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ABSTRACT

We present modifications to a feature-based, image-retrieval approach for estimating semiconductor sidewall (cross-
section) shapes using top-down images. The top-down images are acquired by a critical dimension scanning electron
microscope (CD-SEM). The proposed system is based upon earlier work with several modifications. First, we use only
line-edge, as opposed to full-line, sub-images from the top-down images. Secondly, Gabor filter features are introduced to
replace some of the previously computed features. Finally, a new dimensionality reduction algorithm – direct, weighted
linear discriminant analysis (DW-LDA) – is developed to replace the previous two-step principal component analysis plus
LDA method. Results of the modified system are presented for data collected across several line widths, line spacings, and
CD-SEM tools.
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1. BACKGROUND

In current fabrication environments, line-width measurements in semiconductor lithography are made almost exclusively
using scanning electron microscope (SEM) images. This process – known as critical dimension SEM (CD-SEM) metrology
– employs images that are usually acquired in a top-down configuration, i.e., looking down onto the semiconductor line
feature. According to the International Technology Roadmap for Semiconductors, continually shrinking line-widths make
it increasingly important to know the sidewall shape (e.g., the cross-section profile) of the lines rather than just their width.
For example, two pairs of top-down and corresponding sidewall images are shown in Fig. 1. Although CD-SEM may
report the same line-widths for the top-downs in (a) and (b), it is evident in (c) and (d) that their sidewall structure is quite
different. In fact, the sidewall shape in (d), which is “overcut,” is unacceptable and tends to lead to device defects. To
acquire sidewall images like those of Fig. 1(c) or (d), however, the semiconductor device must be physically cleaved; this
is a destructive and time consuming process that hampers throughput and/or sampling. Since top-down images can be
acquired much more efficiently, we have investigated1, 2 the possibility of estimating sidewall shape using only features
extracted from top-down images and a database of corresponding historical top-down and sidewall images.

In this paper and in our earlier work,1, 2 we propose an image retrieval system to estimate sidewall structure from top-
down imagery. Features from a top-down query image are compared to a database of features from other top-down images,
each with known corresponding sidewall shapes. The sidewall shape of the query top-down is estimated using the sidewall
shapes of the retrieved top-downs. We first construct a historical repository of corresponding top-down and cross-section
image pairs. Sidewall profiles are extracted from each cross-section image and stored. Features are computed from one or
more sub-images in each top-down image. As the number of the computed features for each such line region is quite large,
dimensionality reduction is performed to make feature storage and feature vector comparisons (i.e., image retrieval) more
tractable for large databases. In this paper, we present several modifications to our earlier work. First, we use different
regions of the top-down images for feature extraction. In the previous work, the top-down sub-images covered an entire
line, like those of Fig. 1(a) and (b), but here we use only the line-edge sub-images. Secondly, we employ Gabor filter3

responses for some features in hopes of capturing two-dimensional, texture-like characteristics of the line-edge sub-images.
Finally, we apply a new LDA variant for dimensionality reduction.

The remainder of this paper is organized as follows. In Section 2, we describe the parameterization of the sidewall
profiles, the automatic identification of line regions and sub-images in the top-down images, and the computation of
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(a) Top-down image of a line feature. (b) Top-down image of another line feature.

(c) Sidewall corresponding to (a). (d) Sidewall corresponding to (b).

Figure 1. Two top-down and sidewall image pairs from 250nm data. Traditional CD-SEM metrology may report the same line-width
for both lines, even though it is clear from (c) and (d) that the sidewall shapes are quite different.

features from these sub-images. We then describe a new approach for dimensionality reduction, which we call direct,
weighted LDA (DW-LDA), in Section 3. We present and discuss some experimental results in Section 4 and finally
conclude in Section 5 with some summary remarks.

2. FEATURE EXTRACTION

The purpose of feature extraction in this work is to compute features from the top-down images that somehow correlate
well with variations in sidewall shape. Towards this purpose, we must define a representation scheme for the sidewall
shape – which is the subject of Section 2.1 – so that sidewall variation can be quantified. We then describe the process of
finding line features and extracting sub-images from the top-down images in Section 2.2. In Section 2.2, we describe the
features that are computed and stored for each sub-image.

2.1. Sidewall Representation

To estimate the sidewall shape, we must first construct a quantifiable representation of it. One goal for the finished system is
the capability to estimate sidewall shapes across various design rules – i.e., different line-widths, pitches, and aspect ratios
(ratio of line height to width). Towards this purpose, we seek a representation that is invariant to the above mentioned
design rule parameters. We therefore define the sidewall shape as the normalized width at 100 equally spaced points from
top-to-bottom. These widths (at a few locations) are illustrated by the horizontal dashed lines in Fig. 2(b) and (e), where
the sidewall profiles (the outlines of the line structure) are extracted through a semi-automated graphical user interface.2

Letting the widths (in nm) be represented by the 101-point vectorw, wherewn = w(n) for n = 0, . . . , 100 (n = 0 is



(a) Line sidewall (180nm, 1:1 pitch).
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(b) Profile extracted from (a) with widths
indicated.
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(c) Width curve corresponding to (b).

(d) Line sidewall (250nm, 1:1 pitch).
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(e) Profile extracted from (d) with widths
indicated.

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

(f) Width curve corresponding to (e).

Figure 2. Representation of the line sidewalls. Figures (a) and (d) show sidewall images, (b) and (e) show extracted profiles, and (c) and
(f) show the normalized width curves of those profiles sampled uniformly over 101 points from top to bottom.

the top) and letting the design rule (i.e., target) line-width (in nm) be represented byL, the normalized sidewall shape
representation (as a vector) is given by

c =
1
L

(w − w̄) (1)

wherew̄ is the approximate width at the sidewall vertical midpoint as given by

w̄ =
1
21

60∑
n=40

w(n) (2)

Examples of the resulting sidewall width curves are shown in Fig. 2 (c) and (f).

2.2. Top-down Sub-image Extraction

Previously,1 we extracted one or more sub-images from each line feature; each such sub-image was centered on the line
and the sub-image size was three times the design rule on each side. For example, for a 100nm design rule, 300nm×
300nm sub-images were extracted, and for a 250nm design rule, 750× 750nm sub-images were extracted. These sub-
images therefore covered the entire line width and were the same size relative to the design rule. The motivation for this
approach was to permit the use of multiple design rules in the same database since lines from different design rule lines
can still have very similar sidewall shapes. The relative (to the design rule) line width, however, is still implicitly included
in this approach. For example, suppose Line 1 and Line 2 have the same sidewall shape, but Line 1 is a 200nm-wide line
from 250nm design rule and Line 2 is 120nm-wide line from a 100nm design rule. In the extracted sub-images, Line 2
will appear much wider than Line 1 relative to the sub-image size and this will be reflected in all of the extracted features.
Hence, we would not expect the Line 1 and Line 2 to appear very similar in our historical database even though their



(a) Sub-image from 100nm (1:1
pitch) line.

(b) Sub-image from 180nm (1:1
pitch) line.

(c) Sub-image from 250nm (1:1
pitch) line.

Figure 3. Some example line-edge sub-images.

corresponding sidewall shapes are very much alike. In this work, we remove this implicit dependence by extracting line-
edge sub-images rather than full-line sub-images. The process for rotational correction of the entire top-down image and
line location within the full-size image is the same as described in earlier work.1 The extracted sub-images, however, are
centered on line-edges rather than the line center and their size is set to be0.6× 1.8 times the design rule. Sub-images are
extracted from both right and left line edges and then rotated and/or reflected appropriately so that the line feature is to the
right and the gap between lines (substrate) is to the left. Three example line-edge sub-images are shown in Fig. 3

2.3. Feature Computation

For each line-edge sub-image extracted, we compute and store a feature vector. To compare structures of different physical
dimensions (due to varying design rules), we use features that are invariant to the sub-image scale. The first set of features
is computed using Gabor filters3, 4 which have proven quite useful in analyzing texture-like image properties. We employ
a bank of filters that spans 6 scales and 10 orientations, resulting in a tiling of the discrete-space frequency plane that is
illustrated in Fig. 4. The energy of a sub-image that is contained in one of these 60 filter bands is used as a single feature.
We also use the logarithm of this energy, resulting in a total of 120 Gabor-based features. We resize each sub-image (using
bicubic interpolation) to be32 × 96 pixels and raster scan this image to add 3072 more features. We use the actual line
width normalized by the design rule line width as the final feature. Although line width is not necessarily an indicator of
sidewall shape (recall Fig. 1 for example), in some cases actual width and sidewall shape are somewhat correlated. The
net result is a 3193-point feature vector for each line-edge sub-image. We turn our attention in the next section to finding
a weighted subset of these features to make database querying more computationally friendly and more robust.

3. DIMENSIONALITY REDUCTION

The aim of dimensionality reduction is to map feature vectors in a high-dimensional space to some lower-dimensional
subspace, usually because of computational difficulties related to the large dimensionality of the original space. After
the feature extraction process described above, our feature vectors havep = 3193 dimensions. Although it is possible
to compare top-down feature vectors in this 3193-dimensional space, it is computationally demanding and unnecessary
since there are redundant features as well as features that are not helpful with respect to the sidewall estimation problem.
Motivated by techniques that have been successfully applied to template-based face recognition,5, 6 we adopt a linear
discriminant analysis (LDA) approach for dimensionality reduction. Note that discrimination in our system refers to the
ability to differentiate between top-downs associated with different sidewall shapes. To discriminate between different
sidewall shapes, however, we must first define groupings of similar sidewalls. We accomplish this by applying the well-
known k-means clustering algorithm7 to the 101-point normalized sidewall representations defined by Eq. (1). In the
current implementation, we employC = 20 clusters. In Fig. 5 we plot the width curves for two example clusters. The
cluster numbers (1-20) are then used as class labels for the top-down images.
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Figure 4. Tiling of the discrete-space ([−π, π]) frequency plane with 6-scale, 10-orientation bank of Gabor filters.

The goal of traditional LDA (T-LDA) is to project high-dimensional feature vectors inRn onto a lower-dimensional
subspaceRm, wherem < n, while preserving as much discriminative information as possible. One formal expression for
the corresponding optimization criterion can be written

arg max
A

tr
(
AT SbA

)
tr

(
AT SwA

) , (3)

whereA ∈ Rn×m, tr(·) is the trace operator,Sw ∈ Rn×n is the within-classscatter matrix, andSb ∈ Rn×n is the
between-classscatter matrix. The within-class scatter matrix is given by

Sw =
C∑

i=1

Ni∑
j=1

(x(i)
j − µi)(x

(i)
j − µi)T , (4)

whereC is the total number of classes,Ni is the number of samples in classCi, x(i)
j ∈ Rn is thejth vector ofCi, and
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(a) Sidewall width curves of an example cluster.
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(b) Sidewall width curves of another example cluster.

Figure 5. Clustering of the normalized sidewall width curves.



µi ∈ Rn is the mean ofCi. The between-class scatter matrix is given by

Sb =
C∑

i=1

(µi − µ)(µi − µ)T , (5)

whereµ ∈ Rn is the ensemble mean. We note thatrank(Sb) ≤ C − 1 since it is the sum ofC rank-one or zero (ifµi = µ)
matrices, where at mostC − 1 are linearly independent. For convenience, and without loss of generality, we assume
that rank(Sb) = C − 1 for the remainder of this paper. The intuitive interpretation of Eq. (3) is that T-LDA attempts
to simultaneously minimize the within-class scatter and maximize the between-class scatter. Perhaps the most common
approach for solving Eq. (3) is to solve the generalized eigen-problem ofSb andSw. This solution is can be achieved
by simultaneously diagonalizingSw andSb.8 The simultaneous diagonalization process is accomplished (assumingSw

is non-singular) by whiteningSw, diagonalizing the resultingSb, and then taking the largest eigenvalue eigenvectors of
Sb. Intuitively, this process can be described as whitening the denominator of Eq. (3) and then maximizing the numerator
over a reduced dimensionality. The converse approach of whitening the numerator and minimizing the denominator is
equivalent, but recall thatSb is generally singular and cannot be whitened.

3.1. Weighted LDA (W-LDA)

The class separability criteria that T-LDA maximizes8, 9 is the Euclidean distance between the class means. Euclidean
distance, of course, is not necessarily representative of classification accuracy, and its use as the separability measure can
cause some classes to unneccesarily overlap in the reduced space. One proposed solution for this problem is known as
weighted pairwise Fisher criteria,9 which we refer to asweightedLDA or W-LDA. To begin, we first note an alternate
expression forSb

9:

Sb =
C−1∑
i=1

C∑
j=i+1

α(∆ij)(µi − µj)(µi − µj)T , (6)

where we have assumed equal class priors,∆ij is a measure of the separation between classesCi andCj , α(·) is some
weighting function, and settingα(·) = 1 makes Eqs. (6) and (5) equivalent. In W-LDA, the Mahalanobis distance is
selected for the class separation measure∆ij :

∆ij =
√

(µi − µj)T S−1
w (µi − µj), (7)

and the weighting function,α(·) in Eq. (6) above, is selected so that the contribution of each pair of classes depends
(approximately) upon the Bayes error rate between the classes, yielding:

α(∆ij) =
1

2∆2
ij

erf
( ∆ij

2
√

2

)
. (8)

3.2. Direct LDA (D-LDA)

One problem often encountered with LDA in practice is that the original feature vectors may be of such high dimension-
ality (they are of dimension 3193 in our case) that the storage and/or eigen-analysis ofSb andSw may be impractical. In
such applications some other form of dimensionality reduction – usually principal component analysis (PCA) in the face
recognition case5, 6, 10 – is performed prior to LDA. PCA, however, does not consider class labels and can decrease dis-
criminative capability. Yu and Yang recently proposed11 an LDA algorithm –direct LDA or D-LDA – that can be directly
applied to high-dimensional data.

The critical idea that enables D-LDA is to first project all samples inRn onto theC − 1 dimensional column-space of
Sb (i.e., discard the nullspace ofSb). This is motivated by assuming that directions along which there is no between-class
scatter are not useful for discrimination. Although this assumption is not entirely true, results11 indicate the approach is
still effective. In many high-dimensional problems, the number of classes,C, is much smaller than the dimensionality
of the vectors,n. Recall that in our case, since we are using 20 sidewall clusters, we haveC = 20. Recalling that
rank(Sb) = C − 1, we can reduce the dimensionality of the problem fromn to C − 1 by projecting onto the column-space
of Sb. By discarding the nullspace ofSb, the between-class scatter matrix in the reduced space is full rank. We may then use



the simultaneous diagonalization approach mentioned above, where we whiten the numerator of Eq. (3) and minimize the
denominator. This, in fact, permits us to preserve the nullspace ofSw (if it exists), which, according to other research,11, 12

contains the most discriminative information.

As stated above, the first step in D-LDA is to find a basis for theC − 1 dimensional column-space ofSb. Recall thatSb

is ann×n matrix, which might imply a significant computational burden ifn is large. Fortunately, theC − 1 eigenvectors
of Sb corresponding to theC − 1 nonzero eigenvalues can be found by solving a much more tractableC × C problem.8

3.3. Combining Direct and Weighted LDA

From the discussion in the previous section, it would seem desirable to exploit the benefits of W-LDA and D-LDA simul-
taneously. There are, however, a couple of potential issues that must be recognized and overcome. First, we note that the
computation ofSb for W-LDA, as given by Eq. (6), first requires the computation ofSw, which is a largen × n matrix
(wheren = 3193 in our case). The matrixSw is required since Mahalanobis distance is used for∆ij and, as shown in
Eq. (7),S−1

w is needed in the computation. Noting the need forS−1
w leads us to another potential difficulty; one of the

primary motivations for D-LDA was the preservation of the nullspace ofSw. If the nullspace ofSw is non-empty, thenS−1
w

does not exist.

We propose the following approach to address these problems. First, recalling Eq. (6), we make the mild assumption
that α(∆ij) > 0. Note that this assumption implies that no two classes have equal means and thatS−1

w exists (or is
replaced with an alternative). In this case, the nullspaces ofSb from Eqs. (6) and (5) are equivalent. Hence we can remove
the nullspace by projecting onto theC − 1 dimensional column-space ofSb. Recall that the column-space ofSb can be
found by eigen-analysis of much more tractableC × C matrix. Once we’ve projected to theC − 1 column-space, we
computeSw in the reduced space and, if it is non-singular, we simply proceed with W-LDA as described above.

If, however,Sw is indeed singular in the column-space ofSb, we can use a pseudoinverse. We note, however, thatSw is
generally never singular in the column-space ofSb so long as we have at least two samples in every class (i.e., 2 top-down
sub-images associated with each sidewall cluster). This is always the case in our system, hence the projection ofSw is full
rank.

We can now describe the complete DW-LDA algorithm with the following six steps.

1. LetB ∈ Rn×r be an orthonormal basis for the column-space ofSo
b , the between-class scatter matrix in the original

space. Remove the nullspace of the between-class scatter matrix by projecting all samples ontoB.

x ∈ Rn → BT x ∈ Rr

2. In the reduced spaceRr, computeSw. If Sw is full-rank, computeS−1
w ; otherwise compute a pseudoinverse,Ŝ−1

w .

3. ComputeSb using Eq.(6) withαij given by Eq. (8) and∆ij given by Eq. (7). IfSw is singular, then use a pseudoin-
verse,̂S−1

w , when computing∆ij .

4. WhitenSb:

Sb → WT SbW = Ir×r,
Sw → S̃w = WT SwW,

whereW = ΨΓ−
1
2 is the whitening transformation ofSb with Ψ being the eigenvectors ofSb andΓ the diagonal

eigenvalue matrix.

5. DiagonalizẽSw:

S̃w → Dw = VT S̃wV,

whereDw is the diagonal eigenvalue matrix ofŜ andV contains the corresponding orthonormal eigenvectors.



6. Assume that the eigenvalues and eigenvectors ofDw andV are sorted in ascending order, possibly with some zeros
in Dw. To maximize the LDA criterion in Eq. (3) while reducing to dimensionalitym, take the firstm columns of
V which correspond to them lowest (some possibly zero) eigenvalues. The overall resulting transformation matrix
A ∈ Rn×m can then be written:

A = BWV
(

Im×m

0(n−m)×m

)
. (9)

4. RESULTS

In this section, we report results obtained using the proposed system on real semiconductor data where different sidewall
shapes were produced by varying the focus and exposure (producing a so-called focus/exposure or F/E matrix) of the
lithographic tool. The available data set tested comprised five design rules, described as follows, with top-down images
captured by one or more of three different CD-SEM tools:

• 100nm dense (2:1 pitch) lines, 47 cross-sections with 126 top-downs;

• 100nm isolated (5:1 pitch) lines, 94 cross-sections with 269 top-downs;

• 180nm dense (1:1 pitch) lines, 70 cross-sections with 201 top-downs;

• 180nm isolated (5:1 pitch), 88 cross-sections with 263 top-downs; and

• 250nm dense (1:1 pitch) lines, 113 cross-sections with 113 top-downs.

Hence, the complete set of available data comprised 412 sidewalls and 972 top-downs (complete top-down images, not
sub-images). From these 972 top-down images, we extracted 9718 sub-images (approximately 10 per full-size top-down)
according to the process of Section 2.

Hold-one-out type tests were performed by removing a single sidewall and all corresponding top-downs from the
training data when computing the transformation matrix for dimensionality reduction as described in Section 3. Each of
these hold-out top-downs was then submitted as a query. The corresponding sidewall shape was estimated via weighted
averaging (described below) and compared to the true sidewall shape. This process was repeated for each of the 412
available cross-sections, corresponding to 972 different top-down queries. For comparison to the newly proposed DW-
LDA approach for dimensionality reduction, we also tested D-LDA, PCA plus T-LDA (this is the same method from our
earlier work1), and PCA plus W-LDA.

Weighted averaging was employed to estimate the query sidewall shape, where the weighting is determined by the
distances between the query and theK-nearest neighbor, historical top-downs (where various values ofK were tested).
The distance between a full query top-down and a full historical top-down is defined by the closest pair of sub-image
feature vectors. In other words, letQ represent the full top-down query image withq = 1, . . . , SQ sub-images and let
H with h = 1, . . . , SH sub-images be a top-down in the historical (training) database. The distance betweenQ andH,
D(Q,H), is then defined to be

D(Q,H) = min
q=1,...,SQ

h=1,...,SH

d(zq, zh) (10)

wherezq andzh represent the sub-image feature vectors, computing according to Sections 2 and 3, for sub-imageq of full
top-downQ and sub-imageh of full top-downH, respectively. For the reported experiments, Euclidean distance was used
for the distance measured(·). For a given query imageQ, D(Q,H) was computed for every top-downH in the training
set and sorted in ascending order. The sidewall width curves corresponding to the closestK historical top-downs were
used to estimate the query sidewall shape,ĉ(Q) (as a vector), as follows:

ĉ(Q) =
K∑

i=1

αic(Hi) (11)



wherec(Hi) is the sidewall of nearest-neighbori and the weighting factors are given by

αi =
( K∑

j=1

1
D(Q, Hj)

)−1 1
D(Q,Hi)

(12)

so that
∑

i αi = 1. The number of nearest neighbors used in the tests was allowed to take on valuesK = 1, . . . , 50.

We computed the root-mean-square and maximum absolute errors (normalized by the design rule line-width) for the
estimated sidewall shape of every top-down hold-out using the four different dimensionality reduction methods mentioned
above (DW-LDA, D-LDA, PCA+T-LDA, PCA+W-LDA). The average of these errors across all top-down queries is plotted
against the number of nearest neighbors in Fig. 6, where the vertical axis represents the error divided by the design rule
line-width (i.e., an error of 0.05 for a 100nm design rule implies a 5nm error). We can note from the plots in Fig. 6 that
DW-LDA performs better than all of the other approaches. Interestingly, D-LDA actually performs worse than all of the
other techniques, including PCA plus T-LDA; this is contrary to some results that have been previously reported.11 We
believe this is because the D-LDA may tend to preserve noisy features that seem to be discriminative in the training data,
but that do not generalize well to the testing data. The PCA first approach, however, would minimize the impact of such
noisy features.

In Fig. 7, we show the error distributions (using all 972 hold-outs) at various positions along the vertical extent of the
sidewall usingK = 15 nearest neighbors with DW-LDA. Note that the largest errors are seen near the top (95%) and
bottom (5%) of the sidewall, but that the overwhelming majority of these errors are still with±10%.

Finally, we note that the errors reported here are, in fact, about the same or slightly higher than those reported in the
earlier approach.1 For example, as seen in Fig. 6(a), DW-LDA achieves an average root-mean-square (RMS) error of
about 1.8%, while in our previous paper we reported an average RMS error of about 1.7%. Similarly, here we achieve
an average maximum absolute (MA) error of about 5.7% while we previously reported an average MA error of about
5.5%. We hypothesize two possible explanations for this. First, since our extracted sub-images are much smaller here,
we actually used less total area of each top-down sub-image in order to make the experiments easily implementable with
current computational resources. In the previous effort, we had available and used 6629 full-line, sub-images (each three
times the line-width design rule square); here we had available 47140 line-edge, sub-images but only used 9718. Hence
our training data was effectively less diverse. We are currently adapting the existing code to make better use of this larger
training set. The second hypothesis is that the actual line width is more correlated with sidewall shape (at least in our
currently available data) than we suspected. To test this hypothesis, we intend to append some full-line features to the
line-edge feature vectors in future work.
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Figure 6. Average root-mean-square (a) and average maximum absolute (b) error over all hold-out data.
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Figure 7. Sidewall shape error distributions (as a fraction of design rule line-width) at various points along the sidewall height (top of
line structure is 100%, bottom is 0%).

5. CONCLUSIONS

In this paper, we present an image retrieval system for estimating semiconductor sidewall shapes from top-down scanning
electron microscopy images. The proposed system is a modified version of a previously proposed approach. Line-edge sub-
images are used in the feature extraction process as opposed to the full-line sub-images used in the previous work. We also
employ Gabor filter features to capture two-dimensional, texture-like features of the sub-image that may be correlated with
sidewall shape. Finally, we present a new approach for dimensionality reduction called direct, weighted linear discriminant
analysis or DW-LDA. Experimental results indicate that the proposed system can estimate sidewall shape quite accurately
and that DW-LDA is the best of several other linear dimensionality reduction techniques.
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