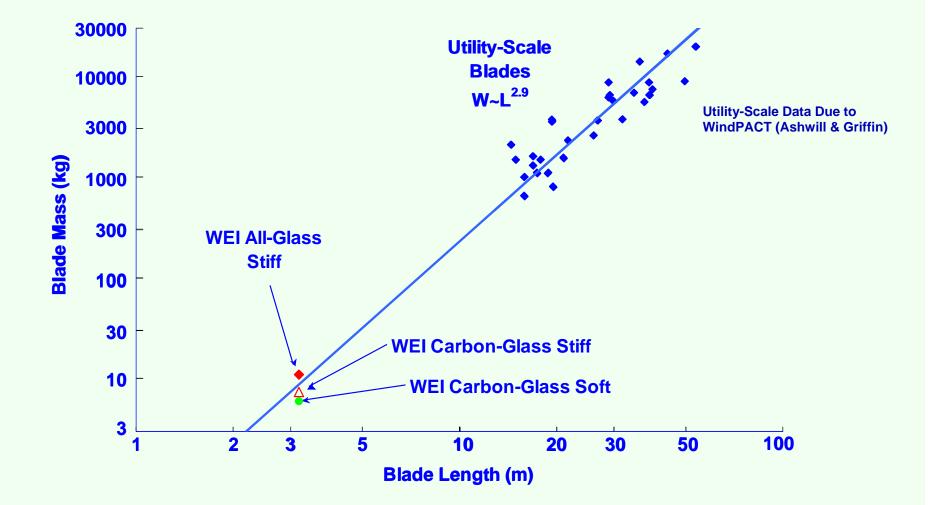


FABRICATION & TESTING OF 3M CARBON BI

KYLE K. WETZEL, PH.D. WETZEL ENGINEERING, INC. LAWRENCE, KANSAS

2006 SANDIA BLADE WORKSHOP APRIL 18-19, 2006 ALBUQUERQUE, NEW MEXICO

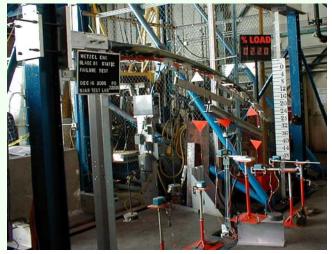

Acknowledgements

- U.S. Department of Energy provided financial support through Grants
 - DE-FG02-03ER86175 (SBIR)
 - Dr. Jack Cadogan is technical monitor
 - DE-FG36-03GO13136 (DWT)
 - Drs. Paul Migliore, Jim Green, & Trudy Forsyth, technical monitors
 - Keith Bennett, Administrator
- National Institute for Aviation Research at Wichita State University assisted with fabrication and testing
 - Dr. James Locke was PI at NIAR
 - Dr. Tim Hickey supervised blade testing
 - Sanjay Sharma developed our VARTM process & supervised the shell fabrication
 - Terrence Seet & Michelle Man and others assisted

BLADE WEIGHT TRENDS

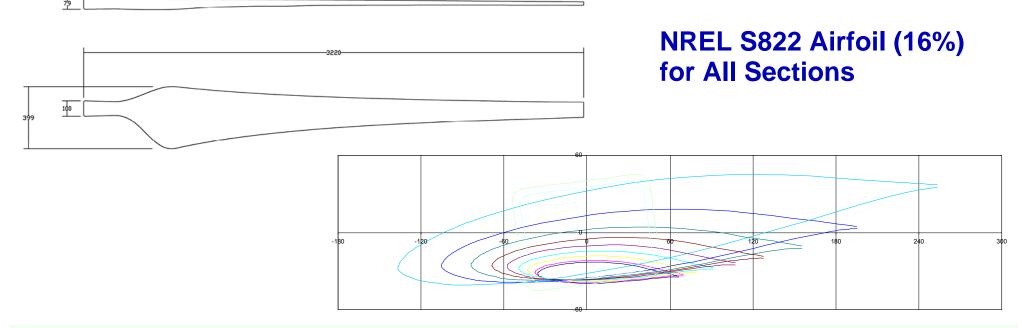
MOTIVATION FOR THE PROJECT

- Aerodynamically Efficient Blades for Small Turbines
 - Optimized twist & taper
 - High-quality manufacturing \rightarrow VARTM
- . Light-weight designs for pitch-control
 - High-quality structural design
 - Carbon-glass hybrid structure
 - High-quality manufacturing
- . Twist-flap coupling



PROJECT ACTIVITIES

- Blade Design & Analysis
 - Aerodynamic Design
 - Structural Design (ANSYS)
- Blade Fabrication (VARTM)
- . Blade Testing
 - Static (to failure)
 - Fatigue (Accelerated Lifetime)



under and the second second

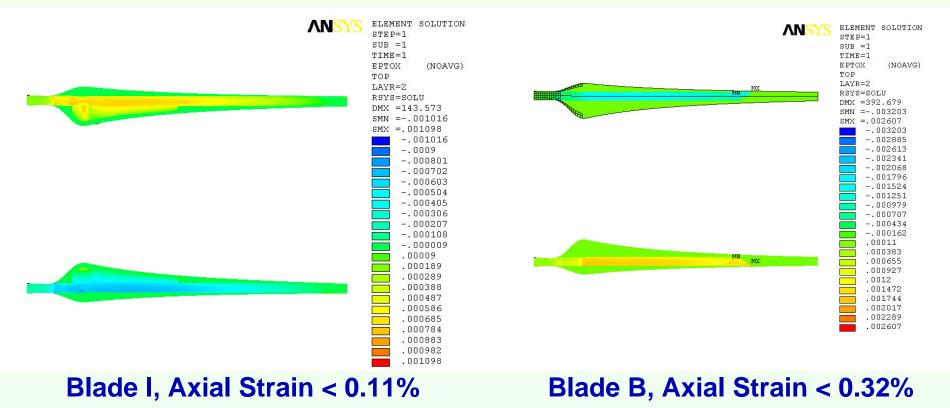
Aerodynamic Design

- Maximize energy capture over the entire range of below-rated wind speeds, considering:
 - spanwise distribution of chord length
 - spanwise distribution of twist
 - shaft speed
 - pitch schedule as a function of below-rated wind speed

Structural Design

Blade	Spar Cap Construction	Skin Fiber Construction	Design Tip Deflection	Designed	Fabricated	Tested
А	100% Glass 0°	100% Glass ±45°	420 mm	Yes	Yes	No
В	100% Carbon 0°	100% Glass ±45°	420 mm	Yes	Yes	Static & Fatigue
C1	92% Carbon off-axis 8% Glass 0/90°	100% Glass ±45°	420 mm	Yes	Yes	Static
C2	Im	Yes	In-Progress	Pending		
D	92% Carbon of-axis 8% Glass 0/90°	100% Glass off-axis	420 mm	Yes	In-Progress	Pending
Е	Carbon/glass	420 mm	Yes	In-Progress	Pending	
F/H/I1	100% Carbon 0°	100% Glass ±45°	150 mm	Yes	Yes	I1 Static
12	In	provement on I1	Yes	Yes	Static	
G	100% Carbon 0°	100% Carbon ±45°	420 mm	Yes	Yes	Pending

- Clamshell Design with Spar Caps
 Integrated into the Shells
- C- or O-channel shear web bonded between shells in a secondary process


Structural Design

- Structural Optimization Pointed to a Spar Cap Tapered in Width & Thickness
- Fabricating Tapered Width was a Nuisance and saved minimal weight
 Final Designed with the second secon
- Final Designs all blades use a 4" constant-width spar cap

Structural Design

- . Design Requirements:
 - Carbon fiber strain < 0.3%</p>
 - Soft Blades at margin, stiff blades extra margin
 - 20-year fatigue life \rightarrow all blades ~ infinite life
 - Buckling $LF > 2.1 \rightarrow$ uncoupled blades OK

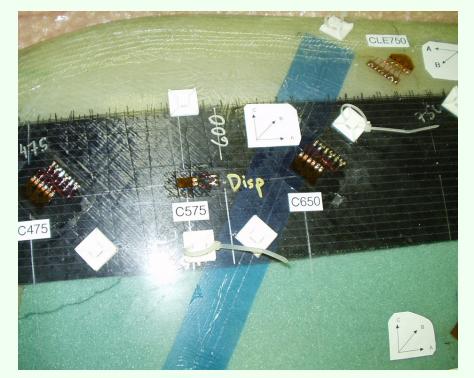
BLADE FABRICATION

- VARTM shells in Clamshell ToolsTools from CNC routed mandrels
- 13 osy Carbon Uni
 - 68k tow Fortafil fiber
 - High fiber volume fraction
 - Low permeability!

BLADE FABRICATION

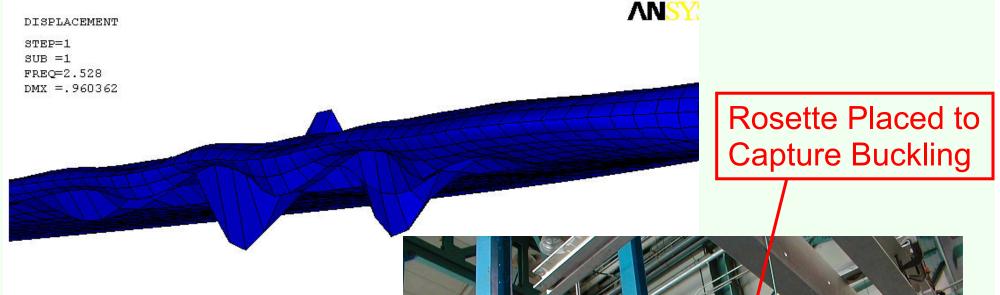
- Shells are infused using vacuum assisted resin transfer molding
 - Full vacuum
 - 0-25 psi back pressure
 - JeffCo 1401-21(18) resin
 - Experimented with number, type, & placement of infusion ports & channels and vacuum ports.
 - Heated with Si rubber heaters during infusion and cure cycle
 - 4-10 minutes to infuse one shell

BLADE FABRICATION


- Cured shells were demolded & trimmed
- Shear webs were fabricated using wet layup
- Shells and webs were bonded
 in a secondary process
- Finished blades were postcured at 200F for 8 hours in an oven
- Blades were instrumented for testing

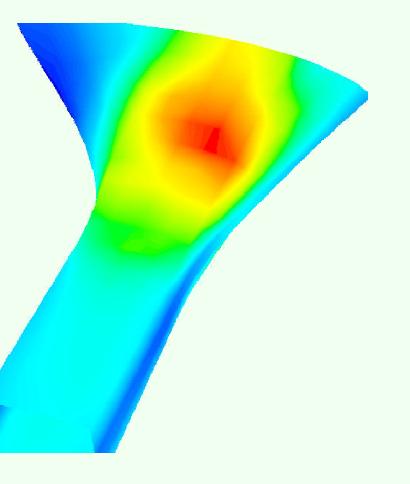
STRUCTURAL TESTING

- NIAR/Raytheon 46000-sf Test Center
- 30-36 channels of strain per blade
- Axial gauges and 3-element rosettes
 6 point Whiffle Tree Static Load
- 6-point Whiffle Tree Static Load
- Displacement at 6 Spanwise Stations


STRUCTURAL TESTING

Blade	Peak Carbon Fiber Strain at 100% Proof Load		Tip Deflection at 100% Proof Load		Buckling LF		Tip Twist at 100% Proof Load	
	Design	Test	Design	Test	Design (Linear)	Test	Design	Test
11	0.11%	0.10%	147	191	2.56	2.30	-	-
12	0.11%	0.10%	147	162	3.10	2.90	-	-
B1	0.32%	0.27%	414	373	2.53	2.26	-	-
C1	0.33%	0.33%	375	318	2.20	1.65	7 °	1.5°

STRUCTURAL TESTING


- Buckling Initiated Exactly where predicted in all static tests
- Test Load Factors were close to linear prediction in uncoupled blades

FUTURE PLANS

- Remodeling Blades B, C, & I "as fabricated" to verify against test results
- Completing designs of Blades D & E (twist-bend coupled designs)
- Fabricating & Testing Blades
 D & E to demonstrate
 significant twist-bend coupling
- Working with warm vacuum prepreg products that do not require autoclaves

