
An Overview of the Trilinos Package
Architecture

Michael A. Heroux
Sandia National Laboratories

Trilinos Workshop at Copper Mountain
March 30, 2004

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

The Team
Ross Bartlett
Lead Developer of TSFCore

Paul Boggs
Developer of TSF

Jason Cross
Developer of Jpetra

David Day
Developer of Komplex

Bob Heaphy
Lead developer of Trilinos SQA

Mike Heroux
Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, Komplex and IFPACK, TSF
Developer of Amesos, Belos

Robert Hoekstra
Developer of Epetra

Russell Hooper
Developer of NOX

Vicki Howle
Developer of Belos and TSF

Jonathan Hu
Developer of ML

Tammy Kolda
Lead Developer of NOX

Rich Lehoucq
Developer of Anasazi and Belos

Kevin Long
Lead Developer of TSF,
Developer of Belos

Roger Pawlowski
Lead Developer of NOX

Michael Phenow
Trilinos Webmaster

Eric Phipps
Developer of LOCA and NOX

Andrew Rothfuss
Developer of TSF

Andrew Salinger
Lead Developer of LOCA

Marzio Sala
Lead author of Trilinos Tutorial
Developer of ML and Amesos

Paul Sexton
Developer of Epetra and Tpetra

Ken Stanley
Lead Developer of Amesos

Heidi Thornquist
Lead Developer of Anasazi and Belos

Ray Tuminaro
Lead Developer of ML

Jim Willenbring
Developer of Epetra and Kokkos.
Trilinos library manager

Alan Williams
Developer of Epetra

Outline of Talk

� Motivation
� Trilinos Package Concepts.
� Overview of Major Packages.
� Examples Using Trilinos.
� SQA/SQE.
� Availability and support.
� Concluding remarks.

Motivation For Trilinos
� Sandia does A LOT of solver work.
� Sandia uses MANY external solver packages.
� When I started at Sandia in May 1998:

� Aztec was a mature package. Used in many codes.
� FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many other

codes were (and are) in use.
� New projects were underway or planned in multi-level preconditioners,

eigensolvers, non-linear solvers, etc…
� New application capabilities were underway, demanding new solvers.

� The challenges:
� Little or no coordination was in place to:

• Efficiently reuse existing solver technology.
• Leverage new development across various projects.
• Support solver software processes.
• Provide consistent solver APIs for applications.

� ASCI was forming software quality assurance/engineering (SQA/SQE)
requirements:

• Daunting requirements for any single solver effort to address alone.

Evolving Trilinos Solution
� Trilinos1 is an evolving framework to address these challenges:

� Includes common core set of vector, graph and matrix classes (Epetra).
� Provides a common abstract solver API (TSF).
� Provides a ready-made package infrastructure:

• Source code management (cvs, bonsai).
• Build tools (autotools).
• Automated regression testing (queue directories within repository).
• Communication tools (mailman mail lists).

� Specifies requirements and suggested practices for SQA.
� In general allows us to categorize efforts:

� Efforts best done at the Trilinos level (useful to most or all packages).
� Efforts best done at a package level (peculiar or important to a package).
� Allows package developers to focus only on things that are unique to

their package.

1. Trilinos loose translation: “A string of pearls”

Trilinos Benefits: The Three “I”s
� Infrastructure:

� Repository (CVS)
� Issue Tracking (Bugzilla)
� Communication (Mailman)
� Debugging (Bonsai)
� Jumpstart (new_package)
� Portable build process (Autotools: configure, make)
� SQA Tools and Policies.
� Documentation: Developers Guides, Installation Guide, Tutorial, etc.

� Interfaces:
� Interoperability: Between Trilinos Packages, with external SW.
� Extensible.
� Without Interdependence.

� Implementations:
� Real, working code that implements all interfaces.
� Solid default implementations, but not required to use.

Trilinos Package Concepts

Trilinos Packages

� Trilinos is a collection of Packages.
� Each package is:

� Focused on important, state-of-the-art algorithms in its problem
regime.

� Developed by a small team of domain experts.
� Self-contained: No explicit dependencies on any other software

packages (with some special exceptions).
� Configurable/buildable/documented on its own.

� Sample packages: NOX, AztecOO, IFPACK, Meros.
� Special package collections: Petra, TSF, Teuchos.

Basic Linear Algebra Libraries

Abstract Interfaces and Adaptors

Linear Solvers

Nonlinear Solvers

Eigensolvers

Time Integration

"New Package"

Common Services

Preconditioners

Primary Trilinos Packages
8/4/2003 - v12

Epetra: Current Production C++ Library Epetra Core
Epetra Extensions

Tpetra: Next Generation C++ Library
Jpetra: Java Library

TSFCore: Basic Abstract classes
TSF Extensions: Aggregate/composite,
overloaded operators
TSF Utilities: Core utility classes

Amesos: OO Interfaces to 3rd party direct
solvers

SuperLU
KundertSparse
SuperLUDist
DSCPack
UMFPack
MUMPS

AztecOO: Preconditioned Krylov Package
based on Aztec
Komplex: Complex solver via equivalent real
formulations
Belos: Next generation Krylov and block
Krylov solvers

NOX: Collection of nonlinear solvers
LOCA: Library of Continuation Algorithms

Anasazi: Collection of eigensolvers

TOX: Planned development

"Hello World": Package Template to aid
integration of new packages
Web site with layout and instructions

Teuchos: Parameter Lists, BLAS Interfaces,
etc

ML: Multi-level preconditioners
Meros: Segregated/Block Preconditioners
IFPACK: Algebraic preconditioners

Notes:
� ASCI Algorithms funds

much of Trilinos
development (LDRD,
CSRF, MICS also).

� All packages available
(except TOX, aka
Rhythmos).

� All information available at
Trilinos website:
software.sandia.gov/trilinos

Package
Description

Release
3.1 (9/2003) 4 (5/2004)

3.1
General

3.1
Limited

4
General

4
Limited

Amesos 3rd Party Direct Solver Suite X X X

Anasazi Eigensolver package X

AztecOO Linear Iterative Methods X X X X

Belos Block Linear Solvers X

Epetra Basic Linear Algebra X X X X

EpetraExt Extensions to Epetra X X X

Ifpack Algebraic Preconditioners X X X X

Jpetra Java Petra Implementation X

Kokkos Sparse Kernels X X

Komplex Complex Linear Methods X X X X

LOCA Bifurcation Analysis Tools X X X X

Meros Segregated Preconditioners X X

ML Multi-level Preconditioners X X X X

NewPackage Working Package Prototype X X X X

NOX Nonlinear solvers X X X X

Pliris Dense direct Solvers X X

Teuchos Common Utilities X X

TSFCore Abstract Solver API X X

TSFExt Extensions to TSFCore X X

Tpetra Templated Petra X

Totals 8 11 15 20

Three Special Trilinos Package
Collections

� Petra: Package of concrete linear algebra classes: Operators, matrices,
vectors, graphs, etc.
� Provides working, parallel code for basic linear algebra computations.

� TSF: Packages of abstract solver classes: Solvers, preconditioners,
matrices, vectors, etc.
� Provides an application programmer interface (API) to any other package

that implements TSF interfaces.
� Inspired by HCL.

� Teuchos (pronounced Tef-hos): Package of basic tools:
� Common Parameter list, smart pointer, error handler, timer.
� Interface to BLAS, LAPACK, MPI, XML, …
� Common traits mechanism.
� Goal: Portable tools that enhance interoperability between packages.

Dependence vs. Interoperability

� Although most Trilinos packages have no explicit dependence,
each package must interact with some other packages:
� NOX needs operator, vector and solver objects.
� AztecOO needs preconditioner, matrix, operator and vector objects.
� Interoperability is enabled at configure time. For example, NOX:

--enable-nox-lapack compile NOX lapack interface libraries
--enable-nox-epetra compile NOX epetra interface libraries
--enable-nox-petsc compile NOX petsc interface libraries

� Trilinos is a vehicle for:
� Establishing interoperability of Trilinos components…
� Without compromising individual package autonomy.

� Trilinos offers five basic interoperability mechanisms.

Trilinos Interoperability Mechanisms

� M1: Package accepts user data as Epetra or TSF objects.
=>Applications using Epetra/TSF can use package.

� M2: Package can be used via TSF abstract solver classes.
=> Applications or other packages using TSF can use package.

� M3: Package can use Epetra for private data.
=> Package can then use other packages that understand Epetra.

� M4: Package accesses solver services via TSF interfaces.
=> Package can then use other packages that implement TSF interfaces.

� M5: Package builds under Trilinos configure scripts.
=> Package can be built as part of a suite of packages.
=> Cross-package dependencies can be handled automatically.

Interoperability Example: AztecOO

� AztecOO: Preconditioned Krylov Solver Package.
� Primary Developer: Mike Heroux.
� Minimal explicit, essential dependence on other Trilinos packages.

� Uses abstract interfaces to matrix/operator objects.
� Has independent configure/build process (but can be invoked at Trilinos level).
� Sole dependence is on Epetra (but easy to work around).

� Interoperable with other Trilinos packages:
� Accepts user data as Epetra matrices/vectors.
� Can use Epetra for internal matrices/vectors.
� Can be used via TSF abstract interfaces.
� Can be built via Trilinos configure/build process.
� Can provide solver services for NOX.
� Can use IFPACK, ML or AztecOO objects as preconditioners.

Trilinos Package Categories

TSF

EpetraNOX

AztecOO

IFPACK

ML

Nonlinear solvers

Vector, graph, matrix
service classes

Abstract solver API

Preconditioned
Krylov solvers

Algebraic
Preconditioners

Multi-level
Preconditioners

Trilinos Package Interoperability

NOX

AztecOO

IFPACK

ML

Accept User Data
as Epetra Objects

Uses AztecOO

TSF
Interface
Exists

Other
MatVec

Libs

Extensible: Other MV Libs

TSF

Epetra

Can be wrapped as
Epetra_Operator

Other
Solvers

Extensible: Other Solvers

What Trilinos is not
� Trilinos is not a single monolithic piece of software. Each package:

� Can be built independent of Trilinos.
� Has its own self-contained CVS structure.
� Has its own Bugzilla product and mail lists.
� Development team is free to make its own decisions about algorithms,

coding style, release contents, testing process, etc.
� Trilinos top layer is not a large amount of source code:

� Trilinos repository contains 452,187 source lines of code (SLOC).
� Sum of the packages SLOC counts : 445,937.
� Trilinos top layer SLOC count: 6, 250 (1.4%).

� Trilinos is not “indivisible”:
� You don’t need all of Trilinos to get things done.
� Any collection of packages can be combined and distributed.
� Current public release contains only 6 of the 20+ Trilinos packages.

Overview of Trilinos Packages

Trilinos Concrete Support
Component: Petra

1Petra is Greek for “foundation”.

�Petra1 provides distributed matrix and vector
services.
�Exists in basic form as an object model:
�Describes basic user and support classes in UML, independent

of language/implementation.
�Describes objects and relationships to build and use matrices,

vectors and graphs.
�Has 3 implementations under development.

Petra Implementations

Three version under development:
� Epetra (Essential Petra):

� Current production version.
� Restricted to real, double precision arithmetic.
� Uses stable core subset of C++ (circa 2000).
� Interfaces accessible to C and Fortran users.

� Tpetra (Templated Petra):
� Next generation C++ version.
� Templated scalar and ordinal fields.
� Uses namespaces, and STL: Improved usability/efficiency.

� Jpetra (Java Petra):
� Pure Java. Portable to any JVM.
� Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces.

Epetra

� Package of concrete linear algebra classes:
Operators, matrices, vectors, graphs, etc.

� Working, parallel code for basic linear algebra
computations.

� Uses stable core subset of C++
� C/Fortran wrappers
� Restricted to real, double precision arithmetic
� Concrete implementation of the Petra object model

Epetra User Class Categories
� Sparse Matrices: RowMatrix, (CrsMatrix, VbrMatrix, FECrsMatrix, FEVbrMatrix)

� Linear Operator: Operator: (AztecOO, ML, Ifpack)

� Dense Matrices: DenseMatrix, DenseVector, BLAS, LAPACK,
SerialDenseSolver

� Vectors: Vector, MultiVector

� Graphs: CrsGraph

� Data Layout: Map, BlockMap, LocalMap

� Redistribution: Import, Export, LbGraph, LbMatrix

� Aggregates: LinearProblem

� Parallel Machine: Comm, (SerialComm, MpiComm, MpiSmpComm)

� Utilities: Time, Flops

Summary of Epetra Features

� Basic Stuff: What you would expect.
� Variable block matrix data structures.
� Multivectors.
� Arbitrary index labeling.
� Flexible, versatile parallel data redistribution.
� Language support for inheritance, polymorphism and

extensions.
� View vs. Copy.

Trilinos Solver Framework (TSF)

� Epetra, AztecOO, Ifpack, ML, etc.
PETSc, SuperLU, Hypre, HSL,
ScaLapack

� TSF is an abstract class hierarchy:
� Inspired by HCL, especially VectorSpace concept.
� Provides uniform API to solvers, vectors, matrices.
� Allows integration of many solvers via implementation of abstract

classes.
� Supports “generic” programming.
� Provides compositional classes.

� Composed of TSFExtended, TSFCore, TSFCoreUtils.

Lots of good
solvers available

Generic Programming using TSF

� Generic Programming:
Implementation of algorithms using abstract
interfaces.

� Example: CG using TSF interfaces.
� Allows use of CG with any vector/matrix classes that

implement TSF interfaces.
� Very powerful for complex algorithms: Robust Block

GMRES, etc.

Aggregate Operator
Construction

� TSF facilitates implicit (and explicit) construction of
operators:
� Partitioned (block):

� Composite:

� Sum:

� Inverse:

� Others: Zero, Identity, Transpose, …
� Recursively.

0
F B

A
C

=

A B C= �

1 & ()A A solver A− =

A B C= +

AztecOO

� Aztec is the workhorse solver at Sandia:
� Extracted from the MPSalsa reacting flow code.
� Installed in dozens of Sandia apps.
� 1700+ external licenses.

� AztecOO leverages the investment in Aztec:
� Uses Aztec iterative methods and preconditioners.

� AztecOO improves on Aztec by:
� Using Epetra objects for defining matrix and RHS.
� Providing more preconditioners/scalings.
� Using C++ class design to enable more sophisticated use.

� AztecOO interfaces allows:
� Continued use of Aztec for functionality.
� Introduction of new solver capabilities outside of Aztec.

ML: Multi-level Preconditioners

� ML package developed by Ray Tuminaro, Jonathan Hu,
Marzio Sala.

� Critical technology for scalable performance of some key
apps.

� ML compatible with other Trilinos packages:
� Accepts user data as Epetra_RowMatrix object (abstract interface).

• Any implementation of Epetra_RowMatrix works.
� Implements the Epetra_Operator interface.

• Allows ML preconditioners to be used with AztecOO and TSF.

� Can also be used completely independent of other Trilinos
packages.

IFPACK: Algebraic
Preconditioners

�Overlapping Schwarz preconditioners.
�Accept user matrix via abstract matrix interface (Epetra

versions).
�Uses Epetra for basic matrix/vector calculations.
�Supports simple perturbation stabilizations and condition

estimation.
�Separates graph construction from factorization, improves

performance substantially.
�Compatible with AztecOO and TSF. Can be used with

NOX.

Komplex:
Complex linear solver

� Most algorithms work for complex numbers (with real numbers as a special case).
� Majority of our applications produce real-valued data.
� Solver development has been focused on real-valued problems.
� Writing complex versions of all software is not appealing.

� Alternative: Consider equivalent real formulations (ERFs).

� Komplex is an add-on module to AztecOO that:
� Intelligently builds an ERF for a complex valued problem.
� Computes the real-valued solution using AztecOO.
� Returns the complex result to user.

� This is an effective approach in important practical settings.

(A+iB)(x+iy) = (b+ic)

A -B x b
=

B A y c

Komplex Formulation

Consider a complex-valued matrix C:

With each entry:

11 12

21 22

32 33

43 44

0 0
0 0

0 0
0 0

c c
c c

C
c c

c c

 =

ij ij ijc a ib= +

11 11 12 12

11 11 12 12

21 21 22 22

21 21 22 22

32 32 33 33

32 32 33 33

43 43 44 44

43 43 44 44

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

a b a b
b a b a
a b a b
b a b a

K
a b a b
b a b a

a b a b
b a b a

− −

 − −

 =
 − −

 − −

Rewrite as real-valued of
twice the dimension:

NOX: Nonlinear Solvers

� Suite of nonlinear solution methods:
� Uses abstract vector and “group” interfaces.
� Allows flexible selection and tuning of various strategies:

• Directions.
• Line searches.

� Epetra/AztecOO/ML, LAPACK, PETSc implementations of
abstract vector/group interfaces.

� Designed to be easily integrated into existing applications.

LOCA

� Library of continuation algorithms.
� Provides

� Zero order continuation
� First order continuation
� Arc length continuation
� Multi-parameter continuation (via Henderson's MF Library)
� Turning point continuation
� Pitchfork bifurcation continuation
� Hopf bifurcation continuation
� Phase transition continuation
� Eigenvalue approximation (via ARPACK or Anasazi)

Amesos: Direct Solver Wrappers
� Direct sparse solver use at Sandia:

� Salinas (Structures): DSCPACK (Raghavan), SPOOLES (Ashcraft), others.
� Xyce (Circuits): Kundert, SuperLU serial.
� PCx (LP): DSCPACK, WSMP.
� Numerous other uses.

� Amesos contains wrapper classes to important third party direct sparse
solvers:
� Use Epetra objects.
� Provide data redistribution capabilities (e.g., replication).
� Provide common look-and-feel across variety of solvers.
� Provide common resource for direct solvers at Sandia.
� Presently wraps: DscPack, KLU, Mumps, SuperLU, UMFPack, Kundert

Goal: “Make solving Ax=b as easy as it sounds.”

Epetraext: Extensions to Epetra
� Library of useful classes not needed by everyone.
� Most classes are types of “transforms”.
� Examples:

� Graph/matrix view extraction.
� Epetra/Zoltan interface.
� Explicit sparse transpose.
� Singleton removal filter.
� Static condensation filter.
� Overlapped graph constructor.
� Graph colorings.
� Permutations.
� Sparse matrix-matrix multiply.
� Matlab, MatrixMarket I/O functions.
� …

� Most classes are small, useful, but non-trivial to write.

Meros

� Meros: Preconditioner package for incompressible NS
problems.
� Addresses problems: Ax = b.

� where:

� Makes use of TSF to orchestrate use of:
• ML, Epetra, AztecOO, Ifpack.

� Provides rapidly-developed, scalable implementation of state-of-
the-art preconditioner.

� Results shown below.

0
F B

A
C

=

Belos and Anasazi

� Next generation linear solvers (Belos) and eigensolvers
(Anasazi) libraries, written in templated C++.

� Provide a generic interface to a collection of algorithms for
solving large-scale linear problems and eigenproblems.

� Algorithm implementation is accomplished through the use
of abstract base classes. Interfaces are derived from these
base classes to matrix-vector products, status tests, and any
arbitrary linear algebra library.

New Package: Kokkos

� Goal:
� Isolate key non-BLAS kernels for the purposes of optimization.

� Kernels:
� Dense vector/multivector updates and collective ops (not in BLAS).
� Sparse MV, MM, SV, SM.

� Serial-only for now.
� Reference implementation provided.
� Mechanism for improving performance:

� Default is aggressive compilation of reference source (Fortran loops).
� BeBOP: Jim Demmel, Kathy Yelick, Rich Vuduc, UC Berkeley.
� Vector version: Cray.

Teuchos

� Utility package of commonly useful tools:
� ParameterList class: key/value pair database, recursive capabilities.
� LAPACK, BLAS wrappers (templated on ordinal and scalar type).
� Dense matrix and vector classes (compatible with BLAS/LAPACK).
� FLOP counters, Timers.
� Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.
� Reference counted pointers, and more…

� Takes advantage of advanced features of C++:
� Templates
� Standard Template Library (STL)

� ParameterList:
� Allows easy control of solver parameters.

Teuchos BLAS/LAPACK
� Teuchos provides C++ wrappers for BLAS/LAPACK Fortran routines
� Insulates users of Teuchos from details of Fortran function calls
� Instead of using simple wrappers, Teuchos provides templated

wrappers
� Two main benefits of using a templated interface

� Template Specialization
• Fortran BLAS supports 4 datatypes:

– Single- and double- precision real, single- and double-precision complex
• We can use template specialization to support these datatypes using existing

Fortran BLAS code
� General Implementation

• We can write a generic implementation in C++ that can handle many arbitrary
datatypes

NewPackage Package
� NewPackage provides jump start to develop/integrate a

new package.
� NewPackage is a “Hello World” program and website:

� Simple but it does work with autotools.
� Compiles and builds.

� NewPackage directory contains:
� Commonly used directory structure: src, test, doc, example, config.
� Working autotools files.
� Documentation templates (doxygen).
� Working regression test setup.

� Substantially cuts down on:
� Time to integrate new package.
� Variation in package integration details.
� Development of website.

What do algorithms developers get
from the Trilinos package

architecture?

Pliris
� Migration of Linpack benchmark code to supported

environment.
� Used NewPackage as starting point.
� Put under source control for the first time.
� Portable build process.
� Can accept linear problem as Epetra data.
� Has its own Bugzilla product, mail lists.
� Source code browsable via Bonsai.
� Portable interface to BLAS/LAPACK.
� And more…
� But Pliris is still an independent piece of code…and better

off after the process.

Trilinos Package Interoperability (Release 4)

Based on this chart:
• AztecOO depends on Epetra, but Epetra is independent of AztecOO
• NOX can use Epetra, but is independent of Epetra.

Can UseDepends OnPackage

TSF Core TSF Ext Belos MerosNOX

Anasazi

Epetra Ext

Meros

Belos

TSFCore

Amesos

Amesos MLAztecOO Ifpack

TSF Ext

ML

Komplex

Ifpack

NOX

AztecOO

Epetra

AnasaziKomplexEpetra ExtEpetra

Applications

• Block preconditioners for incompressible flow

� where

• Easier to apply MG on blocks than whole system
⇒ scalability!

• Close to traditional pressure-Poisson type solvers
• Approximation choices ⇒ different methods

Meros

 ∇

⋅∇
=

⋅∇
∇ −

− I
FI

S
F

IF
I

C
F

00
00 1

1

∇⋅∇−= −1FCS

3D Driven Cavity Results

15

163

1817its @
Re=100

643323Grids

CFL

6

4

Newton
(BJB)

Newton (Oseen
K&L)

36510000

5000 245
500

Oseen
(K&L)

Re

IMPACT Block preconditioning is a practical & efficient way to achieve
scalable linear solvers.

Potential Applications: Aria, Charon, Fuego, Goma, MPSalsa, Sundance

CFL insensitivity

h-independence

3D
Driven
Cavity

Re sensitivity?

Inter-operation of Trilinos packages

Nonlinear
Solver

Linear
Solver

block
precondition

NOX
(Epetra)

AztecOO
(TSF, Epetra)

Meros
(TSF)

MPSalsa (Epetra)

Newton-Krylov
Methods

GMRESR

Solution
component

Example
methods

Packages

Subblocks
(AztecOO,
ML, Epetra)

F-1:
GMRES/AMG

X-1:
CG/AMG

−

−

1

1

X
F

MPSalsa ⇒⇒⇒⇒ Epetra submatrices

Epetra ⇔⇔⇔⇔ TSF

Epetra/TSF matrix add &
multiply

M-1 for TSF subblocks

Circuit Solvers
Bringing Multiple Tools Together

� Reduction to “Essential” System
� Constraints (‘Singleton’ Rows)
� Auxiliary Equations (‘Singleton’ Columns)
� Based on Achim Basermann’s Results (NEC Europe)

� Available in EpetraExt.

Load Balance
Circuit ScaleRCMSingleton

Filter
Load Balance

LinSys

530.36(0.43)1271.00E+04681054

451.12002.00E+05541220

724.75003.00E+05~10001220

Newton StepsLinSolve TimeGMRES ItersCondEstTotal CutsN

LBC
LBC+SF+LBL+RCM+SCALE

ARPREC

� The ARPREC library uses arrays of 64-bit floating-point
numbers to represent high-precision floating-point numbers.

� ARPREC values behave just like any other floating-point
datatype, except the maximum working precision (in decimal
digits) must be specified before any calculations are done
� mp::mp_init(200);

� Illustrate the use of ARPREC with an example using
Hilbert matrices.

Hilbert Matrices

� A Hilbert matrix HN is a square N-by-N matrix such that:

� For Example: 1
1

−+
=

ji
H

ijN

=

5
1

4
1

3
1

4
1

3
1

2
1

3
1

2
11

3H

Hilbert Matrices

� Notoriously ill-conditioned
� κ(H3) ≈ 524
� κ(H5) ≈ 476610
� κ(H10) ≈ 1.6025 x 1013

� κ(H20) ≈ 7.8413 x 1017

� κ(H100) ≈ 1.7232 x 1020

� Hilbert matrices introduce large amounts of error

Hilbert Matrices and Cholesky
Factorization

� With double-precision arithmetic, Cholesky factorization will
fail for HN for all N > 13.

� Can we improve on this using arbitrary-precision floating-point
numbers?

29Arbitrary Precision (20)

40Arbitrary Precision (40)

233+ (out of memory to go higher)Arbitrary Precision (400)

145Arbitrary Precision (200)

13Double Precision

8Single Precision

Largest N for which Cholesky Factorization is successfulPrecision

Preliminary Performance Analysis

4.31996 sec

1.0673 sec

0.0437751sec

mp_real(40)

46.5

234

349

Ratio
mp_real/double

0.093067 sec1000

0.0045598 sec500

0.0001257 sec100

doubleN

Time (sec) of GEMV

Potential Benefits of Templated Types

Templated scalar types have great potential:
� Efficient: Allow expression of algorithms over any

abstract field.
� Can facilitate variety of algorithmic studies.
� Allow application developers to study asymptotic behavior

of discretizations.
� Can facilitate debugging: Reduces FP error as source

error.
� Use your imagination…

SQA/SQE
� Software Quality Assurance/Engineering is important.
� Not sufficient to convince ourselves that “we do a good job”.

� At start of development: Must state the practices we will follow.
� At end of development: Must provide evidence that we followed practices.

� Trilinos facilitates SQA/SQE development/processes for packages:
� 32 of 47 ASCI SQE practices are directly handled by Trilinos (no

requirements on packages).
� Trilinos provides significant support for the remaining 15.
� Trilinos Dev Guide Part II: Specific to ASCI requirements.
� Trilinos software engineering policies provide a ready-made infrastructure

for new packages.
� Trilinos philosophy:

Few requirements. Instead mostly suggested practices. Provides package
with option to provide alternate process.

Trilinos Availability/Support

� Trilinos and related packages are available via LGPL.
� Current release (3.1) is “click release”. Unlimited availability.
� Release 4 scheduled for May 2004.
� New platform facilitates development and support:

� http://software.sandia.gov
� Location of cvs repository, bugzilla, bonzai and mailman servers.
� Accessible from anywhere via ssh/scp.
� Documentation (generated via doxygen) is all available online.

Mailman Mail Lists
� Each Trilinos package, including Trilinos itself, has four mail lists:

� package-checkins@software.sandia.gov
• CVS commit emails.

� package-developers@software.sandia.gov
• Mailing list for developers.

� package-users@software.sandia.gov
• Issues for package users.

� package-announce@software.sandia.gov
• Releases and other announcements specific to the package.

� Additional list: Trilinos-Leaders@software.sandia.gov
� http://software.sandia.gov/mailman/listinfo/

Conclusions
� Trilinos services to developers and users:

� The 3 I’s: Infrastructure, Interfaces, Implementations.
� Simplifies installation, support for users of total collection.
� Epetra & TSF promote common APIs across all other Trilinos

packages.
� Each package can be built, used independently, and exists as

independent project.
� Primary goals:

� Rapid development and installation of robust numerical solvers.
� High-quality production software for the critical path.

� Can SW infrastructure make our jobs easier? Yes!
� NewPackage, mail lists, bugzilla, CVS, Bonsai

• Make you an instant SW engineering professional.
� Package architecture always respects your independence.

• Compatability from augmentation not conformance.
• You are free to “walk away” at any time.

More information

� http://software.sandia.gov
� http://software.sandia.gov/trilinos
� Additional documentation at my website:

http://www.cs.sandia.gov/~mheroux.

