUs

 2 nodes 4 nodes

 8 nodes 16 nodes

Figure 5.6: Barrier program efficiency

75

Table 5.6: Experimental setup for mg

Component Characteristic

Node
Type Compaq Professional Workstation 6000
CPU Dual 300 MHz Pentium IIs
Memory 128 MB EDO DRAM
OS Red Hat Linux 5.2 (kernel v2.0.36)

Network
Type 10 Mbit Ethernet
Size 8 nodes
Topology Bus
Communication BSPlib over UDP/IP

Recall from Section 5.1.1 that mg is written in BSP [101]. In a BSP program, pro-
cesses alternate computation, communication, and barrier synchronization phases.
(In BSP terminology, these are collectively called a superstep.) During computation
phases, processes compute on local data and initiate point-to-point communication
operations (SEND, RECEIVE, PUT, and GET), which are non-blocking and do not
complete (i.e., change any process’ state) until after the next synchronization phase.
mg performs a sufficient number of barriers to be a worthwhile application to study
for its interbarrier times.

Due to software availability, mg was run on a somewhat different workstation
cluster (described in Table 5.6) than the other experiments in this dissertation. How-
ever, the experimental results are still valid. Because the cluster used for mg is
slower than the one described in Table 5.1, all reported interbarrier timings will, in
fact, be upper bounds on what could be expected from the more up-to-date equip-
ment described in that table.

Figure 5.7 shows the distribution of interbarrier computation times for an 8-
node, class A run of mg : four iterations over a 256 × 256 × 256 matrix. The x axis
represents the time between barriers in microseconds. The y axis represents a tally
of how often each interbarrier time occurred, shown as a cumulative percentage of
the total number of barriers. (100% = 700 barriers.) What is evident from the figure
is the bimodal distribution of interbarrier times. There is a dense set of tallies in
the 10–50 µsec range, no data points from 3,000–6,000 µsec, and another dense set
from 8,000–50,000 µsec. Again, Figure 5.6 suggests that the 0-1,000 µsec range sup-
ports my thesis that there is performance to be had by tolerating unresponsiveness;
the 1,000 µsec-and-up range contradicts it.

76

http://www.compaq.com/products/workstations/pw6000/index.html
http://www.redhat.com
http://www.bsp-worldwide.org/implmnts/oxtool.htm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 101 102 103 104 105 106 107 108

Computation time (µsecs)

C
u

m
u

la
ti

ve
ta

ll
y

Figure 5.7: Computation time for MG class A, 8 nodes

5.2.2 Characterizing unresponsiveness

Figure 5.4, which was described on page 71, showed that barrier time increases with
computation time. The question, then, is what is causing this time increase? The
number of page faults was fairly constant across all the runs. However, running the
barrier program’s processes at high priority5 does cause a drastic drop in the total
barrier time, as shown by the rightmost bar in Figure 5.4. Hypothesizing that the
increased barrier time is caused by background OS processes awaking, performing
brief tasks, and polluting the cache, I analyzed the correlation between the number
of barriers that occurred in each time range and the total number of context switches
that occurred during a run of the barrier program. Figure 5.8 depicts the results,
which encompass all the data used in Figure 5.4.

Figure 5.8 shows that the number of barriers in the “fast” range (< 30 µsec) is
negatively correlated to the number of context switches, while the number of barri-
ers in the “slow” range (30 µsec and up) is positively correlated. In fact, correlation
is nearly perfect in the 100–999 µsec range—the same range in which most of the ad-
ditional overhead occurs in Figure 5.4. This implies that context switches (or, rather,
the system processs that are switched to) are causing unresponsiveness even in an

5Specifically, this means Windows NT thread priority 15 (THREAD PRIORITY TIME CRITICAL in the
HIGH PRIORITY CLASS).

77

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

10
-1

9
20

-2
9

30
-3

9
40

-4
9

50
-5

9
60

-6
9

70
-7

9
80

-8
9

90
-9

9
10

0-
19

9
20

0-
29

9
30

0-
39

9
40

0-
49

9
50

0-
59

9
60

0-
69

9
70

0-
79

9
80

0-
89

9
90

0-
99

9
10

00
-1

99
9

20
00

-2
99

9
30

00
-3

99
9

40
00

-4
99

9

Barrier time (µsecs)

C
or

re
la

ti
on

of
b

ar
ri

er
s

to
co

n
te

xt
sw

it
ch

es

Figure 5.8: Correlation between the number of barriers in each time range and the
number of context switches observed

“ideal” setting: perfectly load-balanced computation and only a single (non-system)
process per machine.

Having shown the correlation between context switches and slow barriers, the
final step in the analysis is to show that these context switches lead to degraded
performance. To do so, we run a program (radix sort) both on an ordinary, un-
loaded cluster and on a cluster specially configured to minimize disruption caused
by context switches. The latter cluster has two characteristics that make it resource-
wasteful and unrealistic for general computation but a reasonable vehicle for study-
ing the impact of unresponsiveness on performance:

1. All of radix sort ’s processes run at the highest priority that did not lead to
priority inversion with the network device driver.

2. Every node in the cluster contains an additional CPU, which is used solely for
absorbing system services and other operating system activity that otherwise
would have introduced context switches to radix sort.

Other than those differences, the two clusters are identical in every way.
Figure 5.9 shows the result of running radix sort with 4, 8, and 16 processes

(and the same number of nodes) on the “normal” and “responsive” clusters. The
x axis represents the number of processes (and nodes), and the y axis represents the
execution time relative to what was measured on the “responsive” cluster. The Re-

sponsive bar is therefore fixed at 100%. The No load (blocking) and No load (polling)

bars show the normalized performance measurements from the “normal” cluster

78

with no additional load on the system. No load (blocking) corresponds to radix
sort ’s using blocking notification for the point-to-point messages that comprise
its collective-communication operations, and No load (polling) is same, but using
polling notification.

0%

20%

40%

60%

80%

100%

120%

4 8 16

Processes

Fa
ct

or
of

R
es

p
on

si
v e

t i
m

e

Responsive

No load (blocking)

No load (polling)

Figure 5.9: radix sort performance lost to unresponsiveness

The important observation from Figure 5.9 is that unresponsiveness causes per-
formance loss even on an idle cluster. With 16 processes, radix sort runs 8.4% slower
than ideal when blocking notification is used and 18.9% slower than ideal when
polling notification is used. Furthermore, as the number of processes increases, the
performance lost to unresponsiveness increases. This confirms what was stated in
Chapter 3: A collective-communication operation runs only as fast as its slowest
participant. As the number of participants increases, the likelihood that at least one
is unresponsive increases, as well. Extrapolating from the data used in Figure 5.9 out
to 12,288 nodes, the proposed size of the forthcoming ASCI Q supercomputer [25],
one would expect radix sort running on a a cluster of that size to be 22.8 times slower
than a dedicated supercomputer when blocking is used or 122.3 times slower when
polling is used. In short, unresponsiveness is a serious problem for a cluster, even
when only a single application is running on it and CPU contention is, at most,
sporadic.

One would expect unresponsiveness to be an even more serious problem when
there is continuous contention for the CPU. This sort of contention comes in two
forms, internal and external, as described in Section 5.1.2. We use cholesky as
the application with which to measure the impact of internal and external conten-

79

tion on unresponsiveness, because on an idle system, cholesky exhibits near-perfect
speedup (Figure 5.10). This is convenient for studying performance loss, because
we know a priori that doubling the number of processes should halve the execution
time. If it does not, then we know that unresponsiveness is the culprit.

1

10

100

1 2 4 8 16

Speedup

P
ro

ce
ss

es Blocking

Polling

Ideal

Figure 5.10: Speedup of the cholesky code

Internal CPU contention arises when there is only one job running on the clus-
ter, but that job contains more processes than there are available CPUs. As a re-
sult, the processes cannot all be coscheduled, which implies that an all-process
collective-communication operation cannot complete until each process has been
given enough CPU time to complete its participation in the operation.

Figure 5.11 quantifies the impact of internal contention on collective-
communication performance. It shows the results for both blocking and polling
notification, and with the “naive” reduction algorithm. In each graph, the “P nodes”
curve represents the case in which there is only one process per node (i.e., the
no-contention case); “P/2 nodes” represents the performance when there are half
as many nodes as processes (or, alternatively, two processes per node); and so on for
the other curves. Additionally, the “1 node” line highlights the data points in which
there is one process on one node, two processes on one node, four processes on one
node, and so forth.

The most striking observation about the graphs in Figure 5.11 is the qualitative
difference in performance between the blocking and polling versions of cholesky
when the number of nodes is held constant but the number of processes varies. In
the blocking version (Figure 5.11(a)), cholesky runs only 9.4% slower when there are
16 processes on a single node than when there is only one process on that node. In

80

0

50

100

150

200

250

300

350

1 2 4 8 16

Processes

T
im

e
(m

in
u

te
s)

(a) blocking notification

0

50

100

150

200

250

300

350

1 2 4 8 16

Processes
T

im
e

(m
in

u
te

s)

(b) polling notification

P nodes

P/2 nodes

P/4 nodes

P/8 nodes

P/16 nodes

1 node

Figure 5.11: Impact of internal contention (naive reductions)

81

contrast, in the polling version (Figure 5.11(b)), cholesky runs 167.6% slower when
there is 16 times as much parallelism, but 16 times the number of processes per node.
The reason that polling performance deteriorates with increased resource contention
is that processes may waste an entire time quantum (20 milliseconds on Windows
NT 4.0 TSE) waiting for a message to arrive that can’t arrive until the waiting pro-
cess (or another waiting process on another node) relinquishes the CPU. Blocking
performance, on the other hand, stays mostly constant when the number of nodes
is fixed but the number of processes increases. This is because the increase in paral-
lelism is countered by an equal increase in contention for the CPU. It also indicates
that the overhead due to blocking (i.e., the context-switch overhead) adds only a
small amount to the total performance loss, at least for large increases in the num-
ber of processes + contention. We empirically determined that it takes ≈ 4 µsec to
context switch to another thread and back on the machines used in this dissertation.

Figure 5.12 shows the same data as Figure 5.11, but with each data point nor-
malized to the “ideal” time. The ideal time for a run of cholesky with P pro-
cesses and N nodes is defined as I(P, N) ≡ I(1, 1)/N. In other words, doubling
the number of nodes doubles the performance, while doubling the number of pro-
cesses does not affect the performance. I(1, 1) is defined to match the empiri-
cally measured time. According to Figure 5.12, cholesky performs close to ideal
when it uses blocking communication. However, when it uses polling notifica-
tion, the performance diverges from ideal as contention increases. The execution
time of the the polling version of cholesky can be approximated with the formula
Tp(P, N) ≈ I(P, N) ·

(
1 + P

10 −
N
10

)
, with an R2 value of 0.960406.6 In other words,

when polling notification is used, increasing the number of processes or decreas-
ing the number of nodes increases the difference between the ideal time and the
observed time.

Having shown that internal contention is a source of significant unresponsive-
ness, we now turn our attention to external contention. External contention arises
when the application under investigation is running on the cluster, with only one
process per node, but there are a varying number of other processes in the sys-
tem. Figure 5.13 graphs the results of using the “naive” reduction algorithm for
both blocking and polling notification. The graph showing the results of using the
“binary” reduction algorithm is virtually identical to Figure 5.13 and is therefore
omitted from this dissertation. Figure 5.13(a) plots absolute time (in minutes) on the
z axis, and Figure 5.13(b) plots the same data, but with the z axis representing the
factor slower than the base (no contention) case. In each graph, there are three pairs

6This formula is a simplification for clarity of exposition. The actual result of the linear regression
is Tp(P, N) ≈ I(P, N) · (1.04129 + 0.105949P− 0.106744N) and has an R2 value of 0.977693.

82

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

t i
m

e

1 2 4 8 16 P (I)
P (B)

P (P)

P/2 (I)

P/2 (B)

P/2 (P)

P/4 (I)

P/4 (B)

P/4 (P)

P/8 (I)

P/8 (B)

P/8 (P)

P/16 (I)

P/16 (B)

P/16 (P)

Processes Nodes

Figure 5.12: cholesky performance relative to ideal

of bars. The first pair is the base case: no competitors. The second pair, “(1)”, rep-
resents the case in which a CPU-intensive process is running on node 1.7 And the
final pair, “(1..N)”, represents the case in which a CPU-intensive process is running
on each node in the cluster.

The interesting observations from Figure 5.13 are:

• A single slow node roughly doubles the execution time for any number of
processes. (The height of the “(1)” curves in Figure 5.13(b) is approximately
equal to 2.0.)

• As can be seen by comparing the Blocking and Polling bars in Figure 5.13(b), a
competitor on every node causes the execution time to increase proportionally
to the number of nodes when blocking is used (Tb(P, 1..N) ≈ Tb(P, 0) · (2 +
P
10)), but to roughly double when polling is used. Actually, the Polling curves
do increase linearly, but with a much smaller constant than Blocking.

• cholesky is less sensitive to external contention when using polling notifi-
cation than when using blocking communication—the Polling bars in Fig-
ure 5.13(b) are generally shorter than the corresponding Blocking bars.

5.2.3 Summary

The following are the key points made in Section 5.2:

1. Unresponsiveness is a problem, even when the cluster is essentially idle.

7Note that the root of the reduction operation rotates round-robin among all the processes.

83

0

50

100

150

200

250

T
im

e
(m

in
u

te
s)

1 2 4 8 16 Blocking

Polling

Blocking (1)

Polling (1)

Blocking (1..N)

Polling (1..N)

Processes and Nodes Communication and load

(a) Absolute

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fa
ct

or
sl

ow
er

1 2 4 8 16 Blocking

Polling

Blocking (1)

Polling (1)

Blocking (1..N)

Polling (1..N)

Processes and Nodes Communication and load

(b) Relative

Figure 5.13: cholesky performance in light of a CPU-intensive competitor

84

2. The performance penalty is expected to increase with the number of processes
involved in the computation.

3. The key source of unresponsiveness is context switches to either a competing
application (external contention) or the “wrong” process in the same applica-
tion (internal contention).

We additionally observed that nonblocking barriers must be robust to both
polling and blocking notification. Without unresponsiveness tolerance, polling
gives better performance in the presence of external contention, while blocking gives
better performance in the presence of internal contention. In the next few sections,
we characterize the performance gain from nonblocking barriers when each notifi-
cation mechanism is used for the underlying point-to-point communication.

5.3 Nonblocking barrier performance

To evaluate the performance of nonblocking barriers, we first examine the addi-
tional overhead they introduce for their bookkeeping (Section 5.3.1). We then eval-
uate the performance gain achievable by nonblocking barriers in the presence and
absence of internal load imbalance (Section 5.3.2).

5.3.1 Bookkeeping overhead

As can be inferred from the nonblocking-barrier implementations presented in
Chapter 4, nonblocking barriers require more bookkeeping than traditional barri-
ers. A valid question to ask, therefore, is: What is the cost of this additional book-
keeping? An experiment to answer that question can be set up as follows. We
configure the communication layer (VIA++ [84]) to use traditional barriers, but to
attach the metadata required by nonblocking barriers to each message. Because
this metadata is unused by traditional barriers, it constitutes pure overhead. There-
fore, the difference in performance between the extraneous-metadata run and the
no-extraneous-metadata run is exactly the overhead incurred by nonblocking barri-
ers. Additionally, we can examine the performance regained from tolerating unre-
sponsiveness and see what fraction of the overhead can be eliminated.

We use the naive implementation of prefix scan as the benchmark to use in this
experiment. Naive prefix scan is an idea choice, because it represents a worst-case
scenario for nonblocking barriers. Flow control of naive prefix scan’s abundant fine-
grained communication introduces communication dependencies, which prevent
nonblocking barriers from overlapping idle time with useful work.

85

Figure 5.14 shows the results of this experiment for both blocking and polling
notification. The Traditional bars illustrate the time (in minutes) to run naive pre-
fix scan using traditional barriers. The Traditional +metadata bars illustrate the
time taken when using traditional barriers which carry the overhead introduced
by nonblocking barriers. And the Nonblocking bars illustrate the time using true
nonblocking barriers. The difference between the height of the Traditional and Tra-

ditional+ metadata bars is the amount of overhead added by the software imple-
mention of nonblocking barriers. The difference between the height of the Tradi-

tional +metadata and Nonblocking bars is the performance regained purely by toler-
ating unresponsiveness.

0

2

4

6

8

10

12

14

16

18

Blocking Polling

T
im

e
(m

in
u

te
s)

Traditional

Traditional+metadata

Nonblocking

Figure 5.14: Performance of the “naive” prefix scan

The conclusions one can draw from Figure 5.14 are:

• There is unresponsiveness in an idle system running the naive prefix scan.

• Some of this unresponsiveness can be tolerated.

• The overhead due to carrying barrier metadata dominates the time regained
by tolerating unresponsiveness in the naive prefix scan benchmark.

Regarding that last conclusion, each message carries with it up to 40 bytes of meta-
data, while the payload itself is merely 24 bytes. Furthermore, each process receives
between 1 million and 10 million messages during the course of its execution, which
adds up to a significant cost in total execution time: an extra 16% when blocking no-
tification is used and an extra 21% when polling notification is used.

86

Note that communication in the naive implementation of prefix scan is tightly
coupled. This is not due to data dependencies in Algorithm 5.3, but rather to the
flow control induced by limited communication resources in the NIC. Table 5.7 lists
some of the relevant limitations of the Giganet cLAN1000, which were determined
by invoking the VIPL routine VipQueryNic(). In particular, there can be at most
1023 outstanding messages on any VI. While additional VIs per process can be used
(at the expense of scalability), there can be no more than 1024 VIs per node. Even
if all 1024 VIs were used, messages after the 65,535th would still be dropped, be-
cause the completion queue would overflow. If all 1024 completion queues were
used—which would substantially increase the cost of notification—only 896 MB of
memory can be registered at once, which is insufficient for that number of descrip-
tors. And while the communication layer used by the naive prefix scan could be
modified to take advantage of more NIC resources and thereby lessen the interpro-
cess coupling, one of the quintessential characteristics of a PC cluster is that NICs
will always have limited resources relative to the host computer, and therefore, flow
control will always be required to prevent data loss due to oversubscribed resources.

Table 5.7: Giganet cLAN1000 NIC parameters

NIC attribute (maximum) cLAN1000 value

Message size 65,519 bytes
Number of VIs 1024
Number of pending descriptors per VI 1023
Entries per completion queue 65,535
Number of completion queues 1024
Amount of registerable memory 229,376 regions, each with up to 229,376

contiguous bytes, up to a maximum of
939,524,096 bytes total

5.3.2 Performance gain from nonblocking barriers

While flow control kept the naive implementation of prefix scan tightly coupled,
the cluster-optimized version of prefix scan exhibits a different challenge: internal
load imbalance. Figure 5.15 depicts the communication pattern used by an 8-process
optimized prefix-scan operation and the corresponding data dependencies. As the
figure shows, processes 0–3 receive no messages after the final barrier and can there-
fore exit as soon as their participation in the barrier is complete. Processes 4–7, how-
ever, must each wait for an additional message to arrive. They then have to perform
an additional local computation step (the final for loop in Algorithm 5.4) before they
can exit. Hence, even in the absence of unresponsiveness, processes 4–7 have more

87

Barrier

Barrier

Barrier

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

3 sends
0 recvs.

3 sends
1 recv.

3 sends
2 recvs.

3 sends
2 recvs.

2 sends
3 recvs.

2 sends
3 recvs.

1 send
3 recvs.

0 sends
3 recvs.

Ti
m

e

Figure 5.15: Communication pattern for a prefix-scan operation

work to do than processes 0–3. Of course, if one of the first four processes in the
computation is unresponsive, its peer will not be able to start its local computation
until the unresponsive process awakens.

Figure 5.16 shows the performance of the cluster-optimized version of prefix
scan with each of traditional and nonblocking barriers. The figure includes the time
measured individually on each of the eight processes partaking in the computation
in addition to the median time. Figure 5.16(a) shows the performance when polling
is used for message notification, and Figure 5.16(b) shows the performance when
blocking is used. Performance measurements are shown for both traditional barriers
and nonblocking barriers.

Some key observations one should make from the measurements in Figure 5.16
are the following:

• The performance when using traditional barriers is bimodal; half the processes
finish faster than the other half.

• Processes 4–7, the slow processes, complete in approximately the same time
whether traditional or nonblocking barriers are used.

88

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 Median

Process number

T
im

e
(m

il
li

se
co

n
d

s)

(a) polling notification

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 Median

Process number

T
im

e
(m

il
li

se
co

n
d

s)

(b) blocking notification

Traditional

Nonblocking

Figure 5.16: Performance of the cluster-optimized prefix scan

89

• Processes 0–3, the fast processes, finish much faster when nonblocking barriers
are used.

As would be expected, in the no-competition case, nonblocking barriers do little
to improve the performance of processes 4–7, because the same data dependencies
and load imbalance apply as in the traditional barrier case. However, processes 0–3
can finish sooner because they have less work and fewer data dependencies. As
Figure 5.15 indicates, process 0 receives no messages. Nonblocking barriers there-
fore enable it to perform all its local computation at once, participate in the three
barriers, and then terminate. Process 1 has only one data dependency, and after
receiving its single message, performing the dependent local computation, and par-
ticipating in the barriers, it can terminate. Processes 2 and 3 each have to receive
two messages and perform some local computation before they can terminate. The
height of each nonblocking-barrier bar in Figure 5.16 is therefore proportional to the
number of data dependencies (message receives) the corresponding process has. To
be more precise, the execution time for the cluster-optimized prefix scan can be ap-
proximated by the following equations:

Ttrad[p] ≈

dlg PeTlocal if p ≥ P/2

(1 + dlg Pe)Tlocal if p < P/2
(5.2)

Tnblock[p] ≈ (1 + dlg(p + 1)e)Tlocal (5.3)

Equation 5.2 approximates the time when using traditional barriers (Ttrad), and
Equation 5.3 approximates the time when using nonblocking barriers (Tnblock). Tlocal

is the time spent in a single block of local computation and is measured by timing
the first stanza of Algorithm 5.4. Tlocal corresponds to the height of the process 0 non-

blocking bar in Figure 5.16. (It is also the difference in height between the “slow” and
“fast” traditional bars in that figure.) The variables P and p have the same meanings
as in Table 5.4 on page 63. As Figure 5.17 shows, Equations 5.2 and 5.3 accurately8

predict the performance of prefix scan when using either traditional or nonblocking
barriers. (The reason error exists in the analytic plots is that there is measurement
error in Tlocal, which propagates through Equations 5.2 and 5.3.) The difference be-
tween Ttrad and Tnblock therefore provides a simple, but accurate, analytical model
of the minimal amount of additional performance that can be seen by each process

8The R2 value when predicting the performance of traditional barriers is 0.987866, and the R2 value
when predicting the performance of nonblocking barriers is 0.988998.

90

on this particular problem when traditional barriers are replaced with nonblocking
ones.

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 Median

Process number

T
im

e
(m

il
li

se
co

n
d

s)

Traditional (measured) Traditional (analytic)

Nonblocking (measured) Nonblocking (analytic)

Figure 5.17: Comparison of measured vs. analytic prefix scan time (polling notifica-
tion)

When unresponsiveness is explicitly introduced into the system in the form of
a competitor for the CPU (external contention), nonblocking barriers improve per-
formance even further than in the no-load case. Figure 5.18 shows the performance
of traditional versus nonblocking barriers on the cluster-optimized prefix scan mi-
crobenchmark, but unlike Figure 5.16, there is a competitor for the CPU (a sim-
ple spin loop) running on each node. While the measured times in Figure 5.18 are
greater than in Figure 5.16—note the larger values on the y axes—the observations
made on page 88 still apply, although the bimodality of the measurements in the tra-
ditional barrier case is less apparent, due to the greater variation in execution times
due to process scheduling involving an additional process.

Finally, Figure 5.19 summarizes the performance gained by tolerating unrespon-
siveness in prefix scan. Each bar represents the ratio of the time spent when non-
blocking barriers are used to the time spent when traditional barriers are used. A
ratio of 1.0 means there was no performance improvement. Ratios less than 1.0 mean
unresponsiveness was tolerated and performance was improved. Ratios greater
than 1.0 mean the overhead from nonblocking barriers dominated the performance
gain from tolerating unresponsiveness. As Figure 5.19 shows, nonblocking barri-
ers improve the performance observed by each process by an average factor of 0.81

91

0

500

1,000

1,500

2,000

2,500

0 1 2 3 4 5 6 7 Median

Process number

T
im

e
(m

il
li

se
co

n
d

s)

(a) polling notification

0

500

1,000

1,500

2,000

2,500

0 1 2 3 4 5 6 7 Median

Process number

T
im

e
(m

il
li

se
co

n
d

s)

(b) blocking notification

Traditional

Nonblocking

Figure 5.18: Performance of the cluster-optimized prefix scan with one competitor per node

92

when there is no competition for the CPU and by an average factor of 0.71 when
there is competition for the CPU.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 Geom.
mean

Process number

N
on

b
lo

ck
in

g
ti

m
e

÷
tr

ad
it

io
n

al
ti

m
e

Polling

Blocking

Polling (one competitor)

Block (one competitor)

 Better

 Worse

Figure 5.19: Performance gain from tolerating unresponsiveness in the cluster-
optimized prefix scan

Unlike prefix scan’s processes, all of radix sort ’s processes perform an equal
amount of communication. Figure 5.20 shows the performance improvement ob-
served when running radix sort on an otherwise idle cluster.9 When polling no-
tification is used, nonblocking barriers decrease the penalty due to unresponsive-
ness from 9.9% down to 6.3%, and when blocking notification is used, nonblocking
barriers decrease the penalty due to unresponsiveness from 6.3% down to 4.8%.
Although this improvement is small, we will see in the following section that non-
blocking barriers improve performance significantly when there is internal or exter-
nal contention for the CPU.

5.3.3 Sources of performance gain

Figure 5.21 provides an expanded view of the performance gain contributed by
nonblocking barriers. The goal is to characterize the effect that nonblocking bar-
riers have on waiting times. Our hypothesis is that nonblocking barriers reduce
the amount of time that a process spends waiting for point-to-point messages to
arrive. Because nonblocking barriers enable non-barrier work to overlap the time

9Figure 5.20 portrays a superset of the data that appeared in the top part of Figure 3.1.

93

0%

20%

40%

60%

80%

100%

120%

Res
ponsiv

e

Norm
al

To
ler

an
t

Res
ponsiv

e

Norm
al

To
ler

an
t

Fa
ct

or
of

R
es

p
on

si
ve

ti
m

e

Polling Blocking

Figure 5.20: Performance gain from tolerating unresponsiveness in radix sort

spent within a barrier, we expect to see to total waiting time drop by the amount of
time spent in overlapped work.

The experimental setup consisted of an 8-process run of radix sort with a com-
petitor process sharing each node in the cluster. The messaging layer was instru-
mented to log the time spent in each invocation of the point-to-point receive func-
tion. Figure 5.21(a) characterizes the performance when polling notification is used
for point-to-point messages, and Figure 5.21(b) characterizes the performance when
blocking notification is used. In each subfigure, the x axis shows ranges of receive
times, and the y axis shows the contribution of each range and all preceding ranges
to the total waiting time. Data for both traditional and nonblocking barriers are
shown.

Two facts are evident from Figure 5.21. First, nonblocking barriers do decrease
the time spent waiting on incoming point-to-point messages. The vertical difference
between the rightmost points of the two curves (i.e., the difference in total waiting
time) is 6.8 seconds in Figure 5.21(a) and 9.2 seconds in Figure 5.21(b). This means
that nonblocking barriers overlapped 6.8 (respectively, 9.2) seconds’ worth of work
with the execution of the barrier. That is, nonblocking barriers successfully hid
33.8% (respectively, 28.2%) of the original, total waiting time behind useful work.
The second point that Figure 5.21 elucidates is that the real divergence in cumulative
time occurs in the OS time-quantum ranges for compute-bound processes—those
between 10,000 and 50,000 µsecs. Beyond those ranges, the curves roughly parallel

94

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

0-
9

20
-2

9
40

-4
9

60
-6

9
80

-8
9

10
0-

19
9

30
0-

39
9

50
0-

59
9

70
0-

79
9

90
0-

99
9

2,
00

0-
2,

99
9

4,
00

0-
4,

99
9

6,
00

0-
6,

99
9

8,
00

0-
8,

99
9

10
,0

00
-1

9,
99

9
30

,0
00

-3
9,

99
9

50
,0

00
-5

9,
99

9
70

,0
00

-7
9,

99
9

90
,0

00
-9

9,
99

9
20

0,
00

0-
29

9,
99

9
40

0,
00

0-
49

9,
99

9
60

0,
00

0-
69

9,
99

9
80

0,
00

0-
89

9,
99

9
1,

00
0,

00
0-

1,
99

9,
99

9
3,

00
0,

00
0-

3,
99

9,
99

9

Range of receive times (microseconds)

C
u

m
u

la
ti

ve
ti

m
e

sp
en

ti
n

ra
n

ge
(m

ic
ro

se
co

n
d

s)

(a) Polling notification

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

0-
9

20
-2

9
40

-4
9

60
-6

9
80

-8
9

10
0-

19
9

30
0-

39
9

50
0-

59
9

70
0-

79
9

90
0-

99
9

2,
00

0-
2,

99
9

4,
00

0-
4,

99
9

6,
00

0-
6,

99
9

8,
00

0-
8,

99
9

10
,0

00
-1

9,
99

9
30

,0
00

-3
9,

99
9

50
,0

00
-5

9,
99

9
70

,0
00

-7
9,

99
9

90
,0

00
-9

9,
99

9
20

0,
00

0-
29

9,
99

9
40

0,
00

0-
49

9,
99

9
60

0,
00

0-
69

9,
99

9
80

0,
00

0-
89

9,
99

9
1,

00
0,

00
0-

1,
99

9,
99

9
3,

00
0,

00
0-

3,
99

9,
99

9

Range of receive times (microseconds)

C
u

m
u

la
ti

ve
ti

m
e

sp
en

ti
n

ra
n

ge
(m

ic
ro

se
co

n
d

s)

(b) Blocking notification

Traditional Nonblocking

Figure 5.21: Cumulative time blocked on receives in radix sort

95

each other. This implies that nonblocking barriers are able to overlap useful work
with time that would otherwise be spent waiting for an unscheduled peer to be
rescheduled and regain responsiveness.

Figure 5.22 verifies the latter point. Like Figure 5.21, it shows data for both both
polling and blocking notification (subfigures 5.22(a) and 5.22(b)) and shows ranges
of receive times on the x axes. The y axes, however, present tallies (out of 100%) in-
stead of times. More precisely, the y axes show the difference between the traditional
and nonblocking tallies. This arrangement makes it easy to contrast the receive
times observed when using traditional barriers and when using nonblocking barri-
ers. A positive bar indicates that the corresponding receive times are more common
when traditional barriers are used; a negative bar indicates that the corresponding
receive times are more common when nonblocking barriers are used; and a zero bar
indicates that receive times in the corresponding range are equally common regard-
less of barrier implementation. The y axes in Figure 5.22 are truncated to ±6% to
make it easier to see the bulk of the graphs.

Figure 5.22 supports our hypothesis that nonblocking barriers are able to over-
lap useful work with time that would otherwise be spent waiting for an unsched-
uled peer to be rescheduled and regain responsiveness. The bars in the 10,000–
50,000 µsec ranges are predominantly positive, and the bars in the lesser-delay
ranges are predominantly negative. The conclusion that one can draw from this
is that nonblocking barriers can frequently reduce quantum-sized delays to much
smaller levels by pushing forward with the computation instead of waiting idly for
an unscheduled peer.

There are two additional observations that can be made from Figure 5.22. First,
the overhead induced by nonblocking barriers’ bookkeeping makes 0–9 µsec re-
ceives much less common than in the traditional-barrier case. (10–29 µsec receives,
however, are more common when nonblocking barriers are used.) Second, the
60,000 µsec-and-up ranges appear predominantly when nonblocking barriers are
used. This is likely the effect of a process overlapping a significant amount of work
with a barrier, running far ahead of another process, and finally reaching a point
at which it can make no more progress until the slower process catches up. Fortu-
nately, these long receive delays are few in number and, as shown by Figure 5.21,
do not noticeably decrease the gap between the Traditional and Nonblocking curves.

5.4 Performance robustness

This section investigates the robustness of nonblocking barriers. Section 5.4.1 shows
that nonblocking barriers continue to improve performance when used alongside
other unresponsiveness-tolerating techniques. That is, the performance gain is ad-

96

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

0-
9

20
-2

9
40

-4
9

60
-6

9
80

-8
9

10
0-

19
9

30
0-

39
9

50
0-

59
9

70
0-

79
9

90
0-

99
9

2,
00

0-
2,

99
9

4,
00

0-
4,

99
9

6,
00

0-
6,

99
9

8,
00

0-
8,

99
9

10
,0

00
-1

9,
99

9
30

,0
00

-3
9,

99
9

50
,0

00
-5

9,
99

9
70

,0
00

-7
9,

99
9

90
,0

00
-9

9,
99

9
20

0,
00

0-
29

9,
99

9
40

0,
00

0-
49

9,
99

9
60

0,
00

0-
69

9,
99

9
80

0,
00

0-
89

9,
99

9
1,

00
0,

00
0-

1,
99

9,
99

9
3,

00
0,

00
0-

3,
99

9,
99

9

Range of receive times (microseconds)

D
el

ta
of

fr
ac

ti
on

in
ra

n
ge

(%
tr

ad
it

io
n

al
-%

n
on

b
lo

ck
in

g)

More traditional

Equal % of recvs.

More nonblocking

24.0%

-20.5%

(a) Polling notification

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

0-
9

20
-2

9
40

-4
9

60
-6

9
80

-8
9

10
0-

19
9

30
0-

39
9

50
0-

59
9

70
0-

79
9

90
0-

99
9

2,
00

0-
2,

99
9

4,
00

0-
4,

99
9

6,
00

0-
6,

99
9

8,
00

0-
8,

99
9

10
,0

00
-1

9,
99

9
30

,0
00

-3
9,

99
9

50
,0

00
-5

9,
99

9
70

,0
00

-7
9,

99
9

90
,0

00
-9

9,
99

9
20

0,
00

0-
29

9,
99

9
40

0,
00

0-
49

9,
99

9
60

0,
00

0-
69

9,
99

9
80

0,
00

0-
89

9,
99

9
1,

00
0,

00
0-

1,
99

9,
99

9
3,

00
0,

00
0-

3,
99

9,
99

9

Range of receive times (microseconds)

D
el

ta
of

fr
ac

ti
on

in
ra

n
ge

(%
tr

ad
it

io
n

al
-%

n
on

b
lo

ck
in

g)

More traditional

Equal % of recvs.

More nonblocking

35.3%

-15.6%

-23.5%

(b) Blocking notification

Figure 5.22: Time blocked on receives in radix sort, expressed as the difference in
the percentage tally of receive times

97

ditive. Section 5.4.2 shows that nonblocking barriers increasingly improve perfor-
mance as cluster size grows.

5.4.1 Compatibility with other unresponsiveness-tolerating techniques

It is instructive to evaluate how well nonblocking barriers perform when
used in conjunction with other unresponsiveness-tolerating techniques. The
unresponsiveness-tolerating techniques we use for this evaluation are flat trees and
smart exchanges. With flat trees, which were illustrated earlier in Figure 5.3, the root
of a multicast operation sends directly to each of the remaining processes. In a re-
duction operation, the flow direction is reversed; all processes send directly to the
root. While flat trees take linear time, as opposed to the logarithmic time required
by a binary tree, the intuition is that performance will nevertheless be improved.
The reasons are as follows:

1. An unresponsive participant in a binary tree will delay communication to
all processes downstream of it. An unresponsive participant in a flat tree—
excluding the root process—does not impact other processes.

2. Because communication overhead is low and the performance penalty from
unresponsiveness can be high, the performance lost to using an O(n) algo-
rithm instead of an O(lg n) algorithm is expected to be regained by tolerating
unresponsiveness.

Smart exchanges alter the scheduling of the point-to-point messages that com-
prise an all-to-all exchange. Ordinarily, with “dumb” exchanges, each process
sends a message to its first neighbor for whom it has a message to send. In con-
strast, with smart exchanges, each process communicates with a peer that is likely
to be responsive at the time. This approach is similar to that taken by adaptive
thread-scheduling algorithms such as dynamic coscheduling [95, 96] and implicit
coscheduling [5]. Smart exchanges are implemented by having each process send a
message to whichever process last sent to it. If a process has no messages for that
particular peer, it temporarily reverts to ordinary message scheduling, sending to
its first neighbor for whom it has a message to send. The intuition behind smart
exchanges, just like that behind dynamic coscheduling and implicit coscheduling,
is that receiving a message implies that the sender is likely to still be running and
therefore be responsive to the network.

For clarity of exposition, the figures that follow in this section utilize only four
combinations of values from the set {“binary” vs. ”flat”, “traditional” vs. ”nonblock-
ing”, “dumb” vs. ”smart”}. These combinations are enumerated and summarized in
Table 5.8. The four combinations are labeled Base, +flat, +nonblocking, and +smart

98

exch. Base corresponds to the case in which no unresponsiveness-tolerant mecha-
nisms are used. With +flat, flat communication trees are the only mechanism in
place. +nonblocking adds nonblocking barriers to +flat. Finally, +smart exch. adds
adaptive message scheduling to +nonblocking.

Table 5.8: Sets of unresponsiveness-tolerating techniques used in radix-sort figures

Name
Variable values

Tree Barriers Exchanges

Base binary traditional dumb
+flat flat traditional dumb

+nonblocking flat nonblocking dumb
+smart exch. flat nonblocking smart

Figure 5.23 shows the performance improvement due to each of +flat, +non-

blocking, and +smart exch. over Base. There are three data series in the graph, one
for each condition under which the experiments were carried out: No load, Two pro-

cesses/node, and One competitor/node. No load means one process was running on
each node. Two processes/node means that processes were doubled up on each node
and, hence, radix sort ’s processes compete with each other for the CPU. And finally,
One competitor/node means that each node contains one radix sort process and one
spin loop process, which runs forever.

In Figure 5.23(a), performance is shown as normalized time, with Base as 100%
and each of +flat, +nonblocking, and smart exch. being normalized to the correspond-
ing Base bar. (Smaller bars are better.) Figure 5.23(b) shows the same data as a factor
slower than the Base bar in the No load series. An additional Ideal (under load) series
indicates the ideal factor slower under load. Because each radix-sort process is com-
peting for the CPU with either another radix-sort process or an external competitor,
it receives half as much CPU time as in the No load case and should therefore, ideally,
take twice as long to run. Ideal (under load) is therefore set to 2.0.

Figure 5.23 shows that each form of unresponsiveness-tolerance improves per-
formance. The No load case sees the least performance improvement, as would
be expected. The improvement it does see corresponds to tolerating what can be
termed “short-term unresponsiveness:” OS services, TLB misses, hardware inter-
rupts, and miscellaneous other occurrences that periodically use a small amount of
CPU time. Figure 5.23 indicates that the performance gained by tolerating these
is small—at most a few percent. The Two processes/node and One competitor/node

cases both gain a little bit of performance when the binary tree communication is
replaced with a degenerate tree. The big performance boost comes from my non-

99

0%

20%

40%

60%

80%

100%

Base +flat +nonblocking +smart exch.

Unresponsiveness tolerance

N
or

m
al

iz
ed

ti
m

e

No load Two processes/node One competitor/node

(a) Expressed as normalized time (Base=100%)

0

1
2

3

4
5

6

7

8
9

10

Base +flat +nonblocking +smart exch.

Unresponsiveness tolerance

Fa
ct

or
of

{B
a
se

,
N

o
lo

a
d
}

ti
m

e

No load Two processes/node One competitor/node Ideal (under load)

(b) Expressed as performance degradation

Figure 5.23: Radix sort performance (polling notification)

100

blocking barriers: an additional 26–27%. Introducing +smart exch. further improves
performance only slightly. The total performance improvement due to unrespon-
siveness tolerance is 36% for each of the Two processes/node and One competitor/node

cases.
The performance results given in Figure 5.23 strongly support my thesis, in

that they show that application performance can be noticeably improved if un-
responsiveness is tolerated at the endpoints. Nonblocking barriers—this thesis’
contribution in terms of new unresponsiveness-tolerating techniques—generate the
largest performance gain. Nevertheless, simpler forms of unresponsiveness toler-
ance, namely flat communication trees and adaptive message scheduling, do im-
prove performance further, albeit only slightly.

The results are less optimistic when the underlying point-to-point commu-
nication blocks, instead of polls, for messages. Figure 5.24 is the blocking-
communication analogue of Figure 5.23. Figure 5.24 shows that my nonblocking
barriers actually hurt performance in the Two processes/node case. The reason for
this is unclear, but it must somehow involve the “wrong” process being scheduled
on a node and precluding the other process from making progress. The performance
loss cannot be due to the extra bookkeeping overhead or to the application’s being
overzealous in relinquishing the CPU; if it were, +nonblocking would not improve
performance—by a noteworthy 22%—in the One competitor/node case.

Another pessimistic observation is that +smart exch. hurts performance in the
One competitor/node case. However, that is to be expected. +smart exch. assumes
that if process B receives a message from process A, then process A must be sched-
uled. But this is never the case when blocking notification is used, because process A
yields the CPU immediately after sending. Hence, every message arrival triggers
a context switch. Note that the increase in time between +flat and +nonblocking in
the Two processes/node case is approximately the same as the time needed for these
additional context switches. This may be a clue to the poor performance of the {Two

processes/node, +nonblocking} case.
Conclusions to draw from Figures 5.23 and 5.24 include the following:

1. Nonblocking barriers do not preclude other unresponsiveness-tolerating tech-
niques; performance gain is additive.

2. Nonblocking barriers improve performance substantially in light of either
internal or external CPU contention (with the exception of the Two pro-

cesses/node case when blocking notification is used).

101

0%

20%

40%

60%

80%

100%

Base +flat +nonblocking +smart exch.

Unresponsiveness tolerance

N
or

m
al

iz
ed

ti
m

e

No load Two processes/node One competitor/node

(a) Expressed as normalized time (Base=100%)

0

1
2

3

4
5

6

7

8
9

10

Base +flat +nonblocking +smart exch.

Unresponsiveness tolerance

Fa
ct

or
of

{B
a
se

,
N

o
lo

a
d
}

ti
m

e

No load Two processes/node One competitor/node Ideal (under load)

(b) Expressed as performance degradation

Figure 5.24: Radix sort performance (blocking notification)

102

5.4.2 Robustness to cluster scale

We now examine the impact of unresponsiveness and unresponsiveness tolerance
as the number of processes in the computation varies. Figure 5.25 shows the result
of this experiment. The x axis is the form of unresponsiveness tolerance that was
used. It is either “Intolerant,” which corresponds to Base in the previous graphs, or
“Tolerant,” which corresponds to the best of +flat, +nonblocking, and +smart exch..
There are sets of Intolerant plus Tolerant bars for each of the forms of explicit unre-
sponsiveness that we have been using in this section—No load, Two processes/node,
and One competitor/node—and one extra bar for the Responsive case. The y axis is
the number of processes that partook in the radix sort: 4, 8, or 16. And the z axis is
the normalized time each experiment took, with Responsive being set to 1.0. Polling
point-to-point communication is used for the runs plotted in Figure 5.25(a), and
blocking point-to-point communication is used for the runs plotted in Figure 5.25(b).

The important result shown in Figure 5.25 is that unresponsiveness rapidly takes
its toll on performance as the number of processes increases. Ideally, the Two pro-

cesses/node and One competitor/node bars should all be at the 2.0 mark—twice the
time a completely unresponsiveness-tolerant radix sort should take. In practice,
the 4-process run is 5.9 times as slow as Responsive in the {Blocking, One competi-

tor/node } case, when the system is unresponsiveness-intolerant. The 8-process run
is roughly twice as slow as that (9.5 times Responsive), and the 16-process run is
roughly twice as slow as that (21.4 times Responsive). Unresponsiveness tolerance
improves performance substantially in this case. For instance, in the 16-process case,
unresponsiveness tolerance reduces the slowdown from 21.4X down to 9.1X.

When polling is used for point-to-point communication (Figure 5.25(a)), both
the Two processes/node and One competitor/node cases are observably bad and grow
worse as the number of processes increases. Unresponsiveness tolerance signifi-
cantly improves the situation. With 16 processes, unresponsiveness tolerance de-
creases radix sort ’s slowdown from 15.1X down to 6.4X when there is internal con-
tention for the CPU (Two processes/node) and from 12.2X down to 5.2X when there
is external contention (One competitor/node).

While Figure 5.25 uses normalized data to show that larger runs imply greater
performance loss, the unnormalized data yields an additional important result:
When there is external contention for the CPU, radix sort runs faster with 8 pro-
cesses and unresponsiveness tolerance enabled than with 16 processes and no un-
responsiveness tolerance (38.4 vs. 64.7 seconds with blocking notification, 18.5 vs.
34.4 seconds with polling notification). This result is noteworthy because it shows
that adding processors to a computation is not always the best way to make an ap-
plication run faster; using the existing resources wiser can yield better performance.

103

0

5

10

15

20

25

T
im

e
(r

el
at

iv
e

to
R
es

p
o
n
si
ve

)

Responsive Intolerant Tolerant Intolerant Tolerant Intolerant Tolerant 4 8 16

Processes

Unresponsiveness tolerance

No load Two processes/node One competitor/node

(a) polling notification

0

5

10

15

20

25

T
im

e
(r

el
at

iv
e

to
R
es

p
o
n
si
ve

)

Responsive Intolerant Tolerant Intolerant Tolerant Intolerant Tolerant 4 8 16

Processes

Unresponsiveness tolerance

No load Two processes/node One competitor/node

(b) blocking notification

Figure 5.25: Performance improvement in radix sort as a function of the number of processes

104

5.5 Comparative performance

Section 4.6.3 discussed coordinated thread scheduling as an alternative or comple-
ment to nonblocking barriers. We will now quantify and compare the performance
of these two techniques. Specifically, we will compare implicit coscheduling [5] to
nonblocking barriers.

The key mechanism behind implicit coscheduling is spin-block notification. In-
stead of simply polling or blocking for message arrival, spin-block dictates that a
process should spin (i.e., poll) for some period of time, and block only if no message
arrives within that time. Arpaci-Dusseau’s dissertation [5] details how to determine
the optimal spin time for various message types (requests, responses, one-way mes-
sages, and barrier messages), but the basic idea is to spin for a length of time that
is a function of the blocking overhead. For the machines used in this dissertation,
we determined empirically that 67 spins corresponds to this length of time. Barri-
ers in implicit coscheduling are implemented not as a butterfly network (Figure 4.1
on page 27), but as a reduction followed by a multicast. Flat trees (Figure 5.3 on
page 70) are used for both the reduction and the multicast. This enables the root to
yield the CPU if any of the leaves is unresponsive and the leaves to yield the CPU
if the root is unresponsive. By yielding the CPU when one’s peers are descheduled
(as implied by their unresponsiveness) and retaining the CPU when one’s peers are
scheduled (and responsive), the hope is that all processes will eventually become
coscheduled, thereby eliminating unresponsiveness.

Figure 5.26 shows the performance of implicit coscheduling versus that of non-
blocking barriers on an 8-process run of radix sort. The same cluster was used for all
experiments. The y axis is the absolute running time, in seconds, of radix sort. The
x axis is the load on the system: No load, One competitor/node, or Two processes/node.
There are eight bars in each set. The two dotted bars represent the base running
times (blocking and polling); the two checkered bars represent nonblocking barriers
(blocking and polling); and the four solid bars represent four variations of implicit
coscheduling. The first spins only once before blocking; it is therefore similar to an
always-block scheme. The second spins the empirically determined 67 times. The
third spins 10,000 times before blocking; this number was found to yield perfor-
mance halfway between the always-poll and always-block bars in the One competi-

tor/node case. The fourth variation of implicit coscheduling spins 100,000,000 times
before blocking; it is therefore similar to an always-poll scheme. The rationale be-
hind implementing implicit coscheduling using a variety of spin times is to contrast
pure polling and pure blocking with a spectrum of intermediate values.

In the No load case, implicit coscheduling marginally outperforms nonblock-
ing barriers, which themselves outperform the base case. However, there is only

105

0

10

20

30

40

50

60

No load One
competitor/node

Two processes/node

Ti
m

e
(s

ec
on

ds
)

Base, blocking
Nonblocking barriers, blocking
Implicit coscheduling, 1 spin
Implicit coscheduling, 67 spins
Implicit coscheduling, 10K spins
Implicit coscheduling, 100M spins
Base, polling
Nonblocking barriers, polling

Figure 5.26: Comparison of nonblocking barriers to implicit coscheduling

a 5.6% difference in performance from the fastest configuration (Implicit coschedul-

ing, 67 spins) to the slowest (Base, polling), so this performance gain is less significant
than in the cases in which there is contention for the CPU. The One competitor/node

bars portray monotonically increasing performance as notification tends from block-
ing to polling. Nonblocking barriers, polling is the best performer overall, completing
radix sort in 37.9% less time than the closest implicit-coscheduling alternative, Im-

plicit coscheduling, 100M spins. The implicit-coscheduling runs do, however, outper-
form both always-block runs, Base, blocking and Nonblocking barriers, blocking.

While polling does better than blocking in the One competitor/node case, the
reverse is true in the Two processes/node case. The best performer overall is Base,

blocking, with Nonblocking barriers, blocking and most of the implicit-coscheduling
runs close behind. Nonblocking barriers improve performance substantially over
Base, polling and Implicit coscheduling, 100M spins, but still yield less performance
than the more polling-oriented runs.

106

In short, neither nonblocking barriers nor implicit coscheduling is superior to
the other in all cases. Both techniques are sensitive to the point-to-point notifica-
tion mechanism (blocking or polling—or, more generally, the maximum number of
spins to perform before blocking) and to the source of unresponsiveness (internal
or external CPU contention). In fact, to alleviate implicit coscheduling’s sensitivity
to the number of spins, Dusseau et al. propose an adaptive algorithm [36] that dy-
namically alters the number of spins according to past history. In Figure 5.26, we
see that the better of Nonblocking barriers, blocking and Nonblocking barriers, polling

never performs significantly worse than the best implicit-coscheduling version, and
in the One competitor/node case, nonblocking barriers perform substantially bet-
ter. We can therefore hypothesize that by augmenting nonblocking barriers with
spin-block notification (possibly an adaptive version) as we did with the simple
unresponsiveness-tolerating mechanisms in Section 5.4.1, we could further increase
application performance.

5.6 Discussion

The first important discovery made using the experiments in Chapter 5 is that un-
responsiveness degrades performance even on an “idle” cluster. This is due to
the various tasks that a COTS operating system performs periodically or sporadi-
cally: interrupt handling, paging, and myriad system services that require the CPU
from time to time. The preliminary experiments in Section 5.2 showed that barrier
time increases with the amount of interbarrier computation and that this increase is
strongly correlated with OS context switching. Further experimentation determined
that the same process unresponsiveness that causes an increase in barrier time leads
to a performance hit of up to 9.9% in radix sort. Again, this is on a small, idle cluster.
As cluster size increases, the performance hit increases, as well. If one were to build
a cluster with as many processors as the ASCI Q supercomputer (12,288) [25], radix
sort would run up to 122 times slower than would be possible in a more responsive
environment. This is a tremendous performance loss and underscores the necessity
of unresponsiveness-tolerant collective communication.

If internal or external contention for the CPU is introduced, the performance be-
comes significantly worse. A radix sort routine running on an ASCI Q-sized cluster
with two processes per node (either two radix sort processes or a radix sort and a
competitor) would be expected to run over 10,000 times slower than it could if there
were no unresponsiveness in the system.

The experiments presented in this chapter also indicate that neither blocking no-
tification nor polling notification universally outperforms the other. Table 5.9 lists
the 16-process Intolerant data from Figure 5.25, showing the factor slowdown when

107

there is no load on the system, one competitor per node, and two radix sort pro-
cesses per node. Bold text is used to emphasize the worse-performing notification
mechanism in each case. As Table 5.9 indicates, polling performs worse than block-
ing when there is either no load or internal CPU contention, while blocking per-
forms worse than polling when there is a competing process on every node. This
is somewhat intuitive, because yielding the CPU in the Two processes/node case en-
ables the application to make further progress, as it is granting one if its runnable
processes (if any) access to the CPU; polling does better in the One competitor/node

case, because it enables an application to make progress as soon as a message ar-
rives, rather than having to wait for a competitor to finish its time quantum. The
conclusion is that a successful unresponsiveness-tolerating technique should im-
prove performance with either notification mechanism.

Table 5.9: Factor of responsive radix sort time (16 processes)

Load Blocking Polling Ideal

No load 1.1 1.2 1.0
One competitor/node 21.4 12.2 2.0
Two processes/node 2.3 15.1 2.0

Sections 5.3 and 5.4 demonstrated that nonblocking barriers do, in fact, improve
performance with either notification mechanism. Section 5.5 took this evaluation
one step further and compared nonblocking barriers with implicit coscheduling [5],
which uses a spin-block mechanism that juxtaposes polling and blocking notifi-
cation in an effort to induce coordinated process scheduling across nodes. While
both nonblocking barriers and implicit coscheduling improve performance over
the unresponsiveness-intolerant baseline, nonblocking barriers outperform implicit
coscheduling when there is external CPU contention and perform similarly when
there is internal or no CPU contention. With the “wrong” notification mechanism
(blocking in the One competitor/node case and polling in the Two processes/node

case), nonblocking barriers perform worse than a well-tuned implicit coscheduling
implementation (although still better than the baseline). While unproven, we be-
lieve that nonblocking barriers could be augmented with implicit coscheduling’s
spin-block mechanism to avoid suboptimal notification-mechanism selection with-
out impeding their ability to improve performance by tolerating unresponsiveness.

On an 8-process radix sort, nonblocking barriers improve performance by up
to 27%, which is a substantial amount, especially given that no source-code modi-
fications were required to achieve that. As the number of processes increases, the
performance gain from nonblocking barriers increases, too. Sections 5.3 and 5.4

108

showed that nonblocking barriers have two more beneficial properties: they can tol-
erate internal load imbalance, as is present in prefix scan, by enabling less-loaded
processes to run ahead of more-loaded processes; and the performance gain they
yield is additive with regard to other unresponsiveness-tolerating techniques. By
using flat trees and smart message exchanges, radix sort ’s total performance gain
increases to 36% on 8 processes.

Finally, the experimental data show that nonblocking barriers, when used along-
side flat trees and smart exchanges, can give a greater performance improvement
than would doubling the number of nodes but not tolerating unresponsiveness.
This is an important result, because it demonstrates that more performance can be
achieved by using nonblocking barriers than merely by throwing additional hard-
ware at the problem.

If it can’t be expressed in figures, it
is not science; it is opinion.

Robert A. Heinlein
TIME ENOUGH FOR LOVE, 1973

The plural of anecdote is data.

Ben J. Wattenberg
VALUES MATTER MOST, 1995

109

6 Related Work

Nonblocking barriers are a novel way to tolerate unresponsiveness on PC clusters.
However, there are a number of projects related to it on any of a number of axes. Sec-
tion 6.1 describes alternatives to my ad hoc VIA++ [84] library that also support col-
lective communication and discusses them in the context of unresponsiveness tol-
erance. Section 6.2 covers collective-communication algorithms and analysis tech-
niques. As Section 4.5.2 argued, nonblocking barriers can be implemented not just
in software, but also in hardware or firmware. Hence, Section 6.3 investigates other
systems that support collective communication in either hardware or firmware. Sec-
tion 6.4 differentiates the focus of my performance-centric view of collective com-
munication from the reliability-centric view often taken by distributed-computing
protocols. A key feature of nonblocking barriers is that they require no applica-
tion modifications to be effective. By way of contrast, Section 6.5 discusses a set
of projects that require that applications be modified or even completely rewritten
to exploit improved collective-communication performance. Finally, Section 6.6 re-
ports the results of several papers that have evaluated collective-communication
performance and drawn conclusions about the effects of unresponsiveness on ap-
plication performance.

6.1 Collective-communication libraries

There are a number of messaging libraries that support parallel computations. Many
of these support collective-communication operations. MPI [73] is by far the most
widely used and supports all of the collective operations listed on page 2 with a vast
variety of options and combinations (such as “reduce to all”). In fact, the Cholesky
factorization application used in Chapter 5 was written to the MPI interface, as was
the original version of the mg benchmark.

SLICC [59] specifies an elegant interface for describing participants in a collec-
tive operation. While the model relies on a shared address space and library is
implemented on a system that supports one-sided communication operations (the
Cray T3D [27]), it is unclear whether SLICC can tolerate any unresponsiveness by
exploiting one-sided communication. (Tolerating unresponsiveness was certainly
not a design goal.)

110

CCL [7] and ICC [75] are two collective-communication libraries designed to
split a large collective operation (in terms of data size, not the number of partic-
ipants) into multiple smaller collective operations. The goal is to increase mes-
sage pipelining. While this approach is orthogonal to unresponsiveness-tolerance,
it shares with it a common attitude towards collective communication. Specifically,
both unresponsiveness-tolerance and message grain-size tuning eschew naive mod-
els of collective-communication performance. My research investigates what hap-
pens when one breaks the assumption that nodes are responsive before and during a
collective-communication operation. CCL and ICC investigate what happens when
one breaks the assumption that multiple outgoing messages from a single node can
proceed in parallel.1

6.2 Collective-communication algorithms

As mentioned in Section 6.1, it is a somewhat unrealistic model to assume that mul-
tiple messages can be transmitted from a single node in parallel. While CCL and
ICC force the collective operation to fit the model (by sending small enough mes-
sages so that multiple ones can effectively be transmitted in parallel), λ-trees [8]
and α-trees [10] work under a more realistic model of communication and optimize
their communication patterns within that model. Both communication structures
assume that collective communication is composed of phases, in each of which, up
to one send and up to one receive can occur. The main idea is to try to have all
processes finish at approximately the same time by having nodes that start the col-
lective operation sooner do more work. This may help processes avoid becoming
unresponsive. One area of future investigation for my research would be to replace
the flat trees utilized in Section 5.4.1 with λ-trees or α-trees. The idea is that λ-trees
and α-trees have better scaling properties than flat trees and may also have better
unresponsiveness-tolerance properties than naive binary trees; the “smarter” struc-
tures do not introduce load imbalance in the same way that naive trees do, because
they try to make all of the processes finish their participation in the collective oper-
ation at approximately the same time.

6.3 Collective communication in clusters

There are few works that ① address collective communication in a PC cluster en-
vironment, ② focus on parallel applications, and ③ permit modifications only to
the components described in Section 3.3. The most relevant projects to mine are

1Note that all of the multicast and barrier figures in this dissertation are drawn as if multiple out-
going messages from a single node can, in fact, proceed in parallel.

111

LFC [11] (and its predecessor, FM/MC [102]) and MAGPIE [58], both from Vrije Uni-
versiteit. LFC runs atop Myrinet, and what makes it unique is that it implements
multicast—including hooks for totally-ordered multicast—in the Myrinet firmware.
While LFC has no unresponsiveness tolerance and supports only multicast, it does
serve as a point of reference for my research because it implements a collective op-
eration at a fairly low level of the system. MAGPIE builds upon the LFC work by
extending collective communication to the wide area. It uses one set of communica-
tion algorithms within a cluster, to maximize parallelism, and a different set between
clusters, to minimize diameter. This is similar to my work if one draws an analogy
between “local cluster” and “responsive” and between “remote cluster” and “unre-
sponsive,” although in my work, the distinction is dynamic, while in MAGPIE, it is
static.

The remaining works that we now describe all place collective communication
in the switching fabric (which my thesis does not do). The Memory Channel in-
terconnect [37] supports hardware multicast. Like LFC, Memory Channel has no
unresponsiveness tolerance and supports only multicast (which, like LFC, is totally
ordered). Memory Channel’s primary drawback from the perspective of my thesis
is that it does not scale beyond 16 nodes.2 Because one of the strengths of a PC
cluster is its ease of scaling (in terms of hardware cost) and the virtually unlimited
number of nodes that can be connected, I ensured that the approach taken in my
thesis does not crimp cluster scalability.

A number of ATM switches, such as FORE Systems’ ASX 4000 switch [40], sup-
port multicast in hardware. Like VIA, ATM is connection-oriented. However, mul-
ticasts are not flow-controlled;3 data can be dropped in the switch as well as at the
endpoints. However, parallel applications generally expect reliable communication,
and therefore need some form of flow control to ensure reliability.

In addition to ATM, other industry-standard networks that support collective
communication (specifically, multicast) are Ethernet [74] and Fibre Channel [97].
Ethernet was originally based on a shared-bus architecture, which is an inher-
ent broadcast medium. However, this also implies that its performance is non-
scalable—aggregate bandwidth stays constant as nodes are added to the network—
so it is therefore inapplicable to high-performance PC cluster research. Newer,
switched Ethernet behaves more like ATM: more scalable than a bus, but still (se-
mantically) unreliable. Fibre Channel, more beneficially to parallel applications, uti-
lizes link-level flow control in the switching fabric and can even do flow-controlled

2Compaq’s assumption is that each node is a moderately-large (≈ 16-processor) SMP, so it is still
possible to cluster together a few hundred processors.

3Recent ATM switches [40] and certain research ones [14] do support flow control, but the ATM
interface specifies that communication is unreliable.

112

http://www.vu.nl/
http://www.vu.nl/
http://www.fore.com

multicasts. However, Fibre Channel is purely hardware and doesn’t extend all the
way up to software messaging layers as does my thesis work. Because nonblocking
barriers can span the software/hardware boundary, there is more potential for opti-
mizing performance using nonblocking barriers than is using a switch-level scheme.

While all of the aforementioned works limit their definition of collective com-
munication to multicasts, one of the few networks for PC clusters that supports
barriers is the PAPERS [32] family. In fact, early implementations supported only
barriers—data transfer required a separate network. Because PAPERS’s barriers are
implemented in hardware, they require host responsiveness only to enter the bar-
rier, just like the hardware implementation of my nonblocking barriers presented in
Section 4.5.2. However, the PAPERS project focused primarily on reducing barrier
latency, while my research centers around tolerating unresponsiveness.

A number of past and present parallel computers support collective
operations—especially barriers and multicasts—in hardware [48, 51, 68, 93]. (One
can also argue that cache-coherent shared-memory machines such as the Ori-
gin 2000 [64] also effective support multicasts in the sense that one processor can
write data and multiple other processors can read it.) However, these systems all
utilize custom NICs integrated further up in the memory hierarchy than the I/O
bus. As stated in Section 3.3, for my work to have impact in the space of PC clus-
ters, I cannot necessitate modifications to the workstation architecture, which would
essentially be required to integrate the network interface elsewhere in the system.

6.4 Wide-area collective communication

My thesis research was performed in the context of parallel computing. However,
there has also been much attention paid to efficient collective communication in
distributed applications, especially in wide-area systems (as opposed to clusters).
The distributed-system view towards collective communication takes a fundamen-
tally different attitude towards the problem than the parallel-computer view. In dis-
tributed systems, collective communication is generally limited to multicasts, but
with added focus on unregulated operations. That is, while I have focused on sit-
uations in which a set of nodes all agree to perform a collective operation, in the
distributed-systems literature, the notion is that multiple nodes decide indepen-
dently to multicast to multiple other nodes. The emphasis in this situation is on
portability, fault tolerance, and advanced ordering semantics. For example, global,
total ordering of multicast messages from multiple sources is a common goal, while
low-latency, low-overhead communication is not. Because the network fabric is the
communication bottleneck, there is little need to optimize the endpoints. Hence,
the schemes mentioned in the context of distributed systems are generally based on

113

heavyweight, OS-level messaging. My research assumes that all nodes cooperate
and agree on the ordering of accesses to shared state; distributed-system commu-
nication layers, such as SRM [38], RMTP [69], RMP [105], the communication lay-
ers described below, and Chang and Maxemchuk’s seminal work on reliable multi-
cast [20] do not.

Wide-area messaging layers such as RAMP [60], LTRC [76], and MTP [4] tolerate
unresponsiveness, but do in a very different way from that presented in this disser-
tation. Rather than tolerate comparatively short-term unresponsiveness, they try to
adapt to longer-term unresponsiveness, specifically, that due to network congestion
as determined by number of lost packets. That is, they detect semi-permanently
slow nodes and gradually begin sending data to them at a lessened rate. MTP even
ejects particularly slow nodes from the group—an action that would be unaccept-
able in a parallel computation.

Also note that many distributed-system multicasts rely on hardware multicast
(or a hierarchy of multicasts based on IP multicast [31]) for performance. For exam-
ple, RMP and RAMP achieve good performance only when run over bus-based Eth-
ernet. In contrast, my thesis assumes only point-to-point communication in hard-
ware.

6.5 Application/runtime-system techniques

While my research involves modifying system middleware, an alternative I have
chosen not to pursue is to modify individual applications to make them load bal-
ance their work. Generally, this involves utilizing large numbers of threads and
context switching whenever a thread is blocked (e.g., when it is waiting for an unre-
sponsive peer). Naturally, the more unresponsiveness is present in the system, the
more threads will be required to tolerate it. An aggressive multithreading + load bal-
ancing approach in this category is Cilk [15]. The idea is that the user rewrites—and
typically, rethinks—his application in a multithreaded extension of C and links it
against the Cilk-NOW runtime system (the version of the Cilk runtime system de-
signed for clusters). When a process has completed all of the tasks in its task queue,
Cilk-NOW steals work from another process’ task queue, thereby balancing load
and increasing efficiency.

Charm++/Converse [55, 56] is another example of a system with load bal-
ancing integrated into the runtime system. The programmer writes fine-grained
object-oriented code in Charm++, a distributed, C++-like language in which ob-
jects communicate with explicit message passing. The runtime system then ex-
ploits global system state, observations of objects’ communication patterns, and
application-provided triggers to periodically load balance the application across

114

processors. Brunner and Kalé [19] apply their load balancing techniques to a barrier
microbenchmark, similar to that used in Chapter 5, and improve its performance.
In a sense, Charm++/Converse tackles unresponsiveness by preventing it, while my
thesis is designed to tolerate it. In addition, because the programmer explicitly writes
message-driven code, more information is made available to the task scheduler,
so Charm++/Converse can also handle collective-communication operations other
than barriers, e.g., reductions [54]. When using nonblocking barriers, in contrast,
a programmer does not need to write message-driven code; nonblocking barriers
are implicitly message-driven. Being implicitly message-driven gives nonblocking
barriers the advantage that they can deliver improved performance to unmodified
programs. The disadvantage is that they can’t detect as much concurrency as a pro-
grammer might specify explicitly with a system like Charm++/Converse.

While my nonblocking barriers preserve traditional barrier semantics, an alter-
native would have been to alter these semantics in order to tolerate unresponsive-
ness. Noncommittal barriers [79] are an example of such an alternative. Although
designed to work as a message-fencing operation, noncommittal barriers allow pro-
cesses to exit the barrier before it is known that all pre-barrier messages have been
delivered. If a pre-barrier message does arrive after a process exits the barrier, the
application is responsible for rolling itself back to a pre-barrier state, processing all
the late messages (which may entail further messaging), and retrying the barrier.
The primary differences between noncommittal and nonblocking barriers are the
following:

1. Noncommittal barriers are intended to be used as a fencing operation, while
nonblocking barriers are intended to be used for ordering messages across
application phases.

2. Noncommittal barriers require applications to be modified to save and restore
global program state (a generally nontrivial task), while nonblocking barriers
require no application modifications whatsoever.

A second approach that alters barrier semantics is the fuzzy barrier [45]. Fuzzy
barriers are a split-phase form of barrier. They separate barrier entry from barrier
exit and allow programmer-specified work to proceed between the two. (Gupta’s
implementation of fuzzy barriers [45] flags instructions as being within either “bar-
rier regions” or “non-barrier regions,” which is essentially the same as having sep-
arate ENTER BARRIER and EXIT BARRIER operations.) There are a few key differ-
ences between fuzzy barriers and nonblocking barriers. Fuzzy barriers have dif-
ferent semantics from traditional barriers, while nonblocking barriers preserve tra-
ditional barrier semantics. With fuzzy barriers, programmers must rearrange their

115

programs to place code between the barrier entry and exit points and must con-
sciously consider what code is safe to place there. Nonblocking barriers, in contrast,
automate the process. With their message-driven semantics, nonblocking barriers
execute only known-safe code until the barrier completes. This is a more conser-
vative approach than fuzzy barriers, but it requires no programmer intervention or
code modifications. Finally, code that is placed within a fuzzy barrier’s barrier re-
gion is determined statically, while nonblocking barriers dynamically execute any
code that will not violate barrier semantics.

6.6 Evaluating unresponsiveness

There have been a few studies of unresponsiveness that relate to my work. First,
in a study that Brewer and Kuszmaul [18] performed on the Thinking Machines
CM-5 [100], they found that adding unnecessary barriers to parallel programs some-
times increases performance. They attribute this effect to fan-in. While VIA drops
packets and (in the case of reliable delivery/reception) introduces channel resets
when a receiver is unresponsive, the CM-5 backs up the network, causing additional
delays. In other words, on the CM-5, the nodes are responsive, as they do not run a
heavyweight operating system, but the network is unresponsiveness, because it has
extremely limited buffering available and is therefore easy to clog. Barriers ensure
that all of the processes are servicing the network in unison, thereby largely pre-
venting it from backing up. On a PC cluster, in contrast, the nodes are unresponsive
but the network has a relatively large amount of buffering (in VIA, the size of host
memory). Adding (traditional) barriers therefore does little to help the network, but
makes the nodes—and the cluster as a whole—less tolerant of unresponsiveness.

Based on results on both the CM-5 and T3D, Karamcheti and Chien [57] also
conclude that fan-in is an important problem in parallel computing. Their solution
is to employ “pull messaging,” in which receivers pull messages from each sender
in turn (using remote reads), as opposed to the more traditional “push messaging.”
This ensures that messages are transmitted no faster than the receiver can process
them. Pull messaging is relevant to unresponsiveness-tolerant collective communi-
cation, because it helps alleviate the problem of fan-in and because it migrates buffer
management to the senders, who are responsive at the time of the send operation.

I find that a great part of the
information I have was acquired by
looking up something and finding
something else on the way.

Franklin P. Adams

116

7 Conclusions

Having presented and evaluated nonblocking barriers, we now draw some overall
conclusions and place my thesis work in its larger context. Section 7.1 summarizes
the prior chapters of this dissertation. While the dissertation has so far focused
primarily on the strengths of nonblocking barriers, Section 7.2 states some of their
weaknesses and on the limitations of my approach. Avenues for future research
are presented in Section 7.3. Section 7.4 discusses the results of my research from a
broader vantage point. And finally, Section 7.5 enumerates the contributions of my
thesis work.

7.1 Summary

Over the past 15 years, the high-performance computing community has migrated
from vector supercomputers to massively parallel processors to distributed shared-
memory machines. Commodity-based clusters of personal computers are the com-
munity’s latest darling because of their low cost per MIPS and competitive node per-
formance. However, PC clusters are a qualitatively different—and more complex—
platform than their predecessors. The key distinction is that traditional “big iron”
machines run the user’s application in dedicated mode; virtually nothing else oc-
cupies a node’s memory space or CPU time. In contrast, applications running on
a PC cluster must share their resources with a heavyweight, commodity operat-
ing system, a menagerie of OS dæmons, and, possibly, other users’ applications.
Furthermore, the PC’s deep, complex memory hierarchies make memory access
times largely unpredictable and varying over many orders of magnitude. The con-
sequence of the PC cluster’s more complex environment is that an application’s
processes frequently become unresponsive for a length of time—of unpredictable
duration.

If all applications were loosely coupled, with processes rarely depending upon
data from other processes, this unpredictability would largely be a nonissue. How-
ever, many problem domains and individual applications, such as those ported from
previous generations of supercomputers, are tightly coupled and use collective-
communication operations to coordinate processes and maintain a consistent data
state. Chapter 5 demonstrated that endpoint unresponsiveness (i.e., unresponsive-
ness within the PCs, as opposed to within the network) occurs frequently in PC

117

clusters, even on an unloaded system. As clusters increase in size, the impact of end-
point unresponsiveness on application performance is expected to increase, accord-
ing to the data presented in this dissertation. Unless something is done about un-
responsiveness, applications will make inefficient use of cluster resources, thereby
wasting time (with unnecessarily long execution times) or money (with a need for
more computers to achieve a given level of performance).

The solution I propose in this dissertation is to tolerate unresponsiveness at
the endpoints. My research focuses on collective-communication-intensive appli-
cations, because collective communication is widely considered an important prob-
lem, and because collective-communication’s higher-level semantics provide more
opportunity for optimization than point-to-point communication. I specifically tar-
geted barriers for performance optimization, because barriers are a common syn-
chronization mechanism for parallel applications and because they are highly sen-
sitive to unresponsiveness—a single unresponsive participant delays the entire op-
eration.

As part of my thesis research, I developed a new synchronization primitive: the
nonblocking barrier (Chapter 4). Nonblocking barriers work just like ordinary barri-
ers, in that they are intended to synchronize a set of processes. However, while a
traditional barrier ensures that no process exits the barrier until all processes have
entered the barrier, a nonblocking barrier allows processes to exit the barrier be-
fore the barrier actually completes. The only restrictions are that ① no message sent
after exiting a barrier can be received until all processes have entered the barrier,
and that ② there are no hidden channels with which information can bypass the
ordinary send/receive mechanisms and thereby cause “anomalous behavior” [61].
The key insight is that in a system with no global state, synchrony is a function
of the messages delivered, not a function of absolute time. By delaying only mes-
sage delivery until the barrier has truly completed, nonblocking barriers enable pro-
cesses to compute, send messages, synchronize, and deliver messages sent before
the barrier—all without altering the traditional barrier semantics presented to the
application. Section 5.4.1 shows that an unmodified application kernel can gain a
26–27% performance improvement on eight processes, just by replacing traditional
barriers with nonblocking barriers in the communication library. If a few additional
unresponsiveness-tolerating mechanisms (flat communication trees and adaptive
message scheduling) are implemented, as well, the total performance improvement
can grow to 36%. This is a significant improvement, especially considering that it re-
quires no changes to a user’s application. To put a 36% performance improvement
in context, it takes about 11½ months for the best numbers reported on the SPEC
CFP95 benchmark to increase by 36% (Figure 7.1).1

1The data for Figure 7.1 comes from http://www.spec.org/cgi-bin/osgresults?conf=cfp95.

118

http://www.spec.org/cgi-bin/osgresults?conf=cfp95

y = 2.774 e0.0386x

R2 = 0.9124

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

Months since March, 1991

B
es

tC
FP

95
re

su
lt

to
d

at
e

Measured

Best fit (exponential)

2.774 e0.0386x1 = 2.774 e0.0386x0 · 1
1−0.36

⇒ x1 = x0 + 11.56184

Figure 7.1: Best reported performance on the SPEC CFP95 benchmark over time

7.2 Experience gained

While a 36% performance improvement from tolerating unresponsiveness in radix
sort with no application modifications is a significant achievement, there were a
number of stumbling blocks along the way to reaching it. The important impedi-
ments are described below, so future researchers can benefit from the experience I
gained in the course of my thesis work.

Sources of unresponsiveness I had initially hypothesized that performance lost to
small sources of unresponsiveness—OS services, TLB misses, hardware interrupts,
etc.—would add up to a significant amount. This would have been an exciting re-
sult. While Figure 3.1 on page 18 and the various experiments in Chapter 5 do
indicate that there is a non-negligible amount of “no load” unresponsiveness, they
also show that orders of magnitude more performance is lost when applications are
misscheduled, load-imbalanced, or need to vie for computational resources.

Intra-operation unresponsiveness tolerance My initial approach to tolerating
unresponsiveness—tolerating unresponsiveness within collective-communication
operations (Section 4.6.1)—turned out to be a dead end. The problem is that
collective-communication operations take orders of magnitude less time than the

119

major sources of unresponsiveness (microseconds versus tens of milliseconds). Be-
cause there is not enough communication work within an individual operation to
overlap the idle time, rescheduling communication within an operation is ineffica-
cious.

Applicability While nonblocking barriers can substantially improve performance,
they do so only for a specialized set of applications, as described in Section 7.4.3.
It turned out to be more difficult than anticipated to find suitable applications for
demonstrating the merit of my approach. Many classes of applications do exhibit the
previously enumerated “bad” characteristics. For instance, MPI applications often
shun collective-communication operations altogether because of the cumbersome
MPI collective-communication semantics (e.g., having to create a unique “commu-
nicator” for every set of processes that wants to perform a collective-communication
operation [73]). In contrast, SIMD and data-parallel applications are rich in their use
of collective communication. Nevertheless, those applications are so fine-grained
that flow control becomes a serious issue when porting them to a message-passing
cluster environment. (Flow control is not needed in SIMD machines, because
the processors execute in lockstep and have a priori knowledge of what every
other processor is doing in every timestep.) Finally, BSP programs usually have a
send. . . barrier. . . receive. . . compute structure and therefore do not provide a sufficient
amount of work that can overlap the barrier’s idle time.

7.3 Future work

All of the experiments in Chapter 5 were carried out on a fairly typical PC cluster,
composed of commodity PCs and stock high-speed networks (Table 5.1 on page 60).
It would be reasonable, however, to try to repeat the same set of experiments on
a different platform, in order to demonstrate that the unresponsiveness-tolerating
techniques described in this dissertation are robust both to node configuration and
to network type and speed. Once that is demonstrated, the next study would log-
ically be to investigate the effect of node/network heterogeneity on performance,
both with and without unresponsiveness tolerance. Nonblocking barriers are de-
signed to tolerate short-term unresponsiveness, such as a process being temporarily
descheduled; it would be instructive to examine their effect when there is long-term
unresponsiveness, such as a few nodes being slower than the rest.

Nonblocking barriers—as well as flat trees and adaptive message scheduling—
are compatible with coordinated thread scheduling, load balancing, the
application/runtime-system techniques described in Section 6.5, and other forms
of unresponsiveness tolerance. However, it is an open question which of those are

120

complemented by nonblocking barriers, which are hurt, and which are unaffected.
An area for future study would be to determine the combination of techniques to
use to achieve the greatest increase in performance.

As stated on the previous page, there are a number of reasons why legacy
applications may not be able to fully exploit nonblocking barriers. However, fu-
ture work can involve restructuring legacy applications, writing new applications
from scratch, or porting applications from other communication models, such as a
release-consistent shared memory model (Section 4.4). Once a set of applications
has been assembled, the first additional study would be to repeat the experiments
from Sections 5.3 and 5.4 with the new applications. This would quantify the range
of performance improvement that can be achieved by tolerating unresponsiveness.
The next additional study would be to examine the performance of workloads con-
sisting of various sets of applications. The goal of such a study would be to examine
throughput and fairness both with and without unresponsiveness tolerance and in
comparison to other unresponsiveness-tolerating techniques, such as coordinated
thread scheduling.

Section 5.3.2 showed how nonblocking barriers enable the less-loaded processes
in a load-imbalanced kernel (prefix scan) to leave the barrier early, so that they can
proceed with useful work. However, enabling the less-loaded processes to leave
early may exacerbate the load imbalance. Future work could include examining
the impact that this has on the rest of a larger computation, to verify that the per-
formance gained from nonblocking barriers does not lead to a greater performance
loss elsewhere in the application.

In Section 4.5.2, this dissertation described how one could implement nonblock-
ing barriers in hardware. The natural next step would be to build a simulator
for dedicated nonblocking-barrier hardware and to evalute the performance im-
provement over the current, software-only implementation. As an intermediate
step, one could implement nonblocking barriers in firmware and examine how a
firmware implementation compares to the software and hardware implementations
in terms of cost, performance, and flexibility. This analysis would lead to an un-
derstanding of the costs and tradeoffs involved in tolerating unresponsiveness in
various parts of the system. It would also show how much of the overhead due to
unresponsiveness-tolerance can be decoupled from a process’ execution.

Finally, this dissertation proposed one new mechanism for tolerating unrespon-
siveness (two, if adaptive message scheduling is included). Future research would
be to investigate alternatives, such as the explicit unresponsiveness detection pro-
posed in Section 4.6.2, or additional techniques. A possible approach would be to
examine each collective-communication operation in turn and find a way to toler-
ate unresponsiveness involving that operation. Ideally, these individual techniques

121

could then be generalized into a single new mechanism for tolerating unresponsive-
ness.

7.4 Perspective

After examining the behavior of parallel programs running on workstation clusters
and measuring their performance with and without unresponsiveness-tolerating
mechanisms installed, it appears that the basic premise of this dissertation holds
true:

• Unresponsiveness is present in workstation clusters.

• Unresponsiveness noticeably hurts performance.

• Unresponsiveness can be tolerated at the endpoints (nodes).

• Tolerating unresponsiveness can significantly improve performance.

7.4.1 Problem importance

Although it is convenient to think of a PC cluster as being essentially identical to
a parallel supercomputer, this dissertation proposes that there is a key distinction:
endpoint unresponsiveness. The same commodity components that simplify the
cluster constructor’s task also introduce unresponsiveness into the system, detract-
ing from application performance. Empirically, when running an 16-process radix
sort on an otherwise-idle cluster, unresponsiveness induced by the operating sys-
tem and node hardware adds 8.4% to the execution time when blocking notification
is used and 18.9% when polling notification is used (Section 5.2.2). These are both
fairly substantial percentages and indicate that unresponsiveness is indeed a prob-
lem for PC clusters.

Of even more importance, the magnitude of the problem increases with cluster
size. As Section 5.2.1 argued analytically, an increase in cluster size and/or compu-
tation granularity leads to an increase in the likelihood that a barrier will be delayed
by an unresponsive peer. The model predicting the fraction of slow barriers (Equa-
tion 5.1, page 72) shows that even in a PC cluster running only a single program, un-
responsiveness is present and affects the performance of collective-communication
operations. The model indicates that the National Center for Supercomputing Ap-
plications’ 1024-processor cluster could be expected to see at least 99.9% slow bar-
riers, where “slow” means more than one standard deviation slower than in the
responsive case. Sections 5.2.1 and 5.4.2 provide measurement data which confirms
that the more processes are involved in a cluster application, the greater the penalty

122

caused by unresponsiveness. On a 16-process run, so much performance is lost to
unresponsiveness that, in some circumstances, it is better to use only 8 processes,
but tolerate unresponsiveness, than to use 16 processes and not tolerate unrespon-
siveness (Section 5.4.2). This is an important point, because it indicates that the per-
formance lost to unresponsiveness cannot be regained simply by throwing money
and hardware at the problem. Rather, the existing resources need to be used more
intelligently—using nonblocking barriers.

7.4.2 Advantages of nonblocking barriers

There are a number of advantages to using nonblocking barriers to tolerate unre-
sponsiveness:

• They honor all the constraints presented in Section 3.3. Most notably, they
require no modifications to users’ applications.

• They can improve performance significantly (Sections 5.3 and 5.4).

• Their resource requirements are such that they can be implemented in either
software (Section 4.2) or hardware (Section 4.5.2).

• They are not limited to a particular form of unresponsiveness, such as load
imbalance or uncoordinated scheduling. Rather, they can tolerate any of the
forms of unresponsiveness listed on page 5.

• They can be used alongside other unresponsiveness-tolerating mechanisms,
such as coordinated scheduling, load balancing, or the simple mechanisms
described in Section 5.4.1, flat trees and adaptive message scheduling.

While nonblocking barriers improve performance more than either flat commu-
nication trees or adaptive message scheduling, each unresponsiveness-tolerating
technique does improve performance. Flat trees are the “low-hanging fruit;” they
are easy to implement, yet they can give a moderate performance boost, at least on a
cluster small enough that the point-to-point communication overhead is dominated
by the time lost to unresponsiveness; on a larger cluster, flat trees could be expected
to hurt performance. When radix sort is run with one competitor on each node, flat
trees improve performance over the baseline by 7.4% (polling) to 9.1% (blocking).
The other simple mechanism, adaptive message scheduling, exploits the ordering
flexibility in an all-to-all communication pattern to tolerate unresponsiveness. It
shares the same insight as dynamic coscheduling [95, 96], namely, that message re-
ception is a good indicator that the sender is responsive. When radix sort is run with
one competitor on each node, adaptive message scheduling improves performance
over the baseline by an additional 3.0% (polling notification).

123

7.4.3 Applicability

While Chapter 5 showed that much performance can be regained by tolerating unre-
sponsiveness, the techniques described in this dissertation will not improve perfor-
mance for every collective-communication-intensive application, but only for a par-
ticular subset. Applications that can expect to see the greatest performance gains
are those in which multiple collective-communication operations proceed concur-
rently and those that rely more on fan-out operations, such as multicasts, than fan-in
operations, such as reductions (Section 4.4.3). The intuition is that unresponsive-
ness tolerance is similar in applicability to multithreading; if there is other work to
overlap with a blocked thread (respectively, other work to overlap with a blocked
collective-communication operation), then multithreading (respectively, unrespon-
siveness tolerance) should be able to improve performance by increasing through-
put. Nonblocking barriers are unlikely to improve performance for the following
types of applications:

1. Applications that are too fine-grained and therefore contain implicit message
dependencies due to flow control, and

2. Applications that block on message reception immediately after a bar-
rier or other collective-communication operation (e.g., applications with a
send. . . barrier. . . receive. . . compute structure).

Because of the former restriction, naive ports of SIMD applications are unlikely to
see much performance improvement (Section 5.3.1). And because of the latter re-
striction, applications that use barriers as a fencing operation will be unlikely to see
much performance improvement (Section 4.4). Of course, unresponsiveness toler-
ance will also be ineffective on applications and workloads in which there is little
unresponsiveness in the system to begin with, or in which collective communication
is not on the critical path.

7.4.4 Notification mechanism

One result encountered repeatedly in the course of this disseration concerns the
different behavior of blocking versus polling notification for point-to-point mes-
sages. Because VIA supports both mechanisms [24], it is instructive to comment
on the tradeoffs in the context of unresponsiveness tolerance. In a system support-
ing user-level communication, polling takes little time per invocation—usually only
the time needed for a few memory reads—but wastes CPU time on each poll. Block-
ing, in contrast, defers to the operating system, which is a comparatively expen-
sive operation, but uses no CPU time while the process awaits a message. In short,

124

polling gives the process better response time, while blocking gives the system bet-
ter throughput.

Traditional wisdom dictates that polling be used when communication is fre-
quent and blocking when communication is infrequent.2 The problem that occurs
when this traditional wisdom is applied to a PC cluster is that it assumes that each
user has the good of all users at heart. However, in a PC cluster running multiple
processes on each node and relying on collective communication, it would be ben-
eficial for a (selfish) process to block only if it knew a priori that another process in
the same application would receive the CPU. Otherwise, a competitor will get to
run on that node. While that may increase overall system throughput, it will al-
most certainly decrease the blocking application’s response time, because it stalls
any collective-communication operations that the blocking application attempts to
perform. Hence, the unresponsiveness-tolerating techniques presented in this dis-
sertation, nonblocking barriers plus flat trees and adaptive message scheduling, are
ideal for PC clusters and collective communication, because these techniques enable
processes to hoard the CPU as much as they are able, by using polling notification,
yet tolerate the case in which a peer is not coscheduled, which is normally one of
the benefits of blocking notification.

7.5 Contributions

The following are the three main contributions of my thesis research:

1. A demonstration that unresponsiveness is a problem in PC clusters,

2. The introduction of nonblocking barriers, a new mechanism for tolerating un-
responsiveness, and

3. A characterization and evaluation of nonblocking barriers’ performance.

While it is widely known that adding load to a system will decrease perfor-
mance, my research additionally shows that a cluster running a single application
and nothing else still does not perform at peak efficiency. The same features that
make PC clusters an attractive computing platform—low cost, availability of com-
modity components, and interoperability of hardware and software from different
vendors—also introduce unresponsiveness and degrade performance from what the
cluster would otherwise be capable of observing. When applications rely on collec-
tive communication, their performance becomes hypersensitive to unresponsive-
ness. My research shows that a single competitor per node can introduce enough

2A number of research projects advocate polling for an initial period of time and then blocking if
the polling was unsuccessful [30, 36, 72, 95, e.g.].

125

unresponsiveness to make a 16 process application run 20 times as slow as it would
on a responsive system, versus the optimum for the single-competitor case of only
2 times as slow. As cluster size increases, the performance lost to unresponsiveness
increases, as well. With large clusters starting to become commonplace, the first
contribution of my thesis work is to bring unresponsiveness in PC clusters to light
as an increasingly important problem and one that needs to be dealt with if clusters
are to achieve their full potential as a high-performance computing platform.

To reduce the performance lost to unresponsiveness, I created a new mecha-
nism for tolerating unresponsiveness: nonblocking barriers. The key idea behind
nonblocking barriers is that they distinguish barrier termination from barrier com-
pletion. That is, a process is permitted to exit a barrier before all the participating
processes have synchronized. However, to ensure correctness, the process is not al-
lowed to deliver messages sent after the barrier in logical time. The insight is that
that restriction maintains the correct sequencing of communication operations in the
absence of hidden channels. The benefits of nonblocking barriers are the following:

• They require no modifications to the users’ applications.

• They can be implemented in either hardware or software.

• They are not tied to a particular point-to-point notification mechanism (either
blocking or polling).

• They can be used in conjunction with other unresponsiveness-tolerating tech-
niques to provide even greater unresponsiveness tolerance.

While nonblocking barriers comprise the second contribution of my thesis work,
their evaluation marks the third. By running a variety of experiments, I showed
that nonblocking barriers can tolerate unresponsiveness caused by internal conten-
tion for the CPU, external contention for the CPU, load imbalance, and even the
short-term unresponsiveness caused when operating system services awake and
perform brief tasks. I quantified nonblocking-barrier performance when used with
each of blocking and polling notification, defining the space in which each outper-
forms the other and verifying that nonblocking barriers improve performance in
both cases. I demonstrated that nonblocking barriers can be used in conjunction
with other unresponsiveness-tolerating techniques and complement them to further
improve application performance. And I presented experimental data that shows
how the performance gain from nonblocking barriers increases with cluster size.

The overall message of my thesis work is that unresponsiveness is the dark
side of cluster computing, causing performance loss and reducing system effi-
ciency. To date, unresponsiveness has largely been ignored in the context of clus-
ters, as only recently have organizations begun installing large clusters intended for

126

high-performance computing. As cluster size increases, so does the performance
lost to unresponsiveness. My thesis identifies unresponsiveness as an important,
new problem to solve and demonstrates that nonblocking barriers are a viable solu-
tion.

Throughout this article we’ve made imprecise statements and
statements that ought to have had all sorts of qualifications and
reservations attached to them; and some of our statements may be
flatly false. Lack of sufficient information and the need for brevity
made it impossible for us to fomulate our assertions more precisely
or add all the necessary qualifications. And of course in a discussion
of this kind one must rely heavily on intuitive judgment, and that
can sometimes be wrong. So we don’t claim that this article
expresses more than a crude approximation to the truth.

Theodore Kaczynski
THE UNABOMBER MANIFESTO, 1995

127

References

[1] Aberdeen Group, Inc., Boston, Massachusetts. Giganet: Building a Scalable In-
ternet Infrastructure with Windows NT and Linux, 1999. Available from http://

www.giganet.com/technology/whitepapers lookup.asp?id=5.

[2] Tilak Agerwala, Joanne L. Martin, Jamshed H. Mirza, David C. Sadler,
Daniel M. Dias, and Mark Snir. SP2 system architecture. IBM Systems Journal,
34(2):152–184, 1995. Available from http://www.research.ibm.com/journal/
sj/agerw/agerw.html.

[3] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M.
Levy. Scheduler activations: Effective kernel support for the user-level man-
agement of parallelism. ACM Transactions on Computer Systems, 10(1):53–
79, February 1992. Available from http://www.cs.berkeley.edu/~brewer/
cs262/Scheduler.pdf.

[4] S. Armstrong, A. Freier, and K. Marzullo. Multicast transport protocol. RFC
1301, Internet Engineering Task Force, February 1992. Available from http://

www.rfc-editor.org/rfc/rfc1301.txt.

[5] Andrea C. Arpaci-Dusseau, David E. Culler, and Alan M. Mainwaring.
Scheduling with implicit information in distributed systems. In Proceedings of
the SIGMETRICS ’98/PERFORMANCE ’98 Joint Conference on the Measurement
and Modeling of Computer Systems, Madison, Wisconsin, June 1998. Available
from http://now.cs.berkeley.edu/Implicit/sig98.ps.

[6] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo,
and Maurice Yarrow. The NAS Parallel Benchmarks 2.0. Technical Report
NAS-95-020, Numerical Aerodynamic Simulation Facility, NASA Ames Re-
search Center, December 1995. Available from http://www.nas.nasa.gov/
NAS/NPB/Specs/npb2 report.ps.

[7] Vasanth Bala, Jehoshua Bruck, Robert Cypher, Pablo Elustondo, Alex Ho,
Ching-Tien Ho, Shlomo Kipnis, and Marc Snir. CCL: A portable and tun-
able collective communication library for scalable parallel computers. IEEE
Transactions on Parallel and Distributed Systems, 6(1):154–164, February 1995.
Available from http://www.cs.jhu.edu/~cypher/pubs/ccl.ps.

128

http://www.giganet.com/technology/whitepapers_lookup.asp?id=5
http://www.giganet.com/technology/whitepapers_lookup.asp?id=5
http://www.research.ibm.com/journal/sj/agerw/agerw.html
http://www.research.ibm.com/journal/sj/agerw/agerw.html
http://www.cs.berkeley.edu/~brewer/cs262/Scheduler.pdf
http://www.cs.berkeley.edu/~brewer/cs262/Scheduler.pdf
http://www.rfc-editor.org/rfc/rfc1301.txt
http://www.rfc-editor.org/rfc/rfc1301.txt
http://now.cs.berkeley.edu/Implicit/sig98.ps
http://www.nas.nasa.gov/NAS/NPB/Specs/npb2_report.ps
http://www.nas.nasa.gov/NAS/NPB/Specs/npb2_report.ps
http://www.cs.jhu.edu/~cypher/pubs/ccl.ps

[8] Amotz Bar-Noy and Shlomo Kipnis. Designing broadcasting algorithms in
the postal model for message-passing systems. Mathematical Systems Theory,
27(5):431–452, 1994.

[9] Ray Barriuso and Allan Knies. SHMEM User’s Guide. Cray Research, Inc.,
May 18, 1994.

[10] Massimo Bernaschi and Giulio Iannello. Collective communication opera-
tions: Experimental results vs. theory. Concurrency: Practice and Experience,
10(5):359–386, April 1998. Available from ftp://www.grid.unina.it/pub/
Papers/iannello/ps-files/ours-art/cc-exp.ps.

[11] Raoul A. F. Bhoedjang, Tim Rühl, and Henri E. Bal. Efficient multicast
on myrinet using link-level flow control. In Proceedings of the 1998 In-
ternational Conference on Parallel Processing, Minneapolis, Minnesota, Au-
gust 1998. Available from ftp://ftp.cs.vu.nl/pub/amoeba/orca papers/

multicast98.ps.gz.

[12] Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Systems, 9(3):272–314,
August 1991.

[13] Kenneth P. Birman, Robert Cooper, and Barry Gleeson. Design alternatives
for process group membership and multicast. Technical Report TR91-1257,
Cornell University, Computer Science, December 1991.

[14] T. Blackwell, K. Chan, K. Chang, T. Charuhas, B. Karp, H. T. Kung, D. Lin,
R. Morris, M. Seltzer, M. Smith, C. Young, O. Bahgat, M. Chaar, A. Chap-
man, G. Depelteau, K. Grimble, S. Huang, P. Hung, M. Kemp, I. Mahna,
J. McLaughlin, T. Ng, J. Vincent, and J. Watchorn. An experimental flow-
controlled multicast ATM switch. In Proceedings of the First Annual Conference
on Telecommunications R&D in Massachussetts, October 1995. Available from
http://www.eecs.harvard.edu/~rtm/mtc-sw.ps.

[15] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and reliable parallel com-
puting on networks of workstations. In Proceedings of the USENIX 1997 An-
nual Technical Symposium, Anaheim, California, January 6–10, 1997. Available
from http://www.cs.utexas.edu/users/rdb/papers/USENIX97/cnow.html or
ftp://theory.lcs.mit.edu/pub/cilk/USENIX97.ps.gz.

[16] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet—a gigabit-per-

129

ftp://www.grid.unina.it/pub/Papers/iannello/ps-files/ours-art/cc-exp.ps
ftp://www.grid.unina.it/pub/Papers/iannello/ps-files/ours-art/cc-exp.ps
ftp://ftp.cs.vu.nl/pub/amoeba/orca_papers/multicast98.ps.gz
ftp://ftp.cs.vu.nl/pub/amoeba/orca_papers/multicast98.ps.gz
http://www.eecs.harvard.edu/~rtm/mtc-sw.ps
http://www.cs.utexas.edu/users/rdb/papers/USENIX97/cnow.html
ftp://theory.lcs.mit.edu/pub/cilk/USENIX97.ps.gz

second local-area network. IEEE Micro, 15(1):29–36, February 1995. Available
from http://www.myri.com/research/publications/Hot.ps.

[17] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas:
New techniques for congestion detection and avoidance. In Proceedings of the
SIGCOMM ’94 Symposium, pages 24–35, August 1994. Available from ftp://

ftp.cs.arizona.edu/xkernel/Papers/vegas.ps.

[18] Eric A. Brewer and Bradley C. Kuszmaul. How to get good performance
from the CM-5 data network. In Proceedings of the International Parallel Process-
ing Symposium, pages 858–867, Cancun, Mexico, April 1994. Available from
ftp://ftp.lcs.mit.edu/pub/supertech/papers/IPPS94-bandwidth.ps.Z.

[19] Robert K. Brunner and Laxmikant V. Kalé. Handling application-induced load
imbalance using parallel objects. Technical Report 99-03, Parallel Program-
ming Laboratory, Department of Computer Science, University of Illinois at
Urbana-Champaign, May 1999. Available from http://charm.cs.uiuc.edu/
papers/AppBalancerSC99.ps.

[20] Jo-Mei Chang and N. F. Maxemchuk. Reliable broadcast protocols. ACM
Transactions on Computer Systems, 2(3):251–273, August 1984.

[21] Andrew Chien, Scott Pakin, Mario Lauria, Matt Buchanan, Kay Hane,
Louis Giannini, and Jane Prusakova. High performance virtual machines
(HPVM): Clusters with supercomputing APIs and performance. In Pro-
ceedings of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, Minnesota, March 1997. Available from http://

www-csag.ucsd.edu/papers/hpvm-siam97.ps.

[22] Andrew A. Chien, Mario Lauria, Rob Pennington, Mike Showerman, Giulio
Iannello, Matt Buchanan, Kay Connelly, Louis Giannini, Greg Koenig, Sudha
Krishnamurthy, Qian Liu, Scott Pakin, and Geetanjali Sampemane. Design
and evaluation of an HPVM-based Windows NT supercomputer. Interna-
tional Journal of High Performance Computing Applications, 13(3):201–219, Fall
1999. Special issue on clusters and computational grids for scientific com-
puting. Available from http://www-csag.ucsd.edu/papers/csag/external/
bbfarm.ps.

[23] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An analy-
sis of TCP processing overhead. IEEE Communications Magazine, 27(6):23–29,
June 1989.

130

http://www.myri.com/research/publications/Hot.ps
ftp://ftp.cs.arizona.edu/xkernel/Papers/vegas.ps
ftp://ftp.cs.arizona.edu/xkernel/Papers/vegas.ps
ftp://ftp.lcs.mit.edu/pub/supertech/papers/IPPS94-bandwidth.ps.Z
http://charm.cs.uiuc.edu/papers/AppBalancerSC99.ps
http://charm.cs.uiuc.edu/papers/AppBalancerSC99.ps
http://www-csag.ucsd.edu/papers/hpvm-siam97.ps
http://www-csag.ucsd.edu/papers/hpvm-siam97.ps
http://www-csag.ucsd.edu/papers/csag/external/bbfarm.ps
http://www-csag.ucsd.edu/papers/csag/external/bbfarm.ps

[24] Compaq Computer Corp., Intel Corp., and Microsoft Corp. Virtual Inter-
face Architecture Specification, December 16, 1997. Available from http://

www.viarch.org/html/Spec/vi specification version 10.htm.

[25] Compaq High Performance Technical Computing Group. U.S. DOE selects
Compaq to build ASCI Q. High Performance Technical Computing News, 17,
September/October 2000. Available from http://www6.compaq.com/hpc/tsn/
iss017/hptc iss017 fa.html.

[26] Margaret Corbit. Windows NT-based cluster in full production at CTC. Press
release, Cornell Theory Center, Ithaca, New York, March 6, 2000. Available
from http://www.tc.cornell.edu/news/releases/2000/production.asp.

[27] Cray Research, Inc., Eagan, MN. Cray T3D System Architecture Overview,
March 1993.

[28] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.
LogP: Towards a realistic model of parallel computation. In Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 1–12, San Diego, California, May 19–22, 1993. Available
from http://www.cs.berkeley.edu/~culler/papers/logp.ps.

[29] Helen Custer. Inside Windows NT. Microsoft Press, Redmond, Washington,
1993.

[30] Stefanos N. Damianakis, Yuqun Chen, and Edward W. Felten. Reducing
waiting costs in user-level communication. In Proceedings of the 11th In-
ternational Parallel Processing Symposium (IPPS ’97), pages 381–387, Geneva,
Switzerland, April 1–5, 1997. Available from http://www.cs.princeton.edu/
shrimp/Papers/ipps97ULC.ps.

[31] Steve Deering. Host extensions for IP multicasting. RFC 1112, Internet En-
gineering Task Force, August 1989. Available from ftp://ds.internic.net/
rfc/rfc1112.txt.

[32] H. G. Dietz, T. M. Chung, and T. I. Mattox. A parallel processing support
library based on synchronized aggregate communication. In Languages and
Compilers for Parallel Machines, 8th Annual Workshop (LCPC ’95), Columbus,
Ohio, August 10–12, 1995. Available from http://garage.ecn.purdue.edu/
~papers/LCPC95/paper.html or http://garage.ecn.purdue.edu/~papers/
LCPC95/standard.ps.Z. Published in Lecture Notes in Computer Science, vol-
ume 1033, pages 254–268, 1996.

131

http://www.viarch.org/html/Spec/vi_specification_version_10.htm
http://www.viarch.org/html/Spec/vi_specification_version_10.htm
http://www6.compaq.com/hpc/tsn/iss017/hptc_iss017_fa.html
http://www6.compaq.com/hpc/tsn/iss017/hptc_iss017_fa.html
http://www.tc.cornell.edu/news/releases/2000/production.asp
http://www.cs.berkeley.edu/~culler/papers/logp.ps
http://www.cs.princeton.edu/shrimp/Papers/ipps97ULC.ps
http://www.cs.princeton.edu/shrimp/Papers/ipps97ULC.ps
ftp://ds.internic.net/rfc/rfc1112.txt
ftp://ds.internic.net/rfc/rfc1112.txt
http://garage.ecn.purdue.edu/~papers/LCPC95/paper.html
http://garage.ecn.purdue.edu/~papers/LCPC95/paper.html
http://garage.ecn.purdue.edu/~papers/LCPC95/standard.ps.Z
http://garage.ecn.purdue.edu/~papers/LCPC95/standard.ps.Z

[33] Peter Druschel and Larry L. Peterson. Fbufs: A high-bandwidth cross-
domain transfer facility. In Proceedings of the Fourteenth ACM Symposium on
Operating Systems Principles (SOSP), pages 189–202, Asheville, North Car-
olina, December 1993. ACM SIGOPS, ACM Press. Available from ftp://

ftp.cs.arizona.edu/xkernel/Papers/fbuf.ps.

[34] Cezary Dubnicki, Angelos Bilas, Yuqun Chen, Stefanos Damianakis, and Kai
Li. VMMC-2: efficient support for reliable, connection-oriented commnica-
tion. In Proceedings of Hot Interconnects V. IEEE, August 1997. Available from
http://www.cs.princeton.edu/shrimp/Papers/hotIC97VMMC2.ps.

[35] Dave Dunning, Greg Regnier, Gary McAlpine, Don Cameron, Bill Shubert,
Frank Berry, Anne Marie Merritt, Ed Gronke, and Chris Dodd. The Virtual In-
terface Architecture: A protected, zero copy, user-level interface to networks.
IEEE Micro, 18(2), March/April 1998.

[36] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. Effective dis-
tributed scheduling of parallel workloads. In ACM SIGMETRICS ’96 Con-
ference on the Measurement and Modeling of Computer Systems, pages 25–
36, 1996. Available from http://www.cs.berkeley.edu/~dusseau/Papers/
sigmetrics96.ps.

[37] Marco Fillo and Richard B. Gillett. Architecture and implementa-
tion of memory channel 2. Digital Technical Journal, 9(1), 1997.
Available from http://www.digital.com/DTJP03/DTJP03HM.HTM or http://

www.digital.com/DTJP03/DTJP03PF.PDF.

[38] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia
Zhang. A reliable multicast framework for light-weight sessions and applica-
tion level framing. In Proceedings of ACM SIGCOMM ’95, Boston, MA, Septem-
ber 1995. Available from ftp://ftp.ee.lbl.gov/papers/srml.ps.Z.

[39] M. J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901–1909, 1966.

[40] FORE Systems, Inc. ForeRunner ASX-4000, 7/98 edition, July 1998. Available
from http://www.fore.com/products/swtch/asx4000.html.

[41] G. A. Geist and V. S. Sunderam. Network based concurrent computing on the
PVM system. Journal of Concurrency: Practice and Experience, 4(4):293–311, June
1992. Available from http://www.netlib.org/ncwn/nbccpvm.ps.

[42] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory consistency and event ordering

132

ftp://ftp.cs.arizona.edu/xkernel/Papers/fbuf.ps
ftp://ftp.cs.arizona.edu/xkernel/Papers/fbuf.ps
http://www.cs.princeton.edu/shrimp/Papers/hotIC97VMMC2.ps
http://www.cs.berkeley.edu/~dusseau/Papers/sigmetrics96.ps
http://www.cs.berkeley.edu/~dusseau/Papers/sigmetrics96.ps
http://www.digital.com/DTJP03/DTJP03HM.HTM
http://www.digital.com/DTJP03/DTJP03PF.PDF
http://www.digital.com/DTJP03/DTJP03PF.PDF
ftp://ftp.ee.lbl.gov/papers/srml.ps.Z
http://www.fore.com/products/swtch/asx4000.html
http://www.netlib.org/ncwn/nbccpvm.ps

in scalable shared-memory multiprocessors. In Proceedings of the 17th Inter-
national Symposium on Computer Architecture (ISCA ’90), pages 15–26, Seattle,
Washington, May 1990. Available from ftp://www-flash.stanford.edu/pub/
flash/ISCA90.ps.Z.

[43] Karen Green and Lisa Lanspery. IBM and NCSA create world’s
fastest Linux supercomputers in academia. Access Magazine, Jan-
uary 16, 2001. Available from http://access.ncsa.uiuc.edu/Headlines/
01Headlines/010116.IBM.html.

[44] William Gropp, Ewing Lusk, and Anthony Skjelum. Using MPI. MIT Press,
Cambridge, Massachusetts and London, England, third edition, 1994. ISBN 0-
262-57104-8.

[45] Rajiv Gupta. The fuzzy barrier: A mechanism for high speed synchronization
of processors. In Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS III), pages
54–63, Boston, Massachusetts, April 3–6, 1989. ACM Press.

[46] Danny Hillis. The Connection Machine. MIT Press, Cambridge, Massachusetts,
1985.

[47] W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Com-
munications of the ACM, 29(12):1170–1183, December 1986. Available
from http://www.acm.org/pubs/articles/journals/cacm/1986-29-12/
p1170-hillis/p1170-hillis.pdf.

[48] Marl Homewood and Moray McLaren. Meiko CS-2 interconnect Elan – Elite
design. In Proceedings of the IEEE Hot Interconnects Symposium, August 1993.

[49] Y. Huang, C. C. Huang, and P. K. McKinley. Multicast virtual topolo-
gies for collective communication in MPCs and ATM clusters. In Proceed-
ings of Supercomputing ’95, San Diego, California, December 1995. Avail-
able from http://www.supercomp.org/sc95/proceedings/435 HUAN/SC95.PS
or http://www.supercomp.org/sc95/proceedings/435 HUAN/SC95.PDF.

[50] International Business Machines Corp., Poughkeepsie, New York. IBM Paral-
lel Environment for AIX, MPL Programming and Subroutine Reference, Version 2,
Release 1, first edition, August 1995. Document Number GC23-3893-00. Avail-
able from http://sp.unige.ch/doc/IBM/PE/pe mpl subref.ps.Z.

[51] Hiroaki Ishihata, Takeshi Horie, Satoshi Inano, Toshiyuki Shimizu, and Sa-
dayuki Kato. An architecture of highly parallel computer AP1000. In

133

ftp://www-flash.stanford.edu/pub/flash/ISCA90.ps.Z
ftp://www-flash.stanford.edu/pub/flash/ISCA90.ps.Z
http://access.ncsa.uiuc.edu/Headlines/01Headlines/010116.IBM.html
http://access.ncsa.uiuc.edu/Headlines/01Headlines/010116.IBM.html
http://www.acm.org/pubs/articles/journals/cacm/1986-29-12/p1170-hillis/p1170-hillis.pdf
http://www.acm.org/pubs/articles/journals/cacm/1986-29-12/p1170-hillis/p1170-hillis.pdf
http://www.supercomp.org/sc95/proceedings/435_HUAN/SC95.PS
http://www.supercomp.org/sc95/proceedings/435_HUAN/SC95.PDF
http://sp.unige.ch/doc/IBM/PE/pe_mpl_subref.ps.Z

Proceedings of the IEEE Pacific Rim Conference on Communications, Computers,
and Signal Processing, pages 13–16, May 9–10, 1991. Available from ftp://

fcapwide.fujitsu.co.jp/ap1000/english/rim/rim 91.ps.Z.

[52] ISO/IEC. Information Technology–Programming Languages–Fortran–Part 1: Base
Language, December 1997. ISO/IEC 1539-1:1997.

[53] Harry F. Jordan. A special purpose architecture for finite element analysis. In
G. Jack Lipovski, editor, Proceedings of the 1978 International Conference on Paral-
lel Processing (ICPP ’78), pages 263–266. IEEE Computer Society, August 22–25,
1978.

[54] L. V. Kalé and A. Gursoy. Performance benefits of message driven execution.
In Proceedings of the Intel Supercomputer Users’ Group 1993 Annual North Amer-
ica Users’ Conference, St. Louis, Missouri, October 3–6 1993. Available from
http://charm.cs.uiuc.edu/papers/MessageDrivenISUG93.ps.

[55] L. V. Kalé and Sanjeev Krishnan. Charm++: Parallel programming with
message-driven objects. In Gregory V. Wilson and Paul Lu, editors, Parallel
Programming using C++, pages 175–213. MIT Press, 1996.

[56] Laxmikant V. Kalé, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan,
and Joshua M. Yelon. Converse: an interoperable framework for parallel pro-
gramming. In Proceedings of the International Parallel Processing Symposium,
pages 212–217, 1996. Available from http://charm.cs.uiuc.edu/papers/
converse-ipps96.ps.

[57] Vijay Karamcheti and Andrew A. Chien. A comparison of architectural sup-
port for messaging on the TMC CM-5 and the Cray T3D. In Proceedings of
the 22nd Annual International Symposium on Computer Architecture (ISCA ’95),
pages 298–307, Santa Margherita Ligure, Italy, June 1995. Available from
http://www-csag.ucsd.edu/papers/cm5-t3d-messaging.ps.

[58] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul
A. F. Bhoedjang. MAGPIE: MPI’s collective communication operations for
clustered wide area systems. In Proceedings of the 1999 Symposium on Principles
and Practice of Parallel Programming (PPoPP ’99), Atlanta, Georgia, May 4–6,
1999. Available from http://www.cs.vu.nl/~kielmann/magpie ppopp.ps.gz.

[59] Allan D. Knies, F. Ray Barriuso, William J. Harrod, and George B. Adams III.
SLICC: A low latency interface for collective communication. In Proceedings of
Supercomputing ’94, pages 89–96, Washington, DC, November 1994. Available
from http://www.computer.org/conferen/sc94/knies.ps.

134

ftp://fcapwide.fujitsu.co.jp/ap1000/english/rim/rim_91.ps.Z
ftp://fcapwide.fujitsu.co.jp/ap1000/english/rim/rim_91.ps.Z
http://charm.cs.uiuc.edu/papers/MessageDrivenISUG93.ps
http://charm.cs.uiuc.edu/papers/converse-ipps96.ps
http://charm.cs.uiuc.edu/papers/converse-ipps96.ps
http://www-csag.ucsd.edu/papers/cm5-t3d-messaging.ps
http://www.cs.vu.nl/~kielmann/magpie_ppopp.ps.gz
http://www.computer.org/conferen/sc94/knies.ps

[60] Alex Koifman and Stephen Zabele. RAMP: A reliable adaptive multicast pro-
tocol. In Proceedings of the Fifteenth Annual Joint Conference of the IEEE Computer
and Communications Societies, San Francisco, California, March 1996. Available
from http://www.tasc.com/simweb/papers/RAMP/ramp.htm.

[61] Leslie Lamport. Time, clocks, and the ordering of events in a distributed sys-
tem. Communications of the ACM, 21(7):558–565, July 1978.

[62] Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, C-28(9):690–691,
September 1979.

[63] Butler W. Lampson. Reliable messages and connection establish-
ment. In Sape Mullender, editor, Distributed Systems, chapter 10, pages
251–281. ACM Press, New York, 2nd edition, 1993. ISBN 0-201-
62427-3. Available from http://www.research.microsoft.com/~lampson/
47-ReliableMessages/Acrobat.pdf.

[64] Jim Laudon and Dan Lenoski. The SGI Origin: A ccNUMA highly scal-
able server. In Proceedings of the 24th International Symposium on Computer
Architecture (ISCA ’97), Denver, Colorado, June 2–4, 1997. Available from
http://www.sgi.com/Technology/Compcon/isca.pdf.

[65] Antoine Le Hyaric. Converting the NAS benchmarks from MPI to BSP.
In High Performance Computing and Networking (HPCN ’96) [BSP Birds of a
Feather session], Brussels, Belgium, April 17, 1996. Available from ftp://

ftp.comlab.ox.ac.uk/pub/Packages/BSP/NASfromMPItoBSP.tar.

[66] Samuel J. Leffler, Robert S. Fabry, and William N. Joy. A 4.2bsd interpro-
cess communication primer. Technical Report CSD-83-145, Computer Science
Division, Department of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley, Berkeley, California, July 27, 1983. Available
from http://sunsite.berkeley.edu/Dienst/UI/2.0/Describe/ncstrl.ucb/
CSD-83-145.

[67] Ulana Legedza and William E. Weihl. Reducing synchronization overhead in
parallel simulation. In Proceedings of the Tenth ACM/IEEE/SCS Workshop on Par-
allel and Distributed Simulation (PADS ’96), pages 86–95, Philadelphia, Pennsyl-
vania, May 22–24, 1996. Available from http://www.acm.org/pubs/articles/
proceedings/simulation/238788/p86-legedza/p86-legedza.pdf.

[68] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feyn-
man, Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C.

135

http://www.tasc.com/simweb/papers/RAMP/ramp.htm
http://www.research.microsoft.com/~lampson/47-ReliableMessages/Acrobat.pdf
http://www.research.microsoft.com/~lampson/47-ReliableMessages/Acrobat.pdf
http://www.sgi.com/Technology/Compcon/isca.pdf
ftp://ftp.comlab.ox.ac.uk/pub/Packages/BSP/NASfromMPItoBSP.tar
ftp://ftp.comlab.ox.ac.uk/pub/Packages/BSP/NASfromMPItoBSP.tar
http://sunsite.berkeley.edu/Dienst/UI/2.0/Describe/ncstrl.ucb/CSD-83-145
http://sunsite.berkeley.edu/Dienst/UI/2.0/Describe/ncstrl.ucb/CSD-83-145
http://www.acm.org/pubs/articles/proceedings/simulation/238788/p86-legedza/p86-legedza.pdf
http://www.acm.org/pubs/articles/proceedings/simulation/238788/p86-legedza/p86-legedza.pdf

Kuszmaul, Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-
Wen Yang, and Robert Zak. The network architecture of the Connection
Machine CM-5. Journal of Parallel and Distributed Computing, 33(2):145–158,
March 15, 1996. Available from ftp://theory.lcs.mit.edu/pub/people/
bradley/jpdc96.ps.Z.

[69] John C. Lin and Sanjoy Paul. RMTP: A reliable multicast transport protocol.
In Proceedings of IEEE INFOCOM ’96, pages 1414–1424, 1996. Available from
http://www.bell-labs.com/user/sanjoy/rmtp.ps.

[70] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the Association for Computing Machinery,
20(1):46–61, July 1973.

[71] Alan M. Mainwaring and David E. Culler. Active Messages: Organization
and applications programming interface. Technical report, Computer Science
Division, University of California at Berkeley, 1995. Available from http://

now.cs.berkeley.edu/Papers/Papers/am-spec.ps.

[72] Olivier Maquelin, Guang R. Gao, Herbert H. J. Hum, Kevin B. Theobald, and
Xin-Min Tian. Polling Watchdog: Combining polling and interrupts for effi-
cient message handling. In Proceedings of the 23rd Annual International Sympo-
sium on Computer Architecture (ISCA ’96), pages 179–188, Philadelphia, Penn-
sylvania, May 22–24, 1996. Available from ftp://ftp-acaps.cs.mcgill.ca/
pub/doc/papers/ISCA23.ps.gz.

[73] Message Passing Interface Forum. MPI: A Message Passing Interface Standard,
June 12 1995. Version 1.1. Available from http://www.mpi-forum.org/docs/
mpi-11.ps.Z.

[74] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switch-
ing for local computer networks. Communications of the Association for Comput-
ing Machinery, 19(7):395–404, July 1976. Available from http://www.acm.org/
classics/apr96/.

[75] Prasenjit Mitra, David G. Payne, Lance Shuler, Robert van de Geijn, and
Jerrell Watts. Fast collective communication libraries, please. In Proceed-
ings of the Intel Supercomputer User’s Group Meeting, 1995. Available from
http://www.cs.utexas.edu/users/rvdg/papers/icc vs other.ps.

[76] Todd Montgomery. A loss tolerant rate controller for reliable multi-
cast. Technical Report NASA-IVV-97-011, NASA Ames IV&V facility (Fair-

136

ftp://theory.lcs.mit.edu/pub/people/bradley/jpdc96.ps.Z
ftp://theory.lcs.mit.edu/pub/people/bradley/jpdc96.ps.Z
http://www.bell-labs.com/user/sanjoy/rmtp.ps
http://now.cs.berkeley.edu/Papers/Papers/am-spec.ps
http://now.cs.berkeley.edu/Papers/Papers/am-spec.ps
ftp://ftp-acaps.cs.mcgill.ca/pub/doc/papers/ISCA23.ps.gz
ftp://ftp-acaps.cs.mcgill.ca/pub/doc/papers/ISCA23.ps.gz
http://www.mpi-forum.org/docs/mpi-11.ps.Z
http://www.mpi-forum.org/docs/mpi-11.ps.Z
http://www.acm.org/classics/apr96/
http://www.acm.org/classics/apr96/
http://www.cs.utexas.edu/users/rvdg/papers/icc_vs_other.ps

mont, WV), August 1997. Available from http://www.cs.wvu.edu/~tmont/
ltrc-doc.ps.gz.

[77] David Mosberger. Memory consistency models. Technical Report TR 93/11,
Department of Computer Science, University of Arizona, 1993. Available from
ftp://ftp.cs.arizona.edu/reports/1993/TR93-11.ps.

[78] NCSA Communications Group Staff. High-performance supercomputing
at mail-order prices. Access, April 22, 1998. Available from http://

access.ncsa.uiuc.edu/CoverStories/SuperCluster/super.html.

[79] David M. Nicol. Noncommittal barrier synchronization. Parallel Comput-
ing, 21:529–549, 1995. Available from http://www.cs.dartmouth.edu/~nicol/
barrier/barrier.ps.

[80] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global
Arrays: A portable “shared-memory” programming model for distributed
memory computers. In Supercomputing ’94, 1994. Available from http://

www.computer.org/conferen/sc94/nieploch.html.

[81] Yu. Ofman. On the algorithmic complexity of discrete functions. Soviet Physics
Doklady, 7(7):589–591, January 1963. Translated from Doklady Akademii
Nauk SSSR, 145(1):48–51, July 1962.

[82] John K. Ousterhout. Scheduling techniques for concurrent systems. In Proceed-
ings of the 3rd International Conference on Distributed Computing Systems, pages
22–30, October 1982.

[83] Özalp Babaoğlu and Keith Marzullo. Consistent global states of distributed
systems: Fundamental concepts and mechanisms. In Sape Mullender, edi-
tor, Distributed Systems, chapter 4, pages 55–96. ACM Press, New York, 2nd
edition, 1993. ISBN 0-201-62427-3.

[84] Scott Pakin. VIA++. Local user’s manual for the VIA++ class library., Decem-
ber 1999.

[85] Scott Pakin, Vijay Karamcheti, and Andrew A. Chien. Fast Messages:
Efficient, portable communication for workstation clusters and MPPs.
IEEE Concurrency, 5(2):60–73, April-June 1997. Available from http://

www-csag.ucsd.edu/papers/fm-pdt.ps.

[86] Steven G. Parker and Christopher R. Johnson. SCIRun: A scientific pro-
gramming environment for computational steering. In Proceedings of the 1995

137

http://www.cs.wvu.edu/~tmont/ltrc-doc.ps.gz
http://www.cs.wvu.edu/~tmont/ltrc-doc.ps.gz
ftp://ftp.cs.arizona.edu/reports/1993/TR93-11.ps
http://access.ncsa.uiuc.edu/CoverStories/SuperCluster/super.html
http://access.ncsa.uiuc.edu/CoverStories/SuperCluster/super.html
http://www.cs.dartmouth.edu/~nicol/barrier/barrier.ps
http://www.cs.dartmouth.edu/~nicol/barrier/barrier.ps
http://www.computer.org/conferen/sc94/nieploch.html
http://www.computer.org/conferen/sc94/nieploch.html
http://www-csag.ucsd.edu/papers/fm-pdt.ps
http://www-csag.ucsd.edu/papers/fm-pdt.ps

ACM/IEEE Supercomputing Conference, San Diego, California, December 3–
8, 1995. Available from http://www.supercomp.org/sc95/proceedings/
499 SPAR/SC95.HTM.

[87] Craig Partridge. A faster UDP. IEEE/ACM Transactions on Networking,
1(4):429–440, August 1993.

[88] Jon Postel. User datagram protocol. RFC 768, Internet Engineering Task
Force, August 28, 1980. Available from http://www.rfc-editor.org/rfc/
rfc768.txt.

[89] Loic Prylli and Bernard Tourancheau. BIP: a new protocol designed for high
performance networking on Myrinet. In Proceedings of the PC-NOW ’98 In-
ternational Workshop on Personal Computer based Networks Of Workstations, Or-
lando, Florida, April 1998. Available from http://www-bip.univ-lyon1.fr/
PUBLICATIONS/pub/PT97pcnow.ps.gz.

[90] Daniel A. Reed, Christopher L. Elford, Tara M. Madhyastha, Evgenia Smirni,
and Stephen E. Lamm. The next frontier: Interactive and closed loop perfor-
mance steering. In Proceedings of the 1996 ICPP Workshop on Challenges for Par-
allel Processing, pages 20–31, Bloomington, Illinois, August 12, 1996. Available
from http://www-pablo.cs.uiuc.edu/Publications/Papers/ICPP96.ps.gz.

[91] David A. Rusling. The Linux kernel. Version 0.8-2. Available from http://

sunsite.unc.edu/LDP/LDP/tlk/tlk.html or ftp://sunsite.unc.edu/pub/
Linux/docs/linux-doc-project/linux-kernel/, April 1997.

[92] Michael Schneider. Phase one of the Pittsburgh Supercomputing Center teras-
cale system is operational. News release, Pittsburgh Supercomputing Cen-
ter, Pittsburgh, Pennsylvania, January 29, 2001. Available from http://

www.psc.edu/publicinfo/news/2001/tcs-01-29-01.html.

[93] Steven L. Scott. Synchronization and communication in the T3E multi-
processor. In Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VII), pages 26–36, Cambridge, Massachusetts, October 2–
4 1996. Available from http://reality.sgi.com/sls craypark/Papers/

asplos96.html.

[94] Tom Shanley and Don Anderson. PCI System Architecture. Addison-Wesley,
3rd edition, 1995. ISBN 0-201-40993-3.

[95] Patrick Sobalvarro, Scott Pakin, Andrew Chien, and William Weihl.
Dynamic coscheduling on workstation clusters. In 12th Annual In-
ternational Parallel Processing Symposium & 9th Symposium on Parallel

138

http://www.supercomp.org/sc95/proceedings/499_SPAR/SC95.HTM
http://www.supercomp.org/sc95/proceedings/499_SPAR/SC95.HTM
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www-bip.univ-lyon1.fr/PUBLICATIONS/pub/PT97pcnow.ps.gz
http://www-bip.univ-lyon1.fr/PUBLICATIONS/pub/PT97pcnow.ps.gz
http://www-pablo.cs.uiuc.edu/Publications/Papers/ICPP96.ps.gz
http://sunsite.unc.edu/LDP/LDP/tlk/tlk.html
http://sunsite.unc.edu/LDP/LDP/tlk/tlk.html
ftp://sunsite.unc.edu/pub/Linux/docs/linux-doc-project/linux-kernel/
ftp://sunsite.unc.edu/pub/Linux/docs/linux-doc-project/linux-kernel/
http://www.psc.edu/publicinfo/news/2001/tcs-01-29-01.html
http://www.psc.edu/publicinfo/news/2001/tcs-01-29-01.html
http://reality.sgi.com/sls_craypark/Papers/asplos96.html
http://reality.sgi.com/sls_craypark/Papers/asplos96.html

and Distributed Processing (IPPS/SPDP), 4th Workshop on Job Scheduling
Strategies for Parallel Processing, Orlando, Florida, March 1998. Avail-
able from http://www.research.digital.com/SRC/scheduling/papers/
pgs/nfmdcs.ps. Published in Lecture Notes in Computer Science, vol.
1459, pp. 231–256. Springer-Verlag. ISBN 3-540-64825-9. Available from
http://link.springer.de/link/service/series/0558/papers/1459/
14590231.pdf.

[96] Patrick Gregory Sobalvarro. Demand-based Coscheduling of Parallel Jobs on Mul-
tiprogrammed Multiprocessors. PhD thesis, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology, January
1997. Available from http://www.psg.lcs.mit.edu/~pgs/papers/thesis.ps.
Also appears as MIT Laboratory for Computer Science technical report
MIT-LCS-TR-710, available from http://www.lcs.mit.edu/doc repository/

MIT-LCS-TR-710.ps.

[97] Gary R. Stephens and Jan V. Dedek. Fibre Channel: The Basics. AN-
COT Corporation, Menlo Park, California, second edition, February 1997.
ISBN 0-9637439-3-Z.

[98] Sun Microsystems, Inc., Palo Alto, California. Better by Design—The Solaris™
Operating Environment, 1998. Available from http://www.sun.com/software/
white-papers/wp-solaris7.

[99] Hiroshi Tezuka, Atsushi Hori, Yutaka Ishikawa, and Mitsuhisa Sato. PM: An
operating system coordinated high performance communication library. In
Peter Sloot and Bob Hertzberger, editors, High Performance Computing and Net-
working, volume 1225 of Lecture Notes in Computer Science, pages 708–717.
Springer-Verlag, April 1997. Available from http://www.rwcp.or.jp/lab/
pdslab/papers/tezuka-hpcn97.ps.gz.

[100] Thinking Machines Corporation, Cambridge, MA. The Connection Machine
CM-5 Technical Summary, October 1991.

[101] Leslie G. Valiant. A bridging model for parallel computation. Com-
munications of the ACM, 33(8):103–111, August 1990. Available from
http://www.acm.org/pubs/articles/journals/cacm/1990-33-8/
p103-valiant/p103-valiant.pdf.

[102] Kees Verstoep, Koen Langendoen, and Henri Bal. Efficient reliable multicast
on Myrinet. In Proceedings of the International Conference on Parallel Processing
(ICPP), volume III, pages 156–165, Bloomingdale, IL, August 1996. Available
from ftp://ftp.cs.vu.nl/pub/amoeba/orca papers/icpp96.ps.Z.

139

http://www.research.digital.com/SRC/scheduling/papers/pgs/nfmdcs.ps
http://www.research.digital.com/SRC/scheduling/papers/pgs/nfmdcs.ps
http://link.springer.de/link/service/series/0558/papers/1459/14590231.pdf
http://link.springer.de/link/service/series/0558/papers/1459/14590231.pdf
http://www.psg.lcs.mit.edu/~pgs/papers/thesis.ps
http://www.lcs.mit.edu/doc_repository/MIT-LCS-TR-710.ps
http://www.lcs.mit.edu/doc_repository/MIT-LCS-TR-710.ps
http://www.sun.com/software/white-papers/wp-solaris7
http://www.sun.com/software/white-papers/wp-solaris7
http://www.rwcp.or.jp/lab/pdslab/papers/tezuka-hpcn97.ps.gz
http://www.rwcp.or.jp/lab/pdslab/papers/tezuka-hpcn97.ps.gz
http://www.acm.org/pubs/articles/journals/cacm/1990-33-8/p103-valiant/p103-valiant.pdf
http://www.acm.org/pubs/articles/journals/cacm/1990-33-8/p103-valiant/p103-valiant.pdf
ftp://ftp.cs.vu.nl/pub/amoeba/orca_papers/icpp96.ps.Z

[103] Werner Vogels, Dan Dumitriu, Ashutosh Agrawal, Teck Chia, and Katherine
Guo. Scalability of the Microsoft Cluster Service. In Proceedings of the Second
Usenix Windows NT Symposium, Seattle, Washington, August 1998. Available
from http://www.cs.cornell.edu/rdc/mscs/nt98.

[104] Matt Welsh, Anindya Basu, and Thorsten von Eicken. Incorporating memory
management into user-level network interfaces. In Hot Interconnects V, Stan-
ford, California, August 1997. Available from http://www.cs.cornell.edu/
U-Net/papers/hoti97.ps.

[105] Brian Whetten, Todd Montgomery, and Simon Kaplan. A high perfor-
mance totally ordered multicast protocol. In Lecture Notes in Computer Sci-
ence, volume 938. Springer-Verlag, March 1995. Available from http://

research.ivv.nasa.gov/RMP/Docs/RMP dagstuhl.ps.

If you steal from one author, it’s
plagiarism. If you steal from many,
it’s research.

Wilson Mizner

140

http://www.cs.cornell.edu/rdc/mscs/nt98
http://www.cs.cornell.edu/U-Net/papers/hoti97.ps
http://www.cs.cornell.edu/U-Net/papers/hoti97.ps
http://research.ivv.nasa.gov/RMP/Docs/RMP_dagstuhl.ps
http://research.ivv.nasa.gov/RMP/Docs/RMP_dagstuhl.ps

Colophon

This dissertation was typeset with LATEX 2ε using the book class and the following
packages:

algorithm bytefield hanging multicol thumbpdf

algorithmic calc hyperref multirow topcapt

alltt color hyphenat nameref trig

amsbsy comment ifthen pifont uiucthesis

amsgen epigraph keyval rotating url

amsmath everyshi latexsym setspace varioref

amsopn fancyvrb listliketab snapshot xspace

amstext float longtable subfigure

array graphics ltxtable tabularx

booktabs graphicx mathpazo textcomp

The body typeface is Palatino (actually, URW Palladio L Roman). The primary fixed-
width typeface is Computer Modern Teletype 10 pt. (CMTT10). Both are typeset
at 11 pt.

A printed work which cannot be
read becomes a product without a
purpose.

Emil Ruder

141

Vita

Scott Pakin was born in Lake Forest, Illinois on May 17, 1970. He received a
B.S. degree in Mathematics/Computer Science from Carnegie Mellon University
in 1992, an M.S. degree in Computer Science from the University of Illinois at
Urbana-Champaign in 1995, and a Ph.D. in Computer Science from the University
of Illinois at Urbana-Champaign in 2001.

Since 1993, Scott has worked in the Concurrent Systems Architecture Group at
the University of Illinois at Urbana-Champaign under the supervision of Prof. An-
drew A. Chien. Scott also had an internship at Intel during the summer of 1995.
He was was the recipient of the W. J. Poppelbaum Award in 1997 for being the De-
partment of Computer Science’s most outstanding graduate student in the areas of
hardware and architecture; he was sponsored by an Intel Foundation Graduate Fel-
lowship for the 1998–1999 school year; and he was inducted into the Honor Society
of Phi Kappa Phi in 1999.

Scott’s research interests include system architecture, high-speed communica-
tion, and parallel and distributed computing.

Plaudite, amici, commedia finita est.
(Applaud, friends, the comedy is
over.)

Ludwig von Beethoven
FINAL WORDS, 1827

142

	Abstract
	Acknowledgments
	Introduction
	Background
	Collective communication
	Cluster technology
	Software
	Network (VIA)

	Problem Statement
	Context
	Problem
	Solution space
	Thesis statement
	Success criteria

	Nonblocking Barriers
	Intoduction
	Algorithm
	Example
	Ordering semantics
	Definitions
	Reordering rules
	Implications
	Restrictions

	Alternative implementations
	Single logical clock
	All-hardware implementation

	Alternative techniques
	Intrabarrier unresponsiveness tolerance
	Explicit unresponsiveness detection
	Operating system support

	Discussion

	Experiments
	Experimental setup
	Applications
	Workloads

	Preliminary experiments
	Total unresponsiveness
	Characterizing unresponsiveness
	Summary

	Nonblocking barrier performance
	Bookkeeping overhead
	Performance gain from nonblocking barriers
	Sources of performance gain

	Performance robustness
	Compatibility with other unresponsiveness-tolerating techniques
	Robustness to cluster scale

	Comparative performance
	Discussion

	Related Work
	Collective-communication libraries
	Collective-communication algorithms
	Collective communication in clusters
	Wide-area collective communication
	Application/runtime-system techniques
	Evaluating unresponsiveness

	Conclusions
	Summary
	Experience gained
	Future work
	Perspective
	Problem importance
	Advantages of nonblocking barriers
	Applicability
	Notification mechanism

	Contributions

	References
	Colophon
	Vita

		2001-08-18T17:01:36-0600
	Champaign, IL
	Scott Pakin
	I am the author of this document

