Pointer Adaptation and Pruning of Min-Max Fuzzy Inference and Estimation

Payman Arabshahi, Member, IteE, Robert J. Marks, II, tellow, IEEE. Seho Oh. Thomas P. Caudell. Member. Itet: J. J. Choi, and Bong-Gee Song

Abstract

A new technique for adaptation of fuzay membership functions in a fuzzy inference system is proposed. The pointer technique relies upon the isolation of the specific membership functions that contributed to the final decision, followed by the updating of these functions' parameters using steepest descent. The error measure used is thus backpropagated from output to input, through the min and max operators used during the inference stage. This occurs because tbe operations of min and max are continuous differentiable functions and, therefore, can be placed in a chain of partial derivatives for steepest descent backpropagation adaptation. Interestingly, tbe partials of min and max act as "pointers" with the result that only the function that gave rise to tbe min or max is adapted; the others are not. To illustrate, let $a=\max \left[\beta_{1}, \beta_{2} \ldots \beta_{N}\right]$. Then $\partial_{a} / \partial \beta_{n}=1$ when $\}_{\text {, }}$ is the maximum and is otherwise zero. We apply this property to the fine tuning of membership functions of furay min-max decision processes and illustrate with an estimation example. The adaptation process can reveal tbe need for reducing the number of membership functions. Under the assumption that the inference surface is in some sense smooth, the process of adaptation can reveal overdetermination of the fuzzy system in two ways. First, if two membership functions come sufficiently close to each other, they can be fused into a single membership function. Second, if a membership function becomes too narrow, it can be deleted. In both cases, the number of fuzzy if-birf rules is reduced. In certain cases, the overall performance of the fuzzy system can be improved by this adaptive pruning.

Index Terms- Adaptive estimation, adaptive systems, fuzzy control, fuzzy sets, fuzzy systems, intelligent systems, knowledgebased systems.

I. Introduction

MODERN decision theory has been very successful in coping with problems where the system and its structure have been well defined; notably incases where good infor-

Manuscript received February 8, 1996; revised August 16,1996 . This wotk was supported in part by Boeing Computer Services and the Royalty Research Fund at the University of Wathington. Barlier versions of this paper were published in Prec. Int. Joint Comf. Neural Networks. Beijing, China, 1992 and froc. 2nd lEEE Int. Comf. Fozz Systems. San Erancico, CA, Mar. 1993. This paper was recommended by Associate Editor S. Kiaci.
P. Arabshahi is with the Jet Propulsion Laboraltory. Pasadena, (A 91109 USA (e-mail: payman @jpl nasa gov).
R. J. Marks, II and B. G. Song are with the Departonent of Electrical Fngineering, University of Warhington. Seatte. Wis 98195 USA (e-mail: marks(au, washingtonedu: sbg@mbonec. wathingtonedu)
S. Oh is with Neopath Inc., Redmond. WA 98052 USA (email seho(n neopath com)
T. P. Caudell is with the Deparment of Electrical and Computer Fagineering. University of New Mexico. Abhatueryue, NM 87131 USA (e-mail: pee (acece.unmedu).
J. J. Choi is with Bocing Computer Services, Recearch and Techoology, Scatle, WA 98124 USA (e-mat: jato atc becing.comb)

Publisher Item Identitier $S 10.57 .7130(97106582-8$.
mationabout the environment and an adequate mathematical model of the systemunder control have been available. This remarkable success in the analysis of mechanistic systems; i.e., systems governed by difference, differential, or integral equations, has perhaps partly contributed to the belief that such analysis techniques can be applied equally well to complex human-centered systems, In his now classic paper on the foundations of fuzzy systems and decision processes [I], Zadeh takes issue with this point of view in his statement of the principle of incompatibility, stating that:

As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics.
Consequently, over the years a number of alternative control schemes, for instance techniques employing neural networks or fuzzy sets, have been proposed and implemented [2], [3]. We provide a brief discussion of relevant topics of fuzzy systems and control here to motivate our approach.

A. Furey Sets

A fuzzy subset A of a universal set X is characterized by a membership function $\mu_{-A}(x)$ which assigns a real number in the closed interval [0, 1] to every element of X [4]. This number $\mu_{A}(x)$ represents the grade of membership of element J in set A, with larger values of it denoting higher degrees of set membership.'
For example, we can define a possible membership function for the fuzzy set of real numbers near zero in the following way:

$$
\begin{equation*}
\left.[/ . .1) . I^{\prime}\right)=-\frac{1}{1}, \frac{1}{10 r^{2}} \tag{1}
\end{equation*}
$$

The membership grade of each real number in this fuzzy set thus represents the degree to which that number is close to 0 .
We define a furey variable as a variable that can be described by a number of different furry sets. For instance, if we have a fuzty variable denoted by height, then it could be describedas tall, very tall, not tall, ete Note that the values that heightean take on can be crisp (well defined and fixed); such as when we say that a person'sheight is 2 m . However, a person with that height could be described as tall in a fuzzy way.

[^0]

Fig. I. Block diagram of a general fusty in ference system The error value from a gis en performa nee meature can be fed back and used to adapt all or one of the following: a) Membership function shapes and cardi natity: h) and d) ANo/or aggregation operators: c) the rule bate; e) the defurdification technique.

Various set operations canbe defined onfuzzy sets, just as the crisp set case. For instance, it is common to denote inter-section of two fuzzy sets by the "minimum" operation applied to the two corresponding memberships functions: ${ }^{2}$

$$
\begin{aligned}
C & =A 1-111 \Rightarrow \mu_{C}(x) \\
& =\mu_{A \cap B}(x) \\
& =\min \left[\mu_{A}(x), \mu_{B B}(x)\right] \quad \forall x \in X .
\end{aligned}
$$

Similarly, the union of two fuzzy sets canbe represented by the "maximum" operation. These operations are not unique. Ot her operators for performing fuzzy intersection, union, and complementation exist [5]. However, the min and max operations are special in the sense that they are the only continuous and idempotent fuzzy set intersection and union operators, respectively [5].

B. Fuzzy Inference

Fuzzy inference is based on the concept of the fuzzy conditional statement: IF A THEN B, or, for short $\mathrm{A} \Rightarrow B$, where the antecedent A and the consequent B arefuzzy sets.

A general fuzzy inference system consists of three parts (see Fig. 1). A crisp input is fuzzified by input membership functions and processed by a fuzzy logic interpretation of a set of fuzzy rules. This is followed by the defuzaification stage resulting in a crisp output. The rule base is typically crafted by an expert; though self organizing procedures have been suggested [6]-[15].

There are a number of different ways to implement the fuzzy inference engine. Among the very first such proposed techniques is that due to Mamdani [1 I], who describes the inference engine in terms of a fuzzy relation matrix and uses the compositional rule of inference [1] to arrive at the output fuzzy set for a given input fuzzy set. The output fuzzy set is subsequently de fuzzified to arrive ata crisp control action. Other techniques include sum-product and threshold inference. A review of these is given by Driankev el al.[16].

C. Adaptation in FuEzy Inference Systems

All of the stages of the fuzzy inference system are affected by the choice of certain parameters. A list follows.

[^1]The Fite afier: The fuzzitier in Fig. I maps the input onto the continuous interval [0, I] and has the following parameters:
I) the number of membership functions;
2) the shape of the membership functions (e.g., triangle, Gaussian, etc.); \{
3) the central tendency (e.g., center of mass) and dispersion (e.g., standard deviation, bandwidth. or range) of the membership function.
The Inference Eingine: The inference engine is the system "decisionmaker" and determines how the system interprets the fuzzy linguistics. Its parameters are those of the aggregation operators which provide interpretation of connective "AND" and " $\{\mathrm{m}$. ." An example of a parametrized union operator is the Yager union [17]:

$$
\left.\min \left[1 .\left(a^{u \prime}-\right\} b^{u}\right)^{1 / w^{\prime}}\right]
$$

where the inputs are membership values a and b, and the parameter w ranges over $(0, x) 4^{4}$

The Defuzzifier: The de fuzzification stage maps fuzzy consequent into crisp output values. Its design requires choice of the following:
I) the number of membership functions;
2) the shape of membership functions;
3) the definition of fuzzy implication, i.e., how the value of the consequent from the inference engine impact the output membership functions prior to defuzzification.
4) a measure of central tendency of the altered consequent output membership functions. The center of mass is typically used, although medians and modes can also beused to arrive at the crisp output.
It is, thus, seen that both the fuzzification and defuzzification stages require choices of cardinality, position, and shape of membership functions. The defuzzification operation itself can be parametrized, and the inference engine requires choices to be made among numerous fuzzy aggregation operators, which can be parameterized.

All of these parameters can be adaptively adjusted by monitoring a certain target performance measure in a supervised learning environment. Over the years numerous techniques for adaptation of fuzz.y membership functions, rule bases, and aggregationoperatorshave been proposed. These techniques include the following,

- Procyk and Mamdani’s self-organizing process controller [6] which considered the issue of rule generation and adaptation.
-Numerous methods involving the performing of steepest descent on the centroid and dispersion parameters of input and output membership functions [18]-[23]. Other
${ }^{3}$ As a smple example of a parancterised membership function shape. comsider the membership func tion

$$
\begin{equation*}
w(1: 1)=(1-\mid+1)^{\prime} 11 \frac{1}{2} \tag{3}
\end{equation*}
$$

 nemberhipfunctoon $\mathrm{A} \backslash 1,-x$, the tunct on $w(1,1)$, by the central limit theorem, becomes (ianswian In whape (with arow width)

atgorithms such as random search and conjugate gradient descent can beused in tuning such parameters as well.

- Pruning the number of input and ouput membership functions (see Section IV, and [14], [24]).
- Adapting the shape of' membership functions (see footnote 3).
- Adaptation of AND/OR aggregation operators. This could occur when the expert designing the rule base is satisfied with both the cardinality and shape of membership functions, as well as the setting up of rules (see [25]).
A bibliography of these techniques is available [25]. In the next section, we provide the necessary mathematical background for understanding the pointer adaptation process, which is considered in Section III. We describe the adaptation process and demonstrate via a number of examples. Section IV expands the discussion by taking a closer look at one of the artifacts of adaptation (or initialization of the rulebase), which is a possible overdeterrnination of the fuzzy system. Techniques to overcome this problem in the context of adaptive inference are provided and verified by examples.

II. Preliminaries

Fuzzy membership functions chosen for a control or decision process may require adaptation for purposes of fine tuning or adjustment to stationarity changes in the input data. Use of neural networks to perform this adaptation has been proposed by Lee et al. [18]. Other techniques proposed can be found in [20]-[23]. Our method more closely parallels that proposed by Nomura, Hayashi, and Wakarni [22]. In their work, membership functions are parameterized and steepest descent is performed with respect to each parameter using an error criterion, in order to obtain the set of parameters minimizing the error. To straightforwardly differentiate the error function with respect to each parameter, they used products for the fuzzy intersection operation. The output error backpropagated this way, was used to adjust the fuzzy membership functions.

Here, we show that the more conventionally used minimum operation for fuzzy intersection and maximum operation for fuzzy union can be similarly backpropagated. Unlike the method of Nomura et al., which updates all fuzzy membership function parameters in each stage, the pointer method proposed herein results only in the adjustment of the fuzzy membership functions that gave rise to the control action or decision output.

A. Differentiation of min and max Operations

Differentiation of the min or max operations results in a "pointer" that specifies the source of the minimum or maximum. To illustrate, let

$$
\begin{align*}
k & \left.=\max / \mathrm{f}, \cdot \beta_{2} \ldots \ldots \beta_{N}\right] \\
& =\sum_{\pi=1}^{N} \beta_{\pi} \prod_{\ell \neq \pi} \|\left(\beta_{\pi}-\beta_{t}\right) \tag{4}
\end{align*}
$$

w'here (/(.), a unit step function, is 1 for positive arguments and is zero otherwise. Note that the maxoperatorin (4) is

Fig. 2. A fuzcy estimation problem. (a) 3-[) plot and (b) contour plot, of the signal to be estimated $t\left(x_{1}, x_{2}\right)=\sin \left(\pi x_{1}\right)$ cos $\left(\pi x_{2}\right)$ over the domain $\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in[-1,1], r_{2} \in[-1.1]\right\}$
continuous and can be differentiated as

$$
\begin{align*}
\frac{\partial \alpha}{\partial \beta_{n}} & =\prod_{\varepsilon \neq n} U\left(\beta_{n}-\beta_{\varepsilon}\right) \\
& =\left\{\begin{array}{l}
1: \text { if } \beta_{n} \text { is maximum } \\
0 ; \text { otherwise }
\end{array}\right. \tag{5}
\end{align*}
$$

This result is also intuitively satisfying. Only one of the β_{i}, let us say a certain β_{n}, in (4) is the maximum. Differentiation with respect to this number then (when $\alpha=\beta_{n}$), should result in a 1 , and differentiation with respect to any other number should be zero.

In a similar way, let

$$
\begin{align*}
\delta & =\min \left[\gamma_{1}, \gamma_{2}, \cdots, \gamma_{M}\right] \\
& =\sum_{\pi=1}^{M} \gamma_{\pi} \prod_{\gamma \neq \pi} U\left(\gamma_{l}-\gamma_{\pi}\right) \tag{6}
\end{align*}
$$

The min function is also continuous and

$$
\begin{align*}
\frac{\partial \delta}{\partial \gamma_{n}} & =\prod_{t \neq \prime} U\left(\gamma_{t}-\gamma_{m}\right) \\
& =\left\{\begin{array}{l}
1 ; \text { if } \gamma_{n} \text { is minimum } \\
(): \text { otherwise }
\end{array}\right. \tag{7}
\end{align*}
$$

Indeed, any order statistic operation (e.g., the third largest number or, for N odd, the median) can likewise be differentiated. In each case, the partial derivative points to index of the order statistic.

Ill. Fugiy Mix--Max Estimation

To illustrate adjustment of furay membership functions by steepest descent, consider the furay estimation problem

TABLE:I

x_{1}	NH	NM	NS	NZ	PZ	PS	PM	PH
$\underline{2}$								
NH	PM	PS	NS	NM	NM	NS	PS	$P M$
NM	PH	PM	Ntl	NH	NH	NM	$P M$	PH
NS	PH	PM	NM	NH	NH	NM	PM	PRH
NZ	$P M$	Ps	NS	NM	NM	NS	PS	$P M$
PZ	NM	NS	PS	$P M$	$P M$	PS	NS	NM
Ps	NH	NM	$P M$	PH	$\overline{\mathrm{PH}}$	$P M$	NM	NH
PM	NH	NM	$P M$	PH	PH	$P M$	NM	NH
PH	NH	NS	PS	PM	PM	PS	NS	NM

(a)

(b)

Fig. 3. Initial membership functions for. (a) x_{1}, x_{2} and (b) $f\left(x_{1}, r_{2}\right)$. Here, NH \equiv negative high, $\mathbf{N M} \equiv$ negative medium, $\mathrm{NS} \equiv$ negative small, $\mathrm{N} Z \equiv$ negative zero, PZ三 positive zero, ...
illustrated in Fig. 2. We wish to generate an estimate $f\left(x_{1}, x_{2}\right)$ of a target function $t\left(x_{1}, x_{2}\right)$ using a set of fuzay IF... THFN rules. Here we have

$$
\begin{equation*}
t\left(x_{1}, x_{2}\right)=\sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right) \tag{8}
\end{equation*}
$$

The rule table (Table I) is generated by partitioning the domain of $t\left(x_{1}, x_{2}\right),\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in[-1,1], x_{2} \in[-1,1]\right\}$ into $64(8 \times 8)$ regions and assigning a fuzzy membership function to each region in accordance to the values of $t\left(x_{1}, x_{2}\right)$ in that region. For instance, if $t\left(x_{1}, x_{2}\right)$ takes on values close to I in certain regions, then the membership function used for those regions of the domain will be "positive high" (PH). Initial membership functions for f are thus formed in this way. The values of x_{1} and x_{2} are fuzzified in a similar manner. The initial membership functions chosen are Gaussian and are shown in Fig. 3 for x_{1}, x_{2} and $f\left(x_{1}, x_{2}\right)$.

To illustrate, consider the fuzzy IF. THEN rules with a positive medium (PM) consequent. These are highlighted in Table 1. Reading from left to right from the top of the table, they are: IF x_{1} is NH AND r_{2} is NHOR IF r_{1} isPH AND r_{2} is NH ORIF x_{1} is NM AND x_{2} is NM OR . . IF x_{1} is PZ AND x_{2} is PITHEN $f\left(x_{1}, x_{2}\right)$ is PM.

Similar rules exist for the other five categories of f.

A. Feedforward Procedure

For purposes of analysis, let the membership functions for the variable r_{1} be denoted by $\mu_{1}^{t}, i=1,2, ., \mathrm{N}$, those for the variable r_{2} by $\mu_{2}^{J}, j=1,2, M$, and those for the output variable f by $\mu_{3}^{k}, k=1,2, \cdots, K$.

For a given output membership function μ_{3}^{k}, the rules, as shown in Table 1, are of the form:

$$
\begin{aligned}
& \text { If } x_{1} \text { is } \mu_{1}^{l} \text { and } x_{2} \text { is } \mu_{2}^{J} \text { OR } \\
& \text { If } x_{1} \text { is } \mu_{1}^{l} \text { and } x_{2} \text { is } \mu_{2}^{m} \text { OR. . } \\
& \text { Then } \quad f \text { is } \mu_{3}^{k} .
\end{aligned}
$$

Let us define a set S_{k} as follows:

$$
\begin{gather*}
S_{k}=\left\{1, m \mid \mu_{1}^{l} \text { and } \mu_{2}^{l / 2}\right. \text { are antecedents of a } \\
\text { rule with consequent } \left.\mu_{3}^{k}\right\} . \tag{9}
\end{gather*}
$$

The operations to arrive at the output are as follows.

1) Perform a pairwise fuzzy intersection (e.g., minimum or outer product) on each of the membership values of x_{1} and x_{2} in μ_{1}^{l} and μ_{2}^{m} for every rule with consequent μ_{3}^{k}, forming activation values ζ :

$$
\begin{equation*}
\zeta_{l m}^{k}=\min _{l, m \in S_{k}}\left[\mu_{1}^{l}\left(x_{1}\right), \mu_{2}^{m}\left(x_{2}\right)\right] . \tag{lo}
\end{equation*}
$$

2) Collect activation values for like output membership functions and perform a fuzzy union (e.g., maximum).

$$
\begin{equation*}
u_{k}=\max _{l, m \in S_{k}}\left(\zeta_{l m}^{k}\right) \tag{11}
\end{equation*}
$$

3) These values are defuzzified to generate the output estimated value, $f\left(x_{1}, x_{2}\right)$, by finding the centroid of the composite membership function μ :

$$
\begin{array}{r}
\mu=\sum_{k=1}^{K} w_{k} \mu_{3}^{k} \\
f\left(x_{1}, x_{2}\right)=\frac{\sum_{k=1}^{K} w_{k} c_{k} A_{k}}{\sum_{k=1}^{K} w_{k} A_{k}} \tag{13}
\end{array}
$$

where

$$
\begin{align*}
A_{k} & =\int \mu_{3}^{k}(x) d x \tag{14}\\
r_{k} & =\frac{\int x \mu_{3}^{k}(x) d x}{\int \mu_{3}^{k}(x) d x} \tag{15}
\end{align*}
$$

A_{k} and c_{k} are, respectively, the area and centroid of the consequent membership function μ_{3}^{k}.

Backpropagation Adjustmem: Expert heuristics are typically used to specify the membership functions for the input (.I' $1, r_{2}$) and output (f). These functions can be adapted or fine tuned using supervised learning. The steps to adapt the input membership functions are as follows.

We first form the error function by taking the squared difference between the estimated output \int,and the desired target value t :

$$
\begin{equation*}
E=\frac{1}{2}(f-t)^{2} . \tag{16}
\end{equation*}
$$

Assume now that we wish to update parameters of a Gaussian membership function that appears either in the antecedent or the consequent of a rule. Denote these parameters by $m_{l}^{l}[q]$ and the corresponding membership function by μ_{i}^{i}. In our example, for $1=1,2$, the index $i=\mathrm{I}, 2, \cdots .8$ and for $l=3$, the index $i=1,2, \cdots, 6 ; q=1,2$, and

$$
\begin{equation*}
\left.\mu_{l}^{2}(x)=\exp \left\{\frac{\left(J^{\prime}-m_{l}^{i}[1]\right)^{2}}{2\left(m_{l}^{i}[2]\right)^{2}}\right\}\right\} \tag{17}
\end{equation*}
$$

For instance, $m_{2}^{7}[1]$ would represent parameter number 1 (of 2) of membership function number 7 (of 8) of tbe variable .12.

The steepest descent update rule is

$$
\begin{equation*}
m_{l}^{i}[q] \Leftarrow=m_{l}^{i}[q]-q \frac{\partial E^{\prime}}{\partial m_{l}^{2}[q]} \tag{18}
\end{equation*}
$$

We have, for the general case

This in turn can be written in the following way [see (10) and (11)]:

$$
\begin{equation*}
\frac{\partial F^{i}}{\partial m_{l}^{i}[q]}=\frac{\partial F}{\partial f} \sum_{k=1}^{K}\left[\frac{\partial f}{\partial u_{k}} \sum_{l, m \in S_{k}}\left(\frac{\partial w_{k} k}{\partial C_{l m}^{K}} \frac{\partial \zeta_{l m}^{k}}{\partial \mu_{l}^{i}}\right)\right] \frac{\partial \mu_{l}^{i}}{\partial m_{l}^{i}[q]} . \tag{20}
\end{equation*}
$$

From (5) and (7), and referring to (10) and (11), we obtain:

$$
\begin{align*}
& \frac{\partial w_{k}}{\partial \zeta_{l m}^{k}}=\delta\left[u_{k}-\zeta_{l m}^{k}\right] \tag{21}\\
& \frac{\partial \zeta_{l m}^{k}}{\partial \mu_{l}^{2}}=\delta\left[\zeta_{l m}^{k}-\mu_{l}^{k}\right] \tag{22}
\end{align*}
$$

where $\delta[\cdot]$, the Kronecker delta function, is equal to one for zero arguments and is zero otherwise.

Substituting the above two equations in (20), we obtain

$$
\begin{align*}
& \frac{\partial F^{\prime}}{\partial m_{l}^{i}[q]} \\
& =\frac{\partial F_{i}}{\partial f} \sum_{k=1}^{K}\left\{\frac{\partial f\left(u_{k}^{\prime}\right)}{\partial w_{k}} \sum_{l, m \in S_{k}}\left(\delta\left[u_{k}-\zeta_{i, \ldots}^{k}\right\} \delta\left[c_{k, \ldots}^{k}-\mu_{l}^{\prime}\right]\right)\right\} \\
& \quad \cdot \frac{\partial \mu_{l}^{i}}{\partial m_{l}^{\prime}[q]}
\end{align*}
$$

The two Kronecker delta functions now serve to isolate the membershipfunction whose parameter is being updated, Other

Fig. 4. Finalmembership functions for (a) x_{1}. (b) x_{2}, and (c) $f\left(x_{1}, x_{2}\right)$. Here NH \equiv negative high, $N M \equiv$ negativemedium, $N S \equiv$ negative small, N / \equiv negativezero, $P Z \equiv$ positive zero, . .
membership functions that are not used in the decision process are not adapted. Equation (23) finally simplifies to

$$
\begin{equation*}
\frac{\partial F^{\prime}}{\partial m_{l}^{i}[q]}=\frac{\partial F^{\prime}}{\partial f} \frac{\partial f\left[\mu_{l}^{i}\left(x_{j}\right)\right]}{\partial w_{k}} \frac{\partial \mu_{l}^{i}}{\partial m_{l}^{i}[q]} \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial f}{\partial w_{k}}=-\frac{A_{k} \sum_{p=1}^{K} w_{p} A_{p}\left(c_{k}-c_{p}\right)}{\left(\sum_{p=1}^{K} u_{p} c_{p}\right)^{2}} \tag{25}
\end{equation*}
$$

In general, μ_{l}^{e} is a function of many parameters $m_{l}^{2}[q]$, $q=1,2, \cdots$. For our estimation problem, using Gaussian membership functions, there are two parameters to adapt. These are the mean ($m_{i}^{\prime}[1]$), and the variance ($m_{i}^{2}[2]$). We thus have

$$
\begin{align*}
& \frac{\partial \mu_{l}^{i}}{\partial m_{l}^{i}[1]}=\mu_{l}^{\prime} \frac{\left(x-m_{l}^{i}[1]\right)}{\left(m_{l}^{i}[2]\right)^{2}} \tag{26}\\
& \frac{\partial_{\mu}^{i}}{\partial m_{l}^{i}[2]}=-\mu_{l}^{i} \frac{\left(x-m_{l}^{i}[1]\right)^{2}}{\left(m_{l}^{i}[2]\right)^{3}} . \tag{27}
\end{align*}
$$

B. Kt'sult.s

We present here results of the application of this technique to the estimation problem discussed in Section III. Fig. 4 illustrates the input and output membership functions after

TABI EII

x	N	Z	P
y			
N	Z	P	P
Z	Z	Z	P
P	N	N	Z

(a)

(b)

Fig. 5. Result of fuzcy estimation. (a) 3-1) plot. (b) Contour plot, of the estimated signal $f\left(x_{1}, r_{2}\right)=\operatorname{sill}(\pi, 1,) \cos \left(\pi r_{2}\right)$ over the domain $\left\{\left(x_{1}, x_{2}\right) \mid r_{1} \in[-1,1] . r_{2} \in[-1,1]\right\}$.
adaptation and Fig. 5 shows the (much improved) estimation result

IV. Adaptive Pruning of Fuzzy Inference Systems

As we have shown, the parameters of the input and output fuzzy membership functions for fuzzy IF-THIN inference can be adapted using supervised learning applied to training data. The specific case of adaptation of rein- max inference using steepest descent has the advantage of adapting only those membership functions used in the fuzzy decision process for each training data input-output pair.

In the process of adapting, two membership functions may drift close together. If the underlying target surface which we wish to estimate is smooth, then the membership functions can be fused into a single membership function. Alternately, if a membership function becomes too narrow, it can be totally deleted. In either case, the fuzzy decision process is pruned. In artificial neural networks, pruning neurons from hidden layers can improve the performance of the neural network [26]. Likewise, the performance of fuzzy inference can be improved through the adaptation and pruning of membership functions. The number of If-THEN rules is also correspondingly reduced.

Assume that the center of mass of μ_{1}^{\prime} (membership function i of input variable r_{1}) is $m_{1}^{\prime}[\mathrm{I}]$ and the dispersion (spread) of μ_{1}^{\prime} is parametrized by $m_{1}^{\prime}[2]$. The parameter $m_{1}^{\prime}[2]$ is also proportional to the area of μ_{1}^{\prime}. The membership functions μ_{2}^{\prime} (for input x_{2}) and μ_{3}^{k} (for the output) are likewise parametrized,

x	$\mathrm{~N} Z$	P
y		
\mathbb{N}	$? \mathrm{P}$	P
Z	2	P
P	\mathbb{N}	Z

TABLEE III
 Tablellis Anvifil atio. The Retif 7 äbi t Shown Hrerf Rf selts

x	N	Z	P
y			
N	Z	P	P
P	N	N	Z

table IV
Target Rule for Example 1

TABIF: V
Ruif Tablafor Exampif 1

If the output membership functions are μ_{3}^{k}, then the defuzzified output using the center of mass of the sum of weighted output membership functions is

$$
\begin{equation*}
o=\frac{\sum_{k} \alpha_{k} m_{Z_{k}} \sigma_{Z_{k}}}{\sum_{k} \alpha_{k} \sigma_{Z_{k}}} \tag{28}
\end{equation*}
$$

Although we will use min-max inference, the pruning procedure described below can be applied to other fuzzy inference methods, wherein, for example, alternate forms of defuzzification are used or intersections and unions other than minand max are employed [5], [27].
Herein, we will assume all linguistic variables are scaled to the universe of discourse on the interval $[-1,1]$. Gaussian membership functions of the form

$$
\left.\mu(x)=(\exp)-\left(\frac{x-m}{\sqrt{2} \sigma}\right)^{2}\right] f
$$

will be used throughout ($m \quad m_{1}^{l}[1]$ and $\sigma \equiv m_{1}^{l}[2]$).

Fig. 6. (a) Initial membership functions for Example 1. The top, midak, and bottom ploss are for μ, \cdots, μ, , and $/ \%$, respectively. (b) Initial niembership functions. (c)-(n) Evolution of the adaptation, fusion, and annibitation process

A. Membership Function Fusion

Fusion of two membership functions occurs when they become sufficiently close to each other. Annihilation occurs when a membership function becomes sufficiently narrow. As illustratedinFig. lo, two membership functions are fused when the supremum of their intersection exceedsathreshold, γ. It the means of the membership functions priortofusion
are m_{1} and m_{2}, then the mean of the fused membership is set equal to the center of mass of the sum of the membership functions

$$
m_{\text {!union }}=-\frac{m_{1} \sigma_{1}+m_{2} \sigma_{2}}{\sigma_{1}+\sigma_{2}}
$$

where σ_{1} and σ_{2} are the spread parameters of the two where σ_{1} and σ_{2} are the spership functions. Similarly, the spread of the fused
membersher

Fig. 6. (Continued) (e) (h) Evolution of the adaptation, fusion, and annihilation proces.
function is obtained from

$$
\sigma_{\text {tin inn }}^{3}=\frac{\sigma_{1}^{3}+\sigma_{1}^{3}}{\sigma_{1}+\sigma_{2}}
$$

Membership fusion has a direct impact on the fuzzy decision process. ${ }^{\prime} \%$ illustrate, consider Table 11. Here, $N=$ negative, $Z=$ near zero, and $\mathrm{f}^{\prime}=$ positive. Assume that the membership functions for.t corresponding to N and $/ /$ fuse. The two left most columns of the rule table are combined into one.

A new linguistic variable, called $N Z$ labels this column. It remains to specify the corresponding rules. When two adjacent rulesare the same prior to fusing. the answer is simple. For example, since $X_{i}=N$ and Z both have Z as a consequent for $Y_{j}=Z$, the clear choice for the fused rule table ${ }^{\text {for }}$ r
$X_{1}=N Z$ and $\xi_{j}=Z$ is the consequent Z. For $Y_{j}=$ $X_{i}=N Z$ and $\xi_{j}=Z$ is the consequent Z. For $Y_{j}=N$,
however, there are different consequent when $X_{i}=N$ and $X_{1}=Z$. To determine the consequent for' $X_{i}=N Z$ and Y; - V (marked "'?" in Table II), we chose ${ }^{\text {to query the }}$

Fig. 6. (Continued.) (i) (1) Evolution of the adapation, fusion, and annihilation proces
training data base. Specifically, training data was found where $(x, y) \approx(m, v z, m$,$) . The value 0!$ the target, $/$, for this input pair is compared to the means of the existing output membership functions. The membership function having the closest mean is assigned as the consequent.

Output membership functions can alsofuse. If, for example, the output $\%$ fuses with N in the left-hand rule table in Table II, the resulting fused rule table will place $N /$ s in the six boxes currently occupied with Z sor $N s$.

Once fusion occurs, the membership functions are further adapted to the training data. Additional fusion or annihilation can follow.

B. Membership, Function Annihilation

If the contribution of a fuzay membership function becomes insignificant, then it can be annihilated. To illustrate, consider Fig. 11. The membership function $\mu 2(x)$ becomes insignificant with respect to the membership function.

E. 6. (Continued.) (m) (n) Fvolation of the adaptation. fusion, and ambibiation process.
$\mu_{1}(\mathrm{r})$, when, for all x,

$$
\sigma_{1} \mu_{1}(x) \geq \beta \sigma_{2} \mu_{2}(x)
$$

where $\beta \geq 1$ parameterizes the degree of insignificance High β corresponds to a severe criterion for annihilation. It is sufficient for the above criterion to hold only for $r=m_{2}$

$$
\begin{aligned}
\sigma_{1 \mu_{1}\left(m_{2}\right)} & \geq \beta \sigma_{2} \mu_{2}\left(m_{2}\right) \\
& =\beta \sigma_{2}
\end{aligned}
$$

The process is valid when the underlying target surface is smooth.
When an input membership function is annihilated, all rules using it are deleted from the fuzzy rule base. For example, if the membership function corresponding to $Y_{j}=Z$ in the lefthand rule table in Table II is annihilated. then the rule table after annihilationwould be as shown in Table III.

An output membership function can likewise be annihilated. In such a case, one of the remaining membership functions must take its place in the rule table. The choice, again, is made by a query to the training data base as was done for input membership function fusion.

After annihilation, the membership parameters can be further adapted using the training data. Additional annihilation and/or fusion might subsequently result.

C. Examples

We illustrate the process of membership function fusionand annihilation with two examples. The first is a proof of principle wherein convergence is to a solution known to be optimal. The second uses adaptation to fit a giventarget surface We usedthe parameters , $3-2$ and $\gamma=0.9$ for input membership functions and $\gamma=0.95$ for the output. Iteration was performed
until $\Delta E / L \approx 10^{-3}$. In cases where a membership function could either be fused or annihilated, annihilation was given priority.

1) Convergence to a KnownSolution: In this example, the target membership functions shown in Fig. 6 were used. The target rule table is shown in Table IV. Using a universe of discourse on $[-1,1]$, the membership functions are indexed from 1 for large negative numbers upward, The largest index corresponds to large positive numbers.

A total of 500 training data points were randomly generated from these target functions.
Overdetermined initialization is shown in Fig. 6(b) with a rule table shown in Table V. Input membership functions are spaced evenly. Spacing of output membership functions is determined from a histogram of the training data target values. The histogram is divided into intervals of equal area. The number of intervals is chosen to be equal to the number of output membership functions. The means of the output membership functions are places at the boundaries of these intervals.
The resuh of the first steepest descent adaptation is shown in Fig. $6(\mathrm{c})$. Compare this to Fig. $6(\mathrm{~d})$. The two left most membership functions for r (top plot) fuse. The third fuse. The third membership function for.r is annihilated, etc. For the output, two membership functions are annihilated. The rule table becomes that shown in I'able VI.

The membership functions in Fig. 6(d) are further trained. The result is shown in Fig. G(e). Compare this to Fig. $\mathbf{6 (f)}$, where four input membership functions are annihiated. The results of Fig. $6(f)$ are adapted and converge to the result shown in Fig. $6(g)$. As can be seen in Fig. 6(h), two more input membershipfunctionsare annihilated. Furtheriteration yields

Fig 7. (a) Intial membership functions for Example 2. (b) Finat membership funtions tor Fiample ?

y	1	2	3	4	5	6	7	8	9	10
x										
1	1	1	2	2	2	2	2	1	1	1
2	2	2	2	3	3	3	2	2	2	2
3	2	2	3	3	3	3	3	2	2	2
4	2	2	3	3	3	3	3	2	2	2
5	2	2	2	3	3	3	2	2	2	2
6	1	2	2	2	2	2	2	2	1	1
7	1	1	2	2	2	2	2	1	1	1
8	1	1	2	2	2	2	2	1	1	1

TABLE: VII
Table: V After Figther Adafiation, Fosion, ant Ansibil ation

y	1	2	3	4
x				
1	1	2	2	1
2	2	33	3	2
3	2	3	3	2
4	1	2	2	1

6(i). For y (middle plot), three membership functions fuse to two membership functions [see Fig. $6(\mathrm{j})$]. The fuzzy rule table corresponding to Fig. 6(j) is as shown in Table VII. The results in Fig. 6(j) are adapted to those shown in Fig. 6(k).
Fusion occurs asshown in Fig. 6(1). Additionaladaptation results in the middle two membership functions for " (middle plot) shown in Fig. $6(\mathrm{~m})$ to be graphically indistinguishi ible. They arefused in Fig. 6(n). The rule table is now exactly the target table in Table IV. The input membership functions are

Fig. 8 . Contour plots of the (a) tatget, (b) intialimation, and (c) linal result tur Bxample ?
the same as in Fig. $6(a)$. The output membership functions are not the same; all defuzzitications from these membership functions though, are. Output membership functions $\left\{\mu_{z_{A}}(x)\right\}$ will yield the same defuzatication as the membership functions $\left\{\mu_{2}(. r / \sigma)\right\}$ when defuzzitication is performed as in (28).
2) Regression Fitting of a Surface: In this example, we assume, from (8), a target surface of $1\left(r_{1}+r_{2}, r_{1}-r_{2}\right)$. The initial membership functions are shown in Fig. 7(a). A contour plot of the target is shown in Fig. 8(a). The tirst initialization

Fig．9．Con vergence of the monse for Example 2

Fig．10．Illustration of the criterion for fusion．When wo membership functions beconte sufficiently close so that the maximum of their intersection exceeds－；，then the two members hip funct ions ate fused into a single membership function

Fig．I I．Illustration of the process of membership function anmitation． When the membership function，$\mu 2(x)$ ，becomes narrow with respect to an adjacent membership function，it can be annihilated．
is shown in Fig．8（b）．A total of ten steps of iteration followed by fusion and annihilation were required prior to convergence． The results are shown in Figs．7（b）and 8（c）．Convergence mean square error is shown in Fig．9．Between odd and even steps（e．g．， 3 and 4），error is reduced by steepest descent． Between the even and odd steps（e．g．， 4 and 5）fusion and annihilation are applied，generally resulting in an increase in error．

The final rule table is shown in Table VIII．The number of rules has been reduced from $441\left(21^{2}\right)$ to $169\left(13^{2}\right)$ ．The cardinality of［he set of consequent has been reduced from 8 to 5.

V．Conclusion

We have considered a new technique for adaptation of fuzzy membership functions in a fuzzy inference system．The technique relies upon the isolation of the specific membership function that contributed to the final decision，followed by the

TABIEVII

\boldsymbol{Y}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
\boldsymbol{x}													
$\mathbf{2}$	$\mathbf{3}$	4	$\mathbf{4}$	$\mathbf{3}$	2	$\mathbf{2}$	3	$\mathbf{4}$	4	3	$\mathbf{2}$	2	3
3	4	s	$\mathbf{5}$	4	3	3	4	5	5	4	3	3	4
4	3	4	5	4	3	3	4	5	5	4	3	3	4
5	2	3	3	3	2	$\mathbf{2}$	3	4	4	3	$\mathbf{2}$	$\mathbf{2}$	3
6	2	3	3	2	1	$\mathbf{1}$	$\mathbf{2}$	3	3	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
7	3	4	4	3	2	$\mathbf{2}$	$\mathbf{2}$	3	4	3	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{2}$	$\mathbf{2}$	3	$\mathbf{2}$	$\mathbf{2}$	3								
8	4	5	5	4	3	3	4	5	5	4	3	3	4
9	4	5	5	4	3	3	4	5	5	4	3	3	4
$\mathbf{1 0}$	3	4	4	3	2	$\mathbf{2}$	3	4	4	3	$\mathbf{2}$	$\mathbf{2}$	3
$\mathbf{1 1}$	2	3	3	2	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	3	3	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
12	2	3	3	2	1	$\mathbf{1}$	$\mathbf{2}$	3	3	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{1 3}$	3	4	4	3	2	$\mathbf{2}$	3	4	4	3	2	2	3

updating of this function＇s parameters using steepest descent． The error measure used is thus backpropagated from output to input，through the min and max operators used during the inference stage．This was shown to be feasible because the operations of min and max are continuous differentiable functions and，therefore，can be placed in a chain of partial derivatives for steepest descent backpropagation adaptation． More interestingly，it was shown the partials of min and max （or any other order statistic，for that matter）act as＂pointers＂ with the result that only the function that gave rise to the min or max is adapted；the others are not．We applied this property to the fine tuning of membership functions of fuzzy min－max decision processes and illustrated with an estimation example．

Membership functionscan be parameterized in ways other than those considered here as well．In general，the shape of the membership functions of＇the control action can be used to assess the quality of the roles．A strong single peak in the membership function signifies the presence of a dominant control rule；two distinct strong peaks are a sign of the existence of contradictory rules；and a very low or weak membership value of the maximum of the membership function indicates that some rules are missing，and the rule database is incomplete［28］．Thus，parameterizing the peak value of the membership function，in addition to its mean and variance，can provide further improvements in the fuzzy control process．

We also looked at adaptive pruning of fuzzy inference systems as a solution to the problem of overdetermination in fuzzy systems．This resulted in a reduced－complexity system with similar or better performance．

Rehtrences

1）I．A．Zadeh．＂Outline of a new appoath to the anatysis of complex जhems and decivion proceses，＂HELE：Trams．Swat．Man．Cvbern．vol． SMC－3．pe． 2×4.4073.
 Nonh Holla me，1985．
 Pが，190\％。

 glewerd Clifh，NJ：Pentice－hath，1988．
 cometolles．＂Atrmatha wol．15 pr． 1530.1979.

 P11141-1

 Edinbureh. Scotand, Mar. 1991, pp. 971976.
10]
"Fast, self-orgamiang controltor industral plllccl.es," mi/go
 Bangor.U.K Sept 199 (, pp. 153357.
|11| E. II. Mamdaniand S. Asibiatn. "An experment In lingumbesymesa
 1974.
|12| N Vijeh. "Self orgaminge fuzzy logic control ol a levelcontrol rig," in
 pe. 303308.
|13| IX. Wang and J. M. Mendel, "Gencrating, furs rulen by learning from examples, inf'roc./94/ [[. [.1. Im. Symp. Imil/ C'mb/Arlington. VA.入u! 1991, pp. 26, 268.
[14] __._. "Generating fuzty rule. by learning trom examples." /f tot Trans. Swe Man, Cvern., vol. 22. pp. 141+1+27. Junc 199?
[15] T. Yamaguchi, T. Takagi and 1'. Mita, "Self-[)rg.Irll/i(Ig controlusing fur刀 neural networks," Im. J. Contr. vol. 56, no. 2, plo 115439, 1992
[16) D. Driankov, H. Hellendoorn, and M Reinfrank, An Imminu lum w Fu-: Comtrol New York: Springer-Verl<lg, 1993.
[17] K. K. Yager. "On a general class of furm connectives." Fur: Sits and Sistems, vol 4, pp. 235.242, 1980.
[18] C. T. I.in and C S. G. Lee, "Neu alnemork bated fur/) logic control and decisionsystem," HEt: Trams (ompul vol 4(1, pp,13201336, Dec. 1991.
[19] R. J. Marks, II, S. Oh, P. Arabshathi, '1. P. Caudell. J. J. Choh, and B J. Song. "Steepest descent adaptation of min max fursill- Then rules," in Proc: Int. JoimConf. Neural Networks, Beijing, China, I ')92
[20] Y. Hayanti, E. Crogala, and J. J. Buckley, "Fuzsy neural controller," in Pror. /st IEEE Int. Conf Fuzey Syst, San Dicgo, C A, Mar. 1992, pp. 197-202.
[2]] J. S. R Jang, "Fuzey controller design without domainexperts" in frog /st IFEE: In Conf. Fuzzy Syst San Diego. ('A, Mar. 1992 pp 289296.
[22] H. Nomura I Hayashi, and N. Wakami, "A karning methed of torsy in ference by descent method," i n Proc. Ist lt bit Int. Col if. I WE: Systems, San Diego, CA, Mar.1992, pp. 485491.
[23] 1. X. Wang and J. M. Mendel, "Back-propagation furcy sy stem an nonlinear dynamic systemidentifiers," in Proc./st IELEEInt.Conf. HaE: Syst..San Diego, CA, Mar.1992, pp. 140914 IX .
[24] B. G. Song., R J. Marks, 11, S. Oh, P. Arabshahi, and T. P. Caudelt, "Adaptive membership function fusion and amihilation in furcs it then rules," in Proc. 2 nd ILELE: Int. Comf. I uey Swtems, Sanfrancinco, CA, Mar.1993, pp. 9(5-967.
[25] P. Arabshahi, R. J. Marks, II, and K. Reed "Adaptation of furrs inferencing: A survey." in Ledrming and Adaptive Sy stems, (Irox ILEE/Nagova (han. Workshop), Nagor a, Japan. Nov. 1993.
[26] K. Reed. R. J. Marks, II, and S. Oh, "Similaritichef emor rewabrization. sig moid gain scaling, tareet smoothing, and tramme w ith jitter." /f:t/ Trums. Netural Networks, vol 6, pp.529538, Miry 199 S.
$[27]$ T. Terano, K Avai, and M Sugeno. Fifa Sivkm, Theon and IN Applications. New York: Academic, 1992
[28] P J. KingandE.H.Mamdani, "The application of fuef cont obsytem, to industrial processes." Autmatica. vol. 13, pp. 235 242. 1977°.

Payman Arabshahi (S'93-M95) received the B.S.E. degree in electrical engimering from the University of Alabama. Huntsville, in 198s. and the MS. and PhD. degrees, both in electrical enginecring. from the Uniserity of Warhingons. Seatles, in 199 and 199 , respoctiscly.

From 199+ 101996 he was visiting Assistant Prolewor with the Unicersily of Atahama, Hunswille engaged in a number of revearch projech in furs pattern recogntion, and degital mobike networhing in comjunction with Neda Communications, Bellever. WA. From loug to 1907 he was on the facully of the Univervity of Wanhington, and, since April 1997 , he has been whih the Communication Sybems and Research Section of NASA/Caltedis Jet Propulion latoratory. Pasalena. (A. His reseath interest are in fors) ysums, digital signal procerving, athd digital commmications.

Dr. Arabhaht is the Editer-in-chief of the HEEE: Nearal Network Comacil', Homepate on the Worid Wide Web.

 Secton of the Optical Society of America and was elected that organization? list Homorary Member. He in the Editer-in-Chicf of the EEEE Trassurfoms

 Editorial Board of the Journal on Intelligent Comerol. Vearnarmputims and farev Iogic (log2 present. He was aho the topicat editor for Optical Signal Procering and Image Science for the Jommal of the Opical Socicty of tmerica

A (1989 1901) and a member of the Editorial Board for the Intermational Jomonal of Veurecomputing (1959. 1992). He sersed as North American I baison for the 1901 Singapore International Joint Conference on Neural Networh, IJCNN, International Chatr of the 1992 RNNS/IEEE Symposium on Neuremtormatios and Neuracomputing (Kostor-on-Don, U.S.S.K.) and Organizational (hair for both the 1993 and 1995 [EEE: Virtual Reality Anntal International Symposium (VRAIS) in Scatte, WA and Rakeigh. NC'. re-pectisely, and the IEEE:SP Itternational Symporium on Time-Frequenc: and Time-Scale Analysis (Victoria. BC, 1992). He aho sersed as the Pregram and Tutorials Chair for the First International Forum on Applications of Neural Network to Power System (Scatte, WA, 1991). He was cleeted th the Board of Governons of the IEtEE Circuits and Systems Society (1993 1996) and was the cofounder and first Chair of the IFEE Circuits and Sbicms Society Technical Committer on Nearal System and Applications. Fle is the Gencral Chair of the 1995 International Symposium on Circuit and Systems. Seattle. He was the Technical Progran Director for the tirst ItEE World Congress on Computational Intelligence. Orlando. Fl. July 194 and is the Program Co. Chair for the IEEE/IAFE Conference on Financial Fnginecring (NY, 1995), the 1995 RNNS/REEF Symposium on Nicurointormaties and Neurucomputing (Rosor-on-Don, U.S.S.R.) and the 1995 International Conference on Neural Networks (ICNN) in Perth. Australia. He is the General Co-Chair of the 1996 ItEEE/IAFE: Conference on Financial lengineering. NY. Seven of his papers have been reproduced in volumes of collections of outstanding papers. He has theee U.S. patents in the field of artificial neural networh and signal processing. Fle is the author of the book Introduction to Shamon Sampling and Interpolation Theory (SpringerVerlag, 1991) and is Editor of the companion volume. Adranced Topics in Shannon Sampling and Intcrpolation Theory (Springer-Verlag. 1993). He is ako the editor of the volume Fuey Legic Technology and Applications, (IEEE: Technical Actisitics Board. Piscataway, NJ, 1994) and is a co-Editor, with J. Zurada and C. J. Robimon of Computational Imelligence: Imitain,' Life (Piscataway, NJ: ILEEE Press, 1994).

Seho Oh is a revearch semotist with Neopath Inc.. Bellevue. WA. and ant athliate Awistant Profeswo with the Department of Electrical Enginecring. Eniversity of Wathington. Scatle. He has authored numerous anchival and conference papers on the theory and applications of neural netuork. He research interest are in meural computing, digital signal processings and patlern recogention.

Thomas P. Caudell (M91) received the B.S degree in physios and mathematio from Californa State Enivervity. Pomona, in 1973, and the M.S and Ph.f. degres in physion from the Enivernty of Arigona. Tucoon, in 1978 and 1980, respectively.

He s an Asomate Proterson of Electrical and Computer Engincering with the Universily of New Nexico. Atbuquerque, where he in conducting rexarch
 reality and atumented reality, and aptical computing. Prom to moving to NAI.

 propect. His technical background is in physics, optič, atronomy, and mathematic,
br. Citudell in a member of the lfitl: Nemal Netmoth Council, the Anoctation for Computing Machinery, the Imernational Neual Netwoth Sixety. and the Optical Sixaty of Americat
J. J. Choi received the B.S.I and M.S.I: degrees in electronics engenering from Inta University, Inchon. Korea in 1979 and 1981. respectively, and the M.S.I E. and Ph.E degrecs, ator in electrical engisecring. from the liniversity of Wanhington. Seathe, in 1987 and 1990 , rebpectively.

From 1981 to 1985. he wath with the Department of Electronic Enginecring. Ind Korean Ait Forse Academy. Koreal In 1990, be jowed Bosing Computer Services. Seatle. WA. where he develped neural networks. fuesy logic, and adaptive systems in the area of real-time signal processing. intelligent diagmosis. and pattem recogntion. Since 1992 he has been att aflitiate Assistant Profesor and graduate faculty with the Electrical lingineering Department. University of Washington. He is also with the Ellectrical Enginecring and Heoronic Technology Depanment. Cogswell College North. Kirkland, WA His curtem research interest include neural networks, furry logie, adaptive signal processing, machine monitoring, and pattern recognition.

In. Choi is curnently an Associate Editor for the IEED Thansachons on Numal Nomorks. He is aloo a member of IEEE. Ciruits and Systems Sovicty and Ela Kappa Nu.

Bong-Cec Song is a research associate with the the Department of Electrical tangenering, University of Wabhogton. Seattle. Hob research interest are in dgeital communication and signal prosessing

[^0]:
 of discourse to the sed \{ $1 . I$ \}

[^1]:

