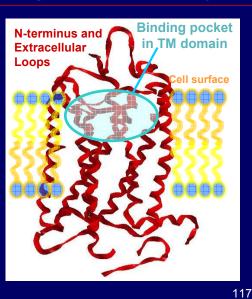
Agenda and Speakers

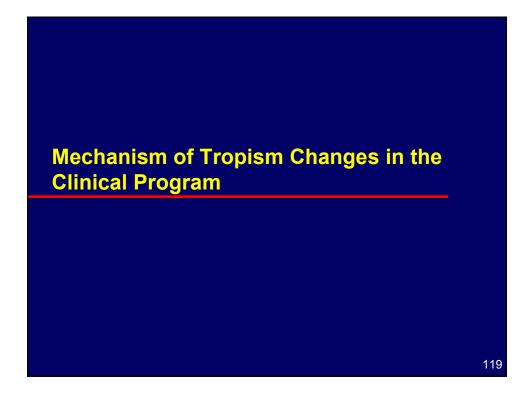
- Introductions, Background and Overview of Maraviroc Michael Dunne MD, Therapeutic Area Head, Development, Infectious Diseases
- Clinical Efficacy
 Howard Mayer MD, Global Clinical Leader, Pfizer
- Safety and Toleration Steve Felstead MB ChB, Maraviroc Team Leader, Pfizer
- In Vitro and In Vivo Tropism and Resistance Evaluation Mike Westby PhD, Virology Team Leader, Pfizer
- Medical Need and Place in HIV Armamentarium Dan Kuritzkes MD, Brigham and Women's Hospital, Harvard Medical School, Boston
- Conclusions
 Michael Dunne MD

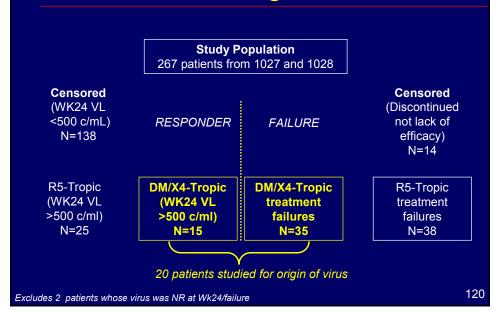


Tropism and Resistance Mike Westby, PhD Pfizer Global Research and Development

Viral Escape to Maraviroc will be Different from Anything Seen Previously

Maraviroc:


- Binds to a host protein (all other ARV have viral targets)
- Only active against CCR5-tropic strains
- Not a competitive inhibitor

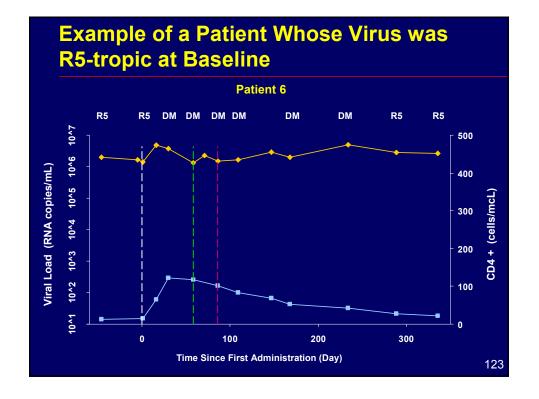

Virology Issues Relevant to the Proposed Indication

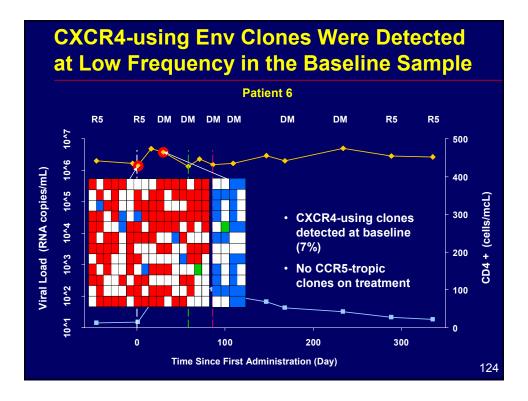
- For patients in whom CXCR4-using virus is detected, does virus emerge by:
 - Mutation of a CCR5-tropic virus (co-receptor switch)?
 - Detection on-treatment of a pre-existing CXCR4-using subpopulation?
- For patients failing with a CCR5-tropic virus:
 - Look for evidence/incidence of maraviroc resistance
 - What are the phenotypic and genotypic markers of maraviroc resistance?

118

Population Studied for Shifts in Tropism in Phase 3 Clinical Program

Strategy to Understand Changes in Tropism Occurring on Treatment

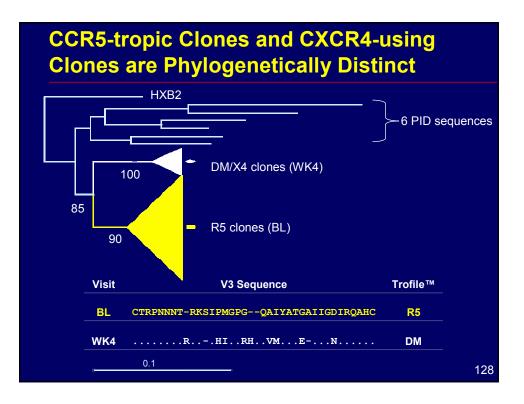

- Viral co-receptor tropism and sequencing performed on:
 - 192 Env clones at baseline (to look for CXCR4-using viruses present at a low incidence)
 - 48 Env clones on-treatment
- V3 alignments and phylogenetic trees constructed to compare pre- and on- treatment viruses

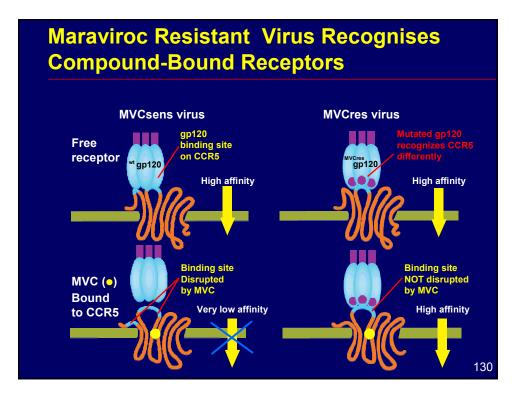

121

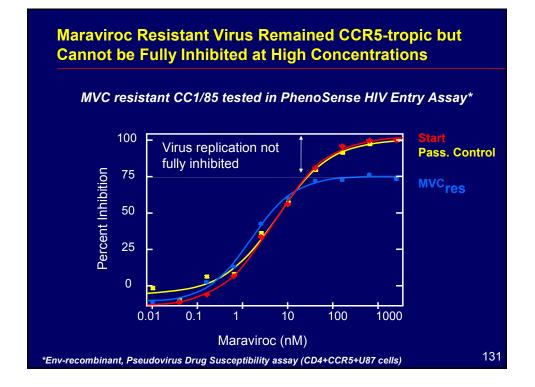
122

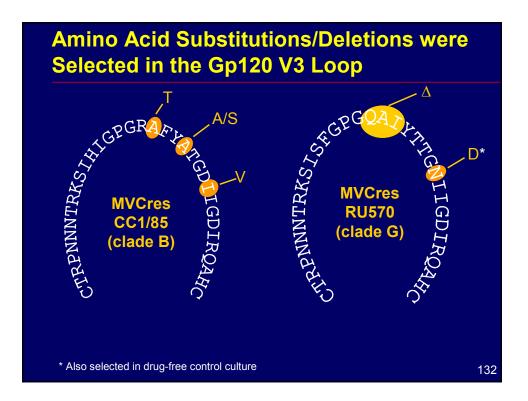
Summary of Findings on Tropism Changes Occurring on Treatment

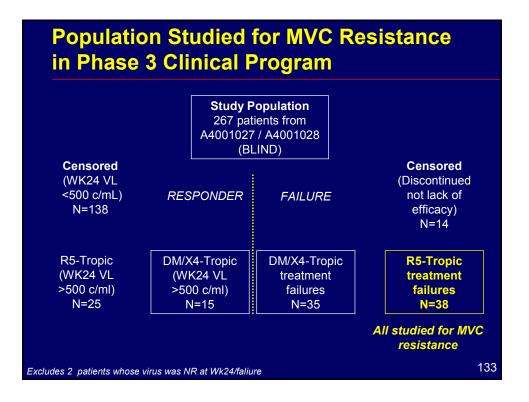
- No evidence of a switch in viral tropism in vivo
 - CXCR4-using Env clones detected at baseline
 - On-treatment CXCR4-using clones genetically distinct from CCR5-tropic clones
- No mechanistic differences in origin of CXCR4 using virus seen between maraviroc and placebo patients
- Changes in tropism were seen in absence of treatment failure

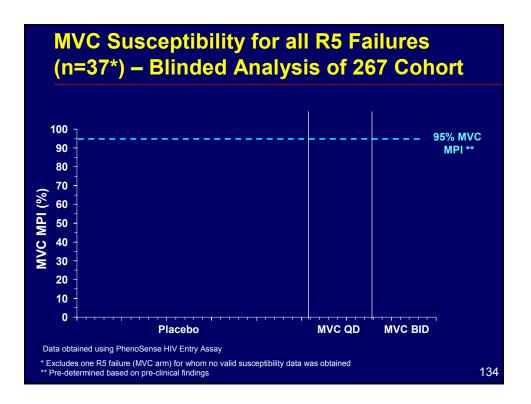


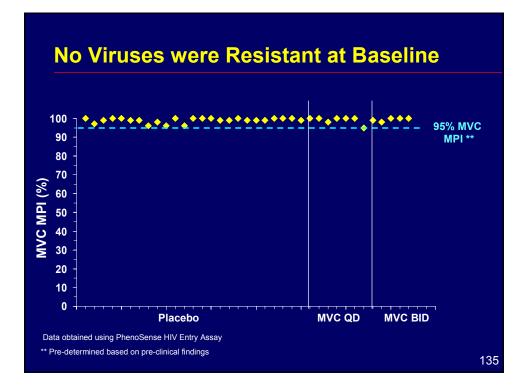

	Patient 6	
Visit	V3 Sequence	Trofile™
BL	CTRLNNNTRRSITIGPGRAFYTSDIIGNIRQAHC	R5
	R	R5
	A D	R5
	D	R5
	K.M.LKVTGT	DM
	K.M.LKVTGT	DM
	K.M.LKVTGT	DM
WK4	K.M.LKVTGT	DM
	K.M.LKVTGT	DM
	K.M.LKVTGT	DM
	RK.M.LKVTGT	DM
	K.M.LKVTGT	DM

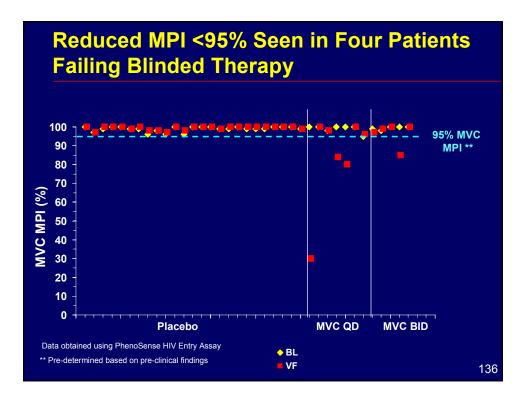












			V3 sequence							
PID	Clone ID	MPI (%)		10		2()		30	1
8	BL	100	CTRDN	NNTRKS	IPTC-	PCR	A Fry Z	יתכחד		TROAH
	BL (SDM V3 Fail)	41	CTRPNNNTRKSIPIG-PGRAFYATGDIIGDIRQAHO S A							
	FAIL	51			S Z					
	FAIL (SDM V3 BL)	98			<u> </u>	<u> </u>				
14	BL	100	CTRPG	NNTRKS	THMGI	GSS	IYAI	'GAII	GDI	RQAHC
	BL (SDM V3 Fail)	85				1	5	DV		
	FAIL	63				1	5	DV		
	FAIL (SDM V3 BL)	99								
4	BL	100	CTRPNNNTRKGIHIGPGRSFYATGDIIGDIRQVHC							
	BL (SDM V3 BL)	100		S				v		
	FAIL	55	I	S				v		A
	FAIL (SDM V3 BL)	99	I							А
1	BL	96	CIRPN	INNTRKS	INIGI	GRA	TYN	GDII	GDI	RQAHC
	BL (SDM V3 Fail)	66			H					
	FAIL	50	Т		H	K	А			
	FAIL (SDM V3 BL)	91	т			К	А			

Summary of Findings on Maraviroc Resistance

- Pre-clinical and clinical data is consistent with non-competitive mechanism of action
- Dose response curves with plateaus in MPI are a phenotypic marker of maraviroc resistance
- Mutations in the gp120 V3 loop play a key role in conferring maraviroc resistance

Combined Deck

138

Conclusions

- CXCR4-using virus is detected in approximately two thirds of patients who fail therapy with maraviroc
 - Intensive clonal analyses support the emergence of CXCR4-using viruses as being a consequence of selective suppression of CCR5-tropic clones by maraviroc
 - This is further supported by the reversion to R5tropism in patients during subsequent off-drug follow-up

139

Conclusions

- In patients failing with CCR5-tropic virus, maraviroc resistance was detected in approximately 30% (4/12) patients studied
 - Multiple pathways to MVC resistance were described
 - The correlation between markers of maraviroc resistance and clinical outcome will continue to be investigated
- Collectively the virology studies supports maraviroc acting as a highly selective and potent inhibitor of CCR5tropic viruses

140

4/23/2007

Agenda and Speakers

- Introductions, Background and Overview of Maraviroc Michael Dunne MD, Therapeutic Area Head, Development, Infectious Diseases
- Clinical Efficacy
 Howard Mayer MD, Global Clinical Leader, Pfizer
- Safety and Toleration
 Steve Felstead MB ChB, Maraviroc Team Leader, Pfizer
- In vitro and in vivo Tropism and Resistance Evaluation Mike Westby PhD, Virology Team Leader, Pfizer
- Medical Need and Place in HIV Armamentarium Dan Kuritzkes MD, Brigham and Women's Hospital, Harvard Medical School, Boston
- Conclusions
 Michael Dunne MD

142