
ROOT I/O

Introduction

The Root I/O system consists of several levels of standards which provide increasing levels of functionality. A
core I/O level provides classes to read and write arbitrarily defined sets of bytes in a directory-like hierarchical
structure. An object I/O level provides additional classes that allow reading and writing user objects in a self
describing format. This level provides automatic schema evolution and provides for inter object references. A
third level allows optimized storage of and access to large collections of objects. Additional classes exist for
specific types of data in common use in HEP (such as histograms) but are not really part of the ROOT I/O
system.

ROOT I/O can be used both from within the ROOT framework and in stand alone applications. In general
ROOT I/O files written in other applications will also be able to be read from within ROOT. Full ROOT
functionality depends on top level user objects either inheriting from the ROOT class TObject or being provided
with some translation mechanism when they are input into ROOT.

We document here both the logical and physical file structure for each of these layers.

Overview

ROOTIO FILES

A ROOTIO file consists of one "file header", one or more "data records," and zero or more "free
segments". The file header is always at the beginning of the file, while the data records and free segments may
in principle appear in any order.

The file header is fixed length (64 bytes in the current release.) Its detailed format is given below in the
section of detailed class descriptions.

A free segment is of variable length. One free segment is a set of contiguous bytes that are unused, and
are available for ROOTIO to use for new or resized data records. The first four bytes of a a free segment
contain the negative of the number of bytes in the segment. The contents of the remainder of the free segment
are irrelevant.

A data record represents either user data or data used internally by ROOTIO. All data records have two
portions, a "key" portion and a "data" portion. The key portion precedes the data portion. The format of the
key portion is the same for all data. (The key portion corresponds to a class TKey object). The object name and
they key cycle are together sufficient to uniquely determine the record within the file. The format of the data
portion of a record for an object that uses the default streamer is given below in the section of detailed class
descriptions.

In more detail, data records can be one of:
1. TFile record: One per file. Describes file as a whole or “root” of directory structure
2. TDirectory record(s): Zero or more per file. Each describes one (non-root) directory in tree
3. KeysList record(s): One per TFile or TDirectory Record. Contains keys to access records in the

directory.
4. FreeSegments record: One per file. Controls access to free segments.
5. TStreamerInfo record: One per file. Contains info describing “self-describing” objects
6. TRef, TRefArray, and TProcessID: Used for inter-object references.
7. Records containing user objects or collections of user objects.

DATA RECORD TYPES

"core" record types

There are several types of data records used internally by ROOTIO to support the storage of byte
sequences. These record types are "TFile", "TDirectory", "KeysList", and "FreeSegments". These types can be
considered to be in the "core" layer of ROOTIO.

A file always contains exactly one "TFile" data record, which (nearly?) always immediately follows the
file header. The TFile record consists of either data pertaining to the file as a whole, or data
pertaining to the root "directory" of records in the file.

A file contains zero or more "TDirectory" data records, each representing a subdirectory in the directory
tree that has the "TFile" record at its root.

A file contains one or more "KeysList" data records. There is one corresponding to the root directory
(represented by the TFile record), and one corresponding to each (non-empty) subdirectory in the tree (each
represented by a TDirectory record). The data portion of each KeysList record consists of the sequential keys
of those data records in that directory. Note that keys for "TFile", "KeysList", "FreeSegments", and
"StreamerInfo" data records never appear in the data portion of a KeysList data record.

A file always contains exactly one "FreeSegments" data record, which keeps track of the free segments
in the file. Its detailed format is given in "freesegments.txt". Note that the list of free segments contains one
additional free segment that is not in the file itself, because it represents the free space after the end of the file.

Detailed formats of these record types are given below in the section of detailed class descriptions.

"streamer" layer record types

There is an additional data record type ("StreamerInfo") needed internally to support the storage of self-
identifying objects. Its detailed format is given in "streamerinfo.txt". Note that the StreamerInfo data record
itself and the "core" data records described above are not self-identifying objects. A ROOTIO file contains
exactly one StreamerInfo record. The use of the "StreamerInfo" record is described under the
"STREAMERINFO" heading below.

"pointer to persistent object" object types

There are three object types ("TProcessID", "TRef", and "TRefArray") used internally to support pointers to
persistent objects. Their formats are given in "tprocessid.txt", "tref.txt", and "trefarray.txt" respectively. Of
these three objects, only TProcessID objects necessarily comprise a complete data record (a "TProcessID"
record). TRef and TRefArray objects typically are data members of larger objects, and therefore are only a part
of the data portion of a record. In addition, objects that are referenced by such a pointer have an additional field
in the base TObject. See "tobject.txt". A description of how these pointers work is given under the "POINTERS
TO PERSISTENT OBJECTS" heading below.

"application" layer record types

These are either user defined record types, or record types supplied by ROOT that are not needed by ROOTIO.
The format of such an object that uses the default streamer is given below.

DATA COMPRESSION

The user can set the data compression level for new or modified data records when creating or opening a file.
When an existing file is opened for update, the compression level selected need not match that used previously.
The compression level of existing records is not modified unless the record itself is modified.

There are ten compression levels, 0-9, ranging from 0 (no compression) to 9 (maximum compression), with
level 1 being the default. The level chosen is a tradeoff between disk space and compression performance. The
decompression speed is independent of level. Currently, in release 3.2.6, level 2 is not used. If level 2 is
selected, level 1 is used with no notification to the user.

The chosen compression level is not applied to the entire file. The following portions of the file are not
compressed, regardless of the compression level selected:

1) the file header
2) the KeysList data record
3) the FreeSegments data record
4) any data record (outside of a TTree) where the uncompressed size of
 the data portion is 256 bytes or less.

 5) the key portion of any data record
Furthermore, the data portion of the StreamerInfo data record is always compressed at level 1 (if over 256 bytes
uncompressed), regardless of the compression level selected (even if no compression is selected).

The compression algorithm used is an in memory ZIP compression written for the DELPHI collaboration at
CERN. Its author is E. Chernyaev (IHEP/Protvino). The source code is internal to ROOTIO.

STREAMERINFO

The "StreamerInfo" data record is used by ROOTIO to support the storage of self-identifying objects. Its
detailed format is given in "streamerinfo.txt". A ROOTIO file contains exactly one StreamerInfo record, which
is written to disk automatically when a new or modified file is closed.

The StreamerInfo record is a list (ROOTIO class TList) of "StreamerInfo" objects (ROOTIO class
TStreamerInfo). There is one StreamerInfo object in the list for every class used in the file in a data record,
other than a core layer record. There is no streamerinfo object for a class used in a core layer record unless the
class is also used elsewhere in a data record. When reading a self-identifying object from a file, the system uses
the StreamerInfo list to decompose the object recursively into its simple data members.

Each streamerinfo object is an array of "streamer element" objects, each of which describes a base class of the
object or a (non-static and non-transient) data member of the object. If the base class or data member is itself a
class, then there will also be a streamerinfo object in the record for that class. In this way, each class is
recursively decomposed into its atomic elements, each of which is a simple type (e.g. "int"). A "long" or
"unsigned long" member is always written as an 8 byte quantity, even if it occupies only 4 bytes in memory.

A data member of a class is marked transient on the line of its declaration by a comment beginning with "//!".
Such members are not written to disk, nor is there any streamerinfo for such a member.

A data member that is a C++ pointer (not to be confused with "pointers to persistent objects" described below)
is never written to disk as a pointer value. If it is a pointer to an object, the object itself (or 0 (4 bytes) if the
pointer value is NULL) is written. If the declaration line has a comment beginning with "//->", this indicates
that the pointer value will never be null, which allows a performance optimization. Another optimization is that
if two or more pointers pointing to the same object are streamed in the same I/O operation, the object is written
only once. The remaining pointers reference the object through a unique object identifier. This saves space and
avoids the infinite loop that might otherwise arise if the directed graph of object instance pointer references
contains a cycle.

If a data member is a pointer to a simple type, the Streamer presumes it is an array, with the dimension defined
in a comment of the form "//[<length>]", where length is either an integer constant or a variable that is an
integer data member of the class. If a variable is used, it must be defined ahead of its use or in a base class.

The above describes the function of the StreamerInfo record in decomposing a self-identifying object if the user
uses the streamer generated by "rootcint". There are two reasons why a user may need to write a specialized
streamer for a class. One reason is that it may be necessary to execute some code before or after data is read or
written, for example, to initialize some non-persistent data members after the persistent data is read. In this
case, the custom streamer can use the StreamerInfo record to decompose a self-identifying object in the exact
same manner as the generated streamer would have done. An example is given (for the Event class) in the Root
User's Guide (URL below) (Input/Output chapter, Streamers subchapter). On the other hand, if the user needs
to write a streamer for a class that ROOT cannot handle, the user may need to explicitly code the decomposition
and composition of the object to its members. In this case, the StreamerInfo for that class might not be used. In
any case, if the composition/decomposition of the class is explicitly coded, the user should include the byte
count, class information, and version number of the class before the data on disk as shown in "dobject.txt".

The special method used for streaming a TClonesArray is described in the TClonesArray section below.

More information on the StreamerInfo record and its use is found in the Input/Output chapter of the Root Users
Guide: http://root.cern.ch/root/RootDoc.html

NOTE: Some of the classes used internally in ROOTIO (e.g. TObject, TRef, TRefArray) have explicitly coded
(de)compositions, and do not use the information in the StreamerInfo record to do the (de)composition. In this
case, the StreamerInfo for the class may still be present in the StreamerInfo record, but may not match what is
actually written to disk for those objects.

POINTERS TO PERSISTENT OBJECTS

Information on how these work in memory can be found at:
http://root.cern.ch/root/htmldoc/examples/Version302.news.html
These were introduced in release 3.02, so there is not yet a description in the current Root Users Guide, which is
for a version release 3.1. Here we discuss only the information on disk.

A ROOT file contains zero or more TProcessID records. Each such record contains a globally unique ID
defining a given ROOT job that wrote a referenced object (see tprocessid.txt). Each referenced object contains a
"pidf" field referencing the corresponding TProcessID record and an "fUniqueID" field uniquely identifying the
referenced object among those written by that process (see tobject.txt). Similarly, every persistent reference to
that object (a TRef Object, see tref.txt) also contains "pidf" and "fUniqueID" fields with the same value, thereby
uniquely determining the referenced object (which need not even be in the same file). In the case of an array of
references (a TRefArray object, see "trefarray.txt"), there is one "pidf" value for the entire array, and a separate
"fUniqueID" value for each reference. For further information, see the above URL.

SOME USEFUL CONTAINER CLASSES

1. TObjArray and TClonesArray

The TObjArray class can be used to support an array of objects. The objects need not be of the same type, but
each object must be of a class type that inherits from TObject. We have already seen a specific example of the
use of TObjArray, in the StreamerInfo record, where it is used to hold an array of TStreamerElement objects,
each of which is of a class inheriting from TStreamerElement, which in turn inherits from TObject.

The TClonesArray class is a specialization of the TObjArray class for holding an array of objects that are all of
the same type. The format of a TClonesArray object is given in "tclonesarray.txt".

There are two great advantages in the use of TClonesArray over TObjArray when the objects all will be of the
same class:

1) Memory for the objects will be allocated only once for the entire array, rather
than the per-object allocation for TObjArray. This can be done because all the
objects are the same size.
2) In the case of TObjArray, the stored objects are written sequentially. However,
in a TClonesArray, by default, each object is split one level deep into its base
class(es) and data members, and each of these members is written sequentially for
all objects in the array before the next member is written. This has two advantages:

a) Greater compression can be achieved when similar data is consecutive.
b) The object's data members can easily be split into different TTree branches
(TTrees are discussed below).

2. TTree

A TTree is a highly specialized container class for efficient storage and retrieval of user data. The use of TTrees
is discussed in detail in the Trees chapter of the Root Users Guide:
http://root.cern.ch/root/RootDoc.html

Here we discuss in particular how a TTree is stored in a ROOTIO file.

A TTree object is split into one or more branches (class TBranch), each of which may have its own
(sub)branches, recursively to any depth. Each TBranch contains an array of zero or more leaves (class TLeaf),
each corresponding to a basic variable type or a class object that has not been split. The TLeaf object does not
actually contain variable values, only information about the variables. The actual data on each branch is
physically stored in basket objects (class TBasket). The user can set the basket size on a per TBranch basis.
The default basket size is 32000 bytes. This should be viewed as an approximate number.

There is one TTree data record per file for each tree in the file, corresponding to a TTree class object. The
TTree class object recursively contains TBranch objects, each of which contains an array of TBasket objects to
hold its data.

However, the TTree data record does not necessarily contain the entire TTree object. For each branch, exactly
one TBasket object is contained in the TTree data record. If the data on a given branch fits in one basket, then
all the data for that branch will be in the TTree record itself. Otherwise, there will be a separate TBasket data
record for each additional basket used on the branch, each containing a TBasket object containing user data.

By default, the additional TBasket data records are stored in the same file as that of the corresponding TTree
data record. However, the user may specify a separate file for a given branch. If the data for that branch fits
into one basket, this option has no effect. Otherwise, the additional TBasket records are written into the
specified file, rather than the file containing the TTree data record itself. In this case, a TBranch data record for
the specified branch is also written to the specified file, containing the TBranch object for the specified branch.

The file "ttree.txt" shows the streamer information for the TTree, TBranch, TLeaf, and some related classes,
together with some additional commentary. For writing to a ROOTIO file, the streamers for these three classes
act exactly as those of default generated streamers, except that, if the user has specified a separate file for a
branch, the TBranch streamer also writes the TBranch object as a keyed data record to the specified file.

There is no streamer information for the TBasket class. The custom written TBasket streamer internally
handles the packing of data into fixed size TBasket objects.

Detailed Class Descriptions

Core I/O

File Header Format

// Here is the file header format as of release 3.02.06. It is never compressed.
// -----------------------------------
// byte 0->3 "root" = Identifies this file as a ROOT file.
// 4->7 Version = File format version TFile::fVersion
// | (10000*major+100*minor+cycle (e.g. 30203 for 3.2.3))
// 8->11 BEGIN = Byte offset of first data record (64)

TFile::fBEGIN
// 12->15 END = Pointer to first free word at the EOF TFile::fEND
// | (will be == to file size in bytes)
// 16->19 SeekFree = Byte offset of FreeSegments record

TFile::fSeekFree
// 20->23 NbytesFree = Number of bytes in FreeSegments record

TFile::fNBytesFree
// 24->27 nfree = Number of free data records

// 28->31 NbytesName = Number of bytes in TKey+TNamed for TFile at creation
TDirectory::fNbytesName
// 32->32 Units = Number of bytes for file pointers (4)

TFile::fUnits
// 33->36 Compress = Zip compression level (i.e. 0-9)

TFile::fCompress
// 37->40 SeekInfo = Byte offset of StreamerInfo record

TFile::fSeekInfo
// 41->44 NbytesInfo = Number of bytes in StreamerInfo record

TFile::fNbytesInfo
// 45->63 = Unused??

Data Record Format

// Release 3.02.06
// A ROOT file is mostly a suite of consecutive data records with the following format
// <Name>;<Cycle> uniquely identifies the record in a directory
// ----------TKey-(never compressed)--------------
// byte 0->3 Nbytes = Number of bytes in compressed record (Tkey+data)

TKey::fNbytes
// 4->5 Version = TKey class version identifier TKey::fVersion
// 6->9 ObjLen = Number of bytes of uncompressed data

TKey::fObjLen
// 10->13 Datime = Date and time when record was written to file

TKey::fDatime
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 14->15 KeyLen = Number of bytes in key structure (TKey)

TKey::fKeyLen
// 16->17 Cycle = Cycle of key (e.g. 1) TKey::fCycle
// 18->21 SeekKey = Byte offset of record itself (consistency check)

TKey::fSeekKey
// 22->25 SeekPdir = Byte offset of parent directory record TKey::fSeekPdir
// 26->26 lname = Number of bytes in the class name

TKey::fClassName
// 27->.. ClassName = Object Class Name TKey::fClassName
// 0->0 lname = Number of bytes in the object name

TNamed::fName
// 1->.. Name = lName bytes with the name of the object

TNamed::fName
// 0->0 lTitle = Number of bytes in the object title

TNamed::fTitle
// 1->.. Title = lTitle bytes with the title of the object

TNamed::fTitle
// ----------DATA---(may be compressed)-----------
// 0->.. The data object itself. For an example, see dobject.txt

TDirectory

// Format of a TDirectory record in release 3.02.06. It is never compressed.
// ----------TKey--------------
// byte 0->3 Nbytes = Number of bytes in compressed record (Tkey+data)

TKey::fNbytes
// 4->5 Version = TKey class version identifier TKey::fVersion
// 6->9 ObjLen = Number of bytes of uncompressed data

TKey::fObjLen
// 10->13 Datime = Date and time when record was written to file

TKey::fDatime
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 14->15 KeyLen = Number of bytes in key structure (TKey)

TKey::fKeyLen
// 16->17 Cycle = Cycle of key TKey::fCycle

// 18->21 SeekKey = Byte offset of record itself (consistency check)
TKey::fSeekKey

// 22->25 SeekPdir = Byte offset of parent directory record
TKey::fSeekPdir

// 26->26 lname = Number of bytes in the class name (10) TKey::fClassName
// 27->.. ClassName = Object Class Name ("TDirectory") TKey::fClassName
// 0->0 lname = Number of bytes in the object name

TNamed::fName
// 1->.. Name = lName bytes with the name of the object <directory name>
TNamed::fName
// 0->0 lTitle = Number of bytes in the object title

TNamed::fTitle
// 1->.. Title = lTitle bytes with the title of the object <direcory title>
TNamed::fTitle
// --------DATA----------------
// 0->0 Modified = True if directory has been modified

TDirectory::fModified
// 1->1 Writeable = True if directory is writeable

TDirectory::fWriteable
// 2->5 DatimeC = Date and time when directory was created

TDirectory::fDatimeC
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 6->9 DatimeM = Date and time when directory was last modified

TDirectory::fDatimeM
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 10->13 NbytesKeys= Number of bytes in the associated KeysList record

TDirectory::fNbyteskeys
// 14->17 NbytesName= Number of bytes in TKey+TNamed at creation

TDirectory::fNbytesName
// 18->21 SeekDir = Byte offset of directory record in file

TDirectory::fSeekDir
// 22->25 SeekParent= Byte offset of parent directory record in file

TDirectory::fSeekParent
// 26->29 SeekKeys = Byte offset of associated KeysList record in file

TDirectory::fSeekKeys

TFile

// Here is the format of a TFile record for release 3.02.06. It is never compressed.
// It is probably not accessed by its key, but from its offset given in the file header.
// ----------TKey---------------
// byte 0->3 Nbytes = Number of bytes compressed record (TKey+data)

TKey::fNbytes
// 4->5 Version = TKey class version identifier TKey::fVersion
// 6->9 ObjLen = Number of bytes of uncompressed data

TKey::fObjLen
// 10->13 Datime = Date and time when record was written to file

TKey::fDatime
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 14->15 KeyLen = Number of bytes in key structure (TKey)

TKey::fKeyLen
// 16->17 Cycle = Cycle of key TKey::fCycle
// 18->21 SeekKey = Byte offset of record itself (consistency check) (64)
TKey::fSeekKey
// 22->25 SeekPdir = Byte offset of parent directory record (0)

TKey::fSeekPdir
// 26->26 lname = Number of bytes in the class name (5) TKey::fClassName
// 27->.. ClassName = Object Class Name ("TFile")

TKey::fClassName
// 0->0 lname = Number of bytes in the object name

TNamed::fName

// 1->.. Name = lName bytes with the name of the object <file name>
TNamed::fName

// 0->0 lTitle = Number of bytes in the object title
TNamed::fTitle

// 1->.. Title = lTitle bytes with the title of the object <file title>
TNamed::fTitle
// --------DATA-----------------
// 0->0 lname = Number of bytes in the TFile name

TNamed::fName
// 1->.. Name = lName bytes with the name of the TFile <file name>

TNamed::fName
// 0->0 lTitle = Number of bytes in the TFile title

TNamed::fTitle
// 1->.. Title = lTitle bytes with the title of the TFile <file title>
TNamed::fTitle
// 0->0 Modified = True if directory has been modified

TDirectory::fModified
// 1->1 Writeable = True if directory is writeable

TDirectory::fWriteable
// 2->5 DatimeC = Date and time when directory was created

TDirectory::fDatimeC
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 6->9 DatimeM = Date and time when directory was last modified

TDirectory::fDatimeM

// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 10->13 NbytesKeys= Number of bytes in the associated KeysList record

TDirectory::fNbyteskeys
// 14->17 NbytesName= Number of bytes in TKey+TNamed at creation

TDirectory::fNbytesName
// 18->21 SeekDir = Byte offset of directory record in file (64)

TDirectory::fSeekDir
// 22->25 SeekParent= Byte offset of parent directory record in file (0)

TDirectory::fSeekParent
// 26->29 SeekKeys = Byte offset of associated KeysList record in file

TDirectory::fSeekKeys

Keys List Record Format

// Format of KeysList record in release 3.02.06. It is never compressed.
// There is one KeysList record for the main (TFile) directory and one per non-empty
subdirectory.
// It is probably not accessed by its key, but from its offset given in the directory
data.
// ----------TKey---------------
// byte 0->3 Nbytes = Number of bytes in compressed record (TKey+data)

TKey::fNbytes
// 4->5 Version = TKey class version identifier TKey::fVersion
// 6->9 ObjLen = Number of bytes of uncompressed data TKey::fObjLen
// 10->13 Datime = Date and time when record was written to file

TKey::fDatime
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 14->15 KeyLen = Number of bytes in the key structure (TKey)

TKey::fKeyLen
// 16->17 Cycle = Cycle of key TKey::fCycle
// 18->21 SeekKey = Byte offset of record itself (consistency check)

TKey::fSeekKey
// 22->25 SeekPdir = Byte offset of parent directory record (directory)

TKey::fSeekPdir
// 26->26 lname = Number of bytes in the class name (5 or 10)

TKey::fClassName

// 27->.. ClassName = Object Class Name ("TFile" or "TDirectory")
TKey::fClassName

// 0->0 lname = Number of bytes in the object name
TNamed::fName

// 1->.. Name = lName bytes with the name of the object <directory name>
TNamed::fName
// 0->0 lTitle = Number of bytes in the object title

TNamed::fTitle
// 1->.. Title = lTitle bytes with the title of the object <directory title>
TNamed::fTitle
// ----------DATA---------------
// 0->3 NKeys = Number of keys in list (i.e. records in directory (non-
recursive))
// | Excluded:: The directory itself, KeysList, StreamerInfo, and
FreeSegments
// 4->.. TKey = Sequentially for each record in directory,
// | the entire TKey portion of each record is replicated.
// | Note that SeekKey locates the record.

Format for free segments and gaps

//Format of FreeSegments record, release 3.02.06. It is never compressed.
//It is probably not accessed by its key, but from its offset given in the file header.
// ----------TKey---------------
// byte 0->3 Nbytes = Number of bytes in compressed record (TKey+data)

TKey::fNbytes
// 4->5 Version = TKey class version identifier TKey::fVersion
// 6->9 ObjLen = Number of bytes of uncompressed data

TKey::fObjLen
// 10->13 Datime = Date and time when record was written to file

TKey::fDatime
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 14->15 KeyLen = Number of bytes in key structure (TKey)

TKey::fKeyLen
// 16->17 Cycle = Cycle of key TKey::fCycle
// 18->21 SeekKey = Byte offset of record itself (consistency check)

TKey::fSeekKey
// 22->25 SeekPdir = Byte offset of parent directory record (TFile)

TKey::fSeekPdir
// 26->26 lname = Number of bytes in the class name (5) TKey::fClassName
// 27->.. ClassName = Object Class Name ("TFile")

TKey::fClassName
// 0->0 lname = Number of bytes in the object name

TNamed::fName
// 1->.. Name = lName bytes with the name of the object <file name>

TNamed::fName
// 0->0 lTitle = Number of bytes in the object title

TNamed::fTitle
// 1->.. Title = lTitle bytes with the title of the object <file title>
TNamed::fTitle
// ----------DATA---------------
// 0->1 Version = TFree class version identifier

TFree::Class_Version()
// 2->5 fFirst = First free byte of first free segment TFree::fFirst
// 6->9 fLast = Byte after last free byte of first free segment

TFree::fLast
// Sequentially, Version, fFirst and fLast of additional free segments.
// There is always one free segment beginning at file end and ending before
2000000000.

// A gap (free segment in middle of file) has the following format.
// ------------------------

// byte 0->3 Nbytes = Negative of number of bytes in gap
// 4->.. irrelevant

TBuffer

TMessage

Object I/O

Format for data objects using default streamers

// Release 3.02.06
// Here is the format of a class object in DATA that uses the default streamer.
// Objects of many classes with custom streamers can have very similar formats.
//----------------
// 0->3 ByteCount = Number of remaining bytes in object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->.. ClassInfo = Information about class of object
// | If this is the first occurrence of an object of this class in the

record
// | 4->7 -1 = New class tag (constant kNewClassTag =
0xffffffff)
// | 8->.. Classname = Object Class Name (null terminated string)
// | Otherwise
// | 4->7 clIdx = Byte offset of new class tag in record, plus 2.
// | OR'd with kClassMask (0x80000000)
// 0->3 ByteCount = Number of remaining bytes in object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->5 Version = Version of Class
//
// The rest consists of objects of base classes and persistent non-static data

members.
// Data members marked as transient are not stored.
//
// 6->.. Sequentially, Objects of each base class from which this class is derived
// (rarely more than one)
// 0->.. Sequentially, Objects of all non-static persistent data members.
//
// Class objects are broken down recursively as above.
//
// Built in types are stored as follows:
// 1 Byte: char, unsigned char
// 2 Bytes: short, unsigned short
// 4 Bytes: int, unsigned int, float
// 8 Bytes: long, unsigned long, double
// Note that a long (signed or unsigned) is stored as 8 bytes even if it is only four

bytes
// in memory. In that case, it is filled with leading zeros (or ones, for a negative

value).
//

TObject

// Here is the format of the DATA for a TObject object in Release 3.02.06.
//--------
// 0->1 Version = Version of TObject Class
// 2->5 fUniqueID = Unique ID of object. Currently, unless this object is or was
// | referenced by a TRef or TRefArray, or is itself a TRef or
TRefArray,

// | this field is not used by ROOT.
// 6->9 fBits = A 32 bit mask containing status bits for the object.
// | The bits relevant to ROOTIO are:
// | 0x00000001 - if object in a list can be deleted.
// | 0x00000008 - if other objects may need to be deleted when this one
is.
// | 0x00000010 - if object is referenced by pointer to persistent

object.
// | 0x00002000 - if object ctor succeeded but object shouldn't be used
// | 0x01000000 - if object is on Heap.
// | 0x02000000 - if object has not been deleted.
// The "pidf" field below is present only if this TObject object (or an object
inheriting
// from it) is referenced by a pointer to persistent object.
// 10->11 pidf = An identifier of the TProcessID record for the process that wrote

the
// | object. This identifier is an unsigned short. The relevant
record
// | has a name that is the string "ProcessID" concatenated with
the ASCII
// | decimal representation of "pidf" (no leading zeros). 0 is a
valid pidf.
//-------
// No object in the StreamerInfo record will be a reference or referenced, and all
objects
// are on the heap. So, for each occurrence in the StreamerInfo record, fUniqueID
will be 0,
// fBits will be 0x03000000, and pidf will be absent.

TRef

// Here is the format of the DATA for a TRef object in Release 3.02.06.
//--------
// 0->1 Version = Version of TObject Class (base class of TRef)
// 2->5 fUniqueID = Unique ID of referenced object. Typically, every referenced
// | object has an ID that is a positive integer set to a counter
// | of the number of referenced objects in the file, beginning at 1.
// | fUniqueID in the TRef object matches fUniqueID in the
// | referenced object.
// 6->9 fBits = A 32 bit mask containing status bits for the TRef object.
// | The bits relevant to ROOTIO are:
// | 0x00000008 - Other objects may need to be deleted when this one is.
// | 0x00000010 - Object is referenced by pointer to persistent object.
// | 0x01000000 - Object is on Heap.
// | 0x02000000 - Object has not been deleted.
// 10->11 pidf = An identifier of the TProcessID record for the process that wrote
the
// | referenced object. This identifier is an unsigned short. The
relevant
// | record has a name that is the string "ProcessID" concatenated
with the
// | ASCII decimal representation of "pidf" (no leading zeros).
// | 0 is a valid pidf.
//-------

TRefArray

// Here is the format of the DATA for a TRefArray object in Release 3.02.06.
//--------
// 0->3 ByteCount = Number of remaining bytes in TRefArray object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->5 Version = Version of TRefArray Class

// 6->15 = TObject object (Base class of TRefArray) (see tobject.txt).
// | Will be two bytes longer (6->17) if TRefArray object is
// | itself referenced (unlikely).
// 16->.. fName = Number of bytes in name of TRefArray object, followed by the
// | name itself. (TCollection::fName). Currently, TRefArrays
// | are not named, so this is a single byte containing 0.
// 0->3 nObjects | Number of object references (fUIDs) in this TRefArray.
// 4->7 fLowerBound= Lower bound of array. Typically 0.
// 8->9 pidf = An identifier of the TProcessID record for the process that wrote
the
// | referenced objects. This identifier is an unsigned short. The
relevant
// | record has a name that is the string "ProcessID" concatenated
with the
// | ASCII decimal representation of "pidf" (no leading zeros).
// | 0 is a valid pidf.
// 10->.. fUIDs = Sequentially, object Unique ID's.
// | Each Unique ID is a four byte unsigned integer.
// | If non-zero, it matches the Unique ID in the referenced
// | object. If zero, it is an unused element in the array.
// | The fUIDs are written out only up to the last used element,
// | so the last fUID will always be non-zero.

StreamerInfo (for self describing object format)

// Format of StreamerInfo record in release 3.02.06.
// It is probably not accessed by its key, but from its offset given in the file header.
// The StreamerInfo record DATA consists of a TList (list) object containing elements
// of class TStreamerInfo.
// ----------TKey-(never compressed)----------------------
// byte 0->3 Nbytes = Number of bytes in compressed record (TKey+data)

TKey::fNbytes
// 4->5 Version = TKey class version identifier TKey::fVersion
// 6->9 ObjLen = Number of bytes of uncompressed data

TKey::fObjLen
// 10->13 Datime = Date and time when record was written to file

TKey::fDatime
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 14->15 KeyLen = Number of bytes in key structure (TKey) (64)

TKey::fKeyLen
// 16->17 Cycle = Cycle of key TKey::fCycle
// 18->21 SeekKey = Byte offset of record itself (consistency check)

TKey::fSeekKey
// 22->25 SeekPdir = Byte offset of parent directory record (TFile)

TKey::fSeekPdir
// 26->26 lname = Number of bytes in the class name (5) TKey::fClassName
// 27->31 ClassName = Object Class Name ("TList")

TKey::fClassName
// 32->32 lname = Number of bytes in the object name (12)

TNamed::fName
// 33->44 Name = lName bytes with the name of the object ("StreamerInfo")
TNamed::fName
// 45->45 lTitle = Number of bytes in the object title (18)

TNamed::fTitle
// 46->63 Title = lTitle bytes with the title of the object

TNamed::fTitle
// | ("Doubly linked list")
// ----------TList-(always compressed at level 1 (even if compression level 0))----
// The DATA is a TList collection object containing TStreamerInfo objects.
// Below is the format of this TList data.
//
// Here is the format of a TList object in Release 3.02.06.

// Comments and offsets refer specifically to its use in the StreamerInfo record.
//--------
// 0->3 ByteCount = Number of remaining bytes in TList object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->5 Version = Version of TList Class
// 6->15 = TObject object (a base class of TList) (see tobject.txt).
// | Objects in StreamerInfo record are not referenced.
// | Would be two bytes longer (6->17) if object were referenced.
// 16->16 fName = Number of bytes in name of TList object, followed by the
// | name itself. (TCollection::fName). The TList object in
// | StreamerInfo record is unnamed, so byte contains 0.
// 17->20 nObjects = Number of objects in list.
// 21->.. objects = Sequentially, TStreamerInfo Objects in the list.
// | In the StreamerInfo record, the objects in the list are
// | TStreamerInfo objects. There will be one TStreamerInfo
// | object for every class used in data records other than
// | core records and the the StreamerInfo record itself.
//-------
// Here is the format of a TStreamerInfo object in Release 3.02.06.
// Note: Although TStreamerInfo does not use the default streamer, it has the same
// format as if it did. (compare with dobject.txt)
// 0->3 ByteCount = Number of remaining bytes in TStreamerInfo object
(uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->.. ClassInfo = Information about TStreamerInfo class
// | If this is the first occurrence of a TStreamerInfo object in the
record
// | 4->7 -1 = New class tag (constant kNewClassTag = 0xffffffff)
// | 8->21 Classname = Object Class Name "TStreamerInfo" (null
terminated)
// | Otherwise
// | 4->7 clIdx = Byte offset of new class tag in record, plus 2.
// | OR'd with kClassMask (0x80000000)
// 0->3 ByteCount = Number of remaining bytes in TStreamerInfo object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->5 Version = Version of TStreamerInfo Class
// -Begin TNamed object (Base class of TStreamerInfo)
// 6->9 ByteCount = Number of remaining bytes in TNamed object
// | OR'd with kByteCountMask (0x40000000)
// 10->11 Version = Version of TNamed Class
// 12->21 = TObject object (Base class of TNamed) (see tobject.txt).
// | Objects in StreamerInfo record are not referenced.
// | Would be two bytes longer (12->23) if object were referenced.
// 22->.. fName = Number of bytes in name of class that this TStreamerInfo object
// | describes, followed by the class name itself. (TNamed::fName).
// 0->.. fTitle = Number of bytes in title of class that this TStreamerInfo object
// | describes, followed by the class title itself. (TNamed::fTitle).
// | (Class title may be zero length)
// -End TNamed object
// 0->3 fCheckSum = Check sum for class that this TStreamerInfo object describes.
// | This checksum is over all base classes and all persistent
// | non-static data members. It is computed by TClass::GetCheckSum().
// | (TStreamerInfo::fCheckSum)
// 4->7 fClassVersion = Version of class that this TStreamerInfo object describes.
// | (TStreamerInfo::fClassVersion)
// -Begin TObjArray object (Data member of TStreamerInfo)
// 0->3 ByteCount = Number of remaining bytes in TObjArray object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->.. ClassInfo = Information about TObjArray class
// | If this is the first occurrence of a TObjArray object in the record
// | 4->7 -1 = New class tag (constant kNewClassTag = 0xffffffff)
// | 8->17 Classname = Object Class Name "TObjArray" (null terminated)
// | Otherwise

// | 4->7 clIdx = Byte offset of new class tag in record, plus 2.
// | OR'd with kClassMask (0x80000000)
// 0->3 ByteCount = Number of remaining bytes in TObjArray object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->5 Version = Version of TObjArray Class
// 6->15 = TObject object (a base class of TObjArray) (see tobject.txt).
// | Objects in StreamerInfo record are not referenced.
// | Would be two bytes longer (6->17) if object were referenced.
// 16->16 fName = Number of bytes in name of TObjArray object, followed by the
// | name itself. (TCollection::fName). TObjArray objects in
// | StreamerInfo record are unnamed, so byte contains 0.
// 17->20 nObjects = Number of objects (derived from TStreamerElement) in array.
// 21->24 fLowerBound = Lower bound of array. Will always be 0 in StreamerInfo
record.
// 25->.. objects = Sequentially, TStreamerElement objects in the array.
// | In a TStreamerInfo object, the objects in the TObjArray are
// | of various types (described below), all of which inherit
// | directly from TStreamerElement objects. There will be one
// | such object for every base class of the class that the
// | TStreamerInfo object describes, and also one such object for
// | each persistent non-static data member of the class that the
// | TStreamerInfo object describes.
// -End TObjArray object and TStreamerInfo object
//-------
// The objects stored in the TObjectArray in TStreamerInfo are of various classes, each
of
// which inherits directly from the TStreamerElement class. The possible classes
(which
// we refer to collectively as TStreamer<XXX>) are:
//
// TStreamerBase: Used for a base class. All others below used for data
members.
// TStreamerBasicType: For a basic type
// TStreamerString: For type TString
// TStreamerBasicPointer: For pointer to array of basic types
// TStreamerObject: For an object derived from TObject

// TStreamerObjectPointer: For pointer to an object derived from TObject
// TStreamerLoop: For pointer to an array of objects
// TStreamerObjectAny: For an object not derived from TObject
// TStreamerSTL: For an STL container (not yet used??)
// TStreamerSTLString: For an STL string (not yet used??)
//-------
// Here is the format of a TStreamer<XXX> object in Release 3.02.06.
// In description below,
// 0->3 ByteCount = Number of remaining bytes in TStreamer<XXX> object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->.. ClassInfo = Information about the specific TStreamer<XXX> class
// | If this is the first occurrence of a TStreamerXXX object in the
record
// | 4->7 -1 = New class tag (constant kNewClassTag = 0xffffffff)
// | 8->.. Classname = Object Class Name "TStreamer<XXX>" (null
terminated)
// | Otherwise
// | 4->7 clIdx = Byte offset of new class tag in record, plus 2.
// | OR'd with kClassMask (0x80000000)
// 0->3 ByteCount = Number of remaining bytes in TStreamer<XXX> object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->5 Version = Version of TStreamer<XXX> Class
// -Begin TStreamerElement object (Base class of TStreamerXXX)
// 0->3 ByteCount = Number of remaining bytes in TStreamerElement object
(uncompressed)
// | OR'd with kByteCountMask (0x40000000)

// 4->5 Version = Version of TStreamerElement Class
// -Begin TNamed object (Base class of TStreamerElement)
// 6->9 ByteCount = Number of remaining bytes in TNamed object
// | OR'd with kByteCountMask (0x40000000)
// 10->11 Version = Version of TNamed Class
// 12->21 = TObject object (Base class of TNamed) (see tobject.txt).
// | Objects in StreamerInfo record are not referenced.
// | Would be two bytes longer (12->23) if object were referenced.
// 22->.. fName = Number of bytes in class name of base class or member name of
// | data member that this TStreamerElement object describes,
// | followed by the name itself. (TNamed::fName).
// 0->.. fTitle = Number of bytes in title of base class or data member that this
// | TStreamerElement object describes, followed by the title
itself.
// | (TNamed::fTitle).
// -End TNamed object
// 0->3 fType = Type of data described by this TStreamerElement.
// | (TStreamerElement::fType)
// | Built in types:
// | 1:char, 2:short, 3:int, 4:long, 5:float, 8:double
// | 11, 12, 13, 14:unsigned char, short, int, long respectively
// | 6: an array dimension (counter)
// | 15: bit mask (used for fBits field)
// |
// | Pointers to built in types:
// | 40 + fType of built in type (e.g. 43: pointer to int)
// |
// | Objects:
// | 65:TString, 66:TObject, 67:TNamed
// | 0: base class (other than TObject or TNamed)
// | 61: object data member derived from TObject (other than TObject or
TNamed)
// | 62: object data member not derived from TObject
// | 63: pointer to object derived from TObject (pointer can't be null)
// | 64: pointer to object derived from TObject (pointer may be null)
// | 501: pointer to an array of objects
// | 500: an STL string or container
// |
// | Arrays:
// | 20 + fType of array element (e.g. 23: array of int)
// |
// 4->7 fSize = Size of built in type or of pointer to built in type. 0
otherwise.
// | (TStreamerElement::fSize).
// 8->11 fArrayLength = Size of array (0 if not array)
// | (TStreamerElement::fArrayLength).
// 12->15 fArrayDim = Number of dimensions of array (0 if not an array)
// | (TStreamerElement::fArrayDim).
// 16->35 fMaxIndex = Five integers giving the array dimensions (0 if not applicable)
// | (TStreamerElement::fMaxIndex).
// 36->.. fTypeName = Number of bytes in name of the data type of the data member
that
// | the TStreamerElement object describes, followed by the name
// | itself. If this TStreamerElement object defines a base class
// | rather than a data member, the name used is 'BASE'.
// | (TStreamerElement::fTypeName).
// -End TStreamerElement object
// The remaining data is specific to the type of TStreamer<XXX> class.
// For TStreamerInfoBase:
// 0->3 fBaseVersion = Version of base class that this TStreamerElement
describes.
// For TStreamerBasicType:
// No specific data

// For TStreamerString:
// No specific data
// For TStreamerBasicPointer:
// 0->3 fCountVersion = Version of class with the count (array dimension)
// 4->.. fCountName= Number of bytes in the name of the data member holding
// | the count, followed by the name itself.
// 0->.. fCountName= Number of bytes in the name of the class holding the
// | count, followed by the name itself.
// For TStreamerObject:
// No specific data
// For TStreamerObjectPointer:
// No specific data
// For TStreamerLoop:
// 0->3 fCountVersion = Version of class with the count (array dimension)
// 4->.. fCountName= Number of bytes in the name of the data member holding
// | the count, followed by the name itself.
// 0->.. fCountClass= Number of bytes in the name of the class holding the
// | count, followed by the name itself.
// For TStreamerObjectAny:
// No specific data
// For TStreamerSTL:
// 0->3 fSTLtype = Type of STL container:
// | 1:vector, 2:list, 3:deque, 4:map, 5:set, 6:multimap, 7:multiset
// 4->7 fCType = Type contained in STL container:
// | Same values as for fType above, with one addition: 365:STL
string
// For TStreamerSTLString:
// No specific data

TProcessID (for referenced objects)

// Format of TProcessID record in release 3.02.06.
// Will be present if there are any referenced objects.
// ----------TKey---------------
// byte 0->3 Nbytes = Number of bytes in compressed record (Tkey+data)

TKey::fNbytes
// 4->5 Version = TKey class version identifier TKey::fVersion
// 6->9 ObjLen = Number of bytes of uncompressed data

TKey::fObjLen
// 10->13 Datime = Date and time when record was written to file

TKey::fDatime
// | (year-1995)<<26|month<<22|day<<17|hour<<12|minute<<6|second
// 14->15 KeyLen = Number of bytes in key structure (TKey)

TKey::fKeyLen
// 16->17 Cycle = Cycle of key TKey::fCycle
// 18->21 SeekKey = Byte offset of record itself (consistency check)

TKey::fSeekKey
// 22->25 SeekPdir = Byte offset of parent directory record TKey::fSeekPdir
// 26->26 lname = Number of bytes in the class name (10) TKey::fClassName
// 27->36 ClassName= Object Class Name ("TProcessID") TKey::fClassName
// 37->37 lname = Number of bytes in the object name

TNamed::fName
// 38->.. Name = lName bytes with the name of the object

TNamed::fName
// | (e.g. "ProcessID0")
// 0->0 lTitle = Number of bytes in the object title

TNamed::fTitle
// 1->.. Title = lTitle bytes with the title of the object

TNamed::fTitle
// | (Identifies processor, time stamp, etc.)
// | See detailed explanation below.
// ----------DATA--------------

// 0->3 ByteCount = Number of remaining bytes in TProcessID object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->5 Version = Version of TProcessID Class
// -Begin TNamed object (Base class of TProcessID)
// 6->9 ByteCount = Number of remaining bytes in TNamed object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 10->11 Version = Version of TNamed Class
// 12->21 = TObject object (Base class of TNamed) (see tobject.txt).
// | The TProcessID object is not itself referenced.
// 22->22 lname = Number of bytes in the object name

TNamed::fName
// 23->.. Name = lName bytes with the name of the object

TNamed::fName
// | The name will be "ProcessID" concatenated with
// | a decimal integer, or "pidf".
// 0->0 lTitle = Number of bytes in the object title

TNamed::fTitle
// 1->.. Title = lTitle bytes with the title of the object

TNamed::fTitle
// | (Identifies processor, time stamp, etc.)
// | See detailed explanation below.
// -End TNamed object
//
// ----------Explanation of the title of a TProcessID object-----------------
// The title of a TProcessID object is a globally unique identifier of the
// ROOTIO process that created it. It is derived from the following quantities.
//
// 1) The creation time ("fTime) of the TProcessID record. This is a 60 bit time
// in 100ns ticks since Oct. 15, 1582.
//
// 2) A 16 bit random unsigned integer ("clockeq") generated from a seed that is the
// job's process ID. The highest two bits are not used.
//
// 3) A six byte unsigned quantity ("fNode") identifying the machine. If the machine
has a
// valid network address, the first four bytes are set to that address, and the last
two bytes
// are stuffed with 0xbe and 0xef respectively. Otherwise a six byte quantity is
generated
// from the time and random machine statistics. In this case, the high order bit of
the
// first byte is set to 1, to distinguish it from a network ID, where the bytes can be
// no larger than 255.
//
// We the define the following quantities (class TUUID):
 UInt_t fTimeLow; // 60 bit time, lowest 32 bits
 UShort_t fTimeMid; // 60 bit time, middle 16 bits
 UShort_t fTimeHiAndVersion; // 60 bit time, highest 12 time bits (low 12
bits)
 // + 4 UUID version bits (high 4 bits)

 // version is 1 if machine has valid network address
 // and 3 otherwise.

 UChar_t fClockSeqHiAndReserved; // high 6 clockseq bits (low 6 bits)
 // + 2 high bits reserved (currently set to
binary 10)
 UChar_t fClockSeqLow; // low 8 clockseq bits
 UChar_t fNode[6]; // 6 node (machine) id bytes

// Then the following sprintf() call defines the format of the title string:
sprintf(Title, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",

 fTimeLow, fTimeMid, fTimeHiAndVersion, fClockSeqHiAndReserved,
 fClockSeqLow, fNode[0], fNode[1], fNode[2], fNode[3], fNode[4],
 fNode[5]);

// Since the title written to disk is preceded by its byte count, the delimiting null
is not written.

Optimization Layer

TTree

Here is the streamer information for TTree related classes in release 3.02.06:
(For the explanation of the meaning of the type, see "fType" in "streamerinfo.txt".)
--
StreamerInfo for class: TTree, version=6
 BASE TNamed offset= 0 type=67 The basis for a named object (name,
title)
 BASE TAttLine offset= 0 type= 0 Line attributes
 BASE TAttFill offset= 0 type= 0 Fill area attributes
 BASE TAttMarker offset= 0 type= 0 Marker attributes
 Stat_t fEntries offset= 0 type= 8 Number of entries
 Stat_t fTotBytes offset= 0 type= 8 Total number of bytes in all branches
before compression
 Stat_t fZipBytes offset= 0 type= 8 Total number of bytes in all branches
after compression
 Stat_t fSavedBytes offset= 0 type= 8 Number of autosaved bytes
 Int_t fTimerInterval offset= 0 type= 3 Timer interval in milliseconds
 Int_t fScanField offset= 0 type= 3 Number of runs before prompting in
Scan
 Int_t fUpdate offset= 0 type= 3 Update frequency for EntryLoop
 Int_t fMaxEntryLoop offset= 0 type= 3 Maximum number of entries to process
 Int_t fMaxVirtualSize offset= 0 type= 3 Maximum total size of buffers kept in
memory
 Int_t fAutoSave offset= 0 type= 3 Autosave tree when fAutoSave bytes
produced
 Int_t fEstimate offset= 0 type= 3 Number of entries to estimate
histogram limits
 TObjArray fBranches offset= 0 type=61 List of Branches
 TObjArray fLeaves offset= 0 type=61 Direct pointers to individual branch
leaves
 TArrayD fIndexValues offset= 0 type=62 Sorted index values
 TArrayI fIndex offset= 0 type=62 Index of sorted values
 TList* fFriends offset= 0 type=64 pointer to list of friend elements

StreamerInfo for class: TAttLine, version=1
 Color_t fLineColor offset= 0 type= 2 line color
 Style_t fLineStyle offset= 0 type= 2 line style
 Width_t fLineWidth offset= 0 type= 2 line width

StreamerInfo for class: TAttFill, version=1
 Color_t fFillColor offset= 0 type= 2 fill area color
 Style_t fFillStyle offset= 0 type= 2 fill area style

StreamerInfo for class: TAttMarker, version=1
 Color_t fMarkerColor offset= 0 type= 2 Marker color index
 Style_t fMarkerStyle offset= 0 type= 2 Marker style
 Size_t fMarkerSize offset= 0 type= 5 Marker size

StreamerInfo for class: TBranch, version=7
 BASE TNamed offset= 0 type=67 The basis for a named object (name,
title)
 Int_t fCompress offset= 0 type= 3 (=1 branch is compressed, 0 otherwise)
 Int_t fBasketSize offset= 0 type= 3 Initial Size of Basket Buffer

 Int_t fEntryOffsetLen offset= 0 type= 3 Initial Length of fEntryOffset table
in the basket buffers
 Int_t fWriteBasket offset= 0 type= 3 Last basket number written
 Int_t fEntryNumber offset= 0 type= 3 Current entry number (last one filled
in this branch)
 Int_t fOffset offset= 0 type= 3 Offset of this branch
 Int_t fMaxBaskets offset= 0 type= 6 Maximum number of Baskets so far
 Int_t fSplitLevel offset= 0 type= 3 Branch split level
 Stat_t fEntries offset= 0 type= 8 Number of entries
 Stat_t fTotBytes offset= 0 type= 8 Total number of bytes in all leaves
before compression
 Stat_t fZipBytes offset= 0 type= 8 Total number of bytes in all leaves
after compression
 TObjArray fBranches offset= 0 type=61 -> List of Branches of this branch
 TObjArray fLeaves offset= 0 type=61 -> List of leaves of this branch
 TObjArray fBaskets offset= 0 type=61 -> List of baskets of this branch
 Int_t* fBasketBytes offset= 0 type=43 [fMaxBaskets] Length of baskets on
file
 Int_t* fBasketEntry offset= 0 type=43 [fMaxBaskets] Table of first entry in
eack basket
 Seek_t* fBasketSeek offset= 0 type=43 [fMaxBaskets] Addresses of baskets on
file
 TString fFileName offset= 0 type=65 Name of file where buffers are stored
("" if in same file as Tree header)

StreamerInfo for class: TBranchElement, version=7
 BASE TBranch offset= 0 type= 0 Branch descriptor
 TString fClassName offset= 0 type=65 Class name of referenced object
 TString fParentName offset= 0 type=65 Name of parent class
 TString fClonesName offset= 0 type=65 Name of class in TClonesArray (if any)
 Int_t fClassVersion offset= 0 type= 3 Version number of class
 Int_t fID offset= 0 type= 3 element serial number in fInfo
 Int_t fType offset= 0 type= 3 branch type
 Int_t fStreamerType offset= 0 type= 3 branch streamer type
 Int_t fMaximum offset= 0 type= 3 Maximum entries for a TClonesArray or
variable array
 TBranchElement*fBranchCount offset= 0 type=64 pointer to primary branchcount branch
 TBranchElement*fBranchCount2 offset= 0 type=64 pointer to secondary branchcount
branch

StreamerInfo for class: TLeaf, version=2
 BASE TNamed offset= 0 type=67 The basis for a named object (name,
title)
 Int_t fLen offset= 0 type= 3 Number of fixed length elements
 Int_t fLenType offset= 0 type= 3 Number of bytes for this data type
 Int_t fOffset offset= 0 type= 3 Offset in ClonesArray object (if one)
 Bool_t fIsRange offset= 0 type=11 (=kTRUE if leaf has a range, kFALSE
otherwise)
 Bool_t fIsUnsigned offset= 0 type=11 (=kTRUE if unsigned, kFALSE otherwise)
 TLeaf* fLeafCount offset= 0 type=64 Pointer to Leaf count if variable
length

StreamerInfo for class: TLeafElement, version=1
 BASE TLeaf offset= 0 type= 0 Leaf: description of a Branch data
type
 Int_t fID offset= 0 type= 3 element serial number in fInfo
 Int_t fType offset= 0 type= 3 leaf type

TClonesArray

// -Here is the format (release 3.02.06) of the DATA for a TClonesArray object in a
ROOTIO file.

// 0->3 ByteCount = Number of remaining bytes in TClonesArray object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->.. ClassInfo = Information about TClonesArray class
// | If this is the first occurrence of a TClonesArray object in the
record
// | 4->7 -1 = New class tag (constant kNewClassTag = 0xffffffff)
// | 8->17 Classname = Object Class Name "TClonesArray" (null terminated)
// | Otherwise
// | 4->7 clIdx = Byte offset of new class tag in record, plus 2.
// | OR'd with kClassMask (0x80000000)
// 0->3 ByteCount = Number of remaining bytes in TClonesArray object (uncompressed)
// | OR'd with kByteCountMask (0x40000000)
// 4->5 Version = Version of TClonesArray Class
// 6->15 = TObject object (a base class of TClonesArray) (see tobject.txt).
// | Would be two bytes longer (6->17) if object were referenced.
// 16->.. fName = Number of bytes in name of TClonesArray object, followed by the
// | name itself. (TCollection::fName). This name will be the
// | class name of the cloned object, appended with an 's'
// | (e.g. "TXxxs")
// 0->.. = Number of bytes in name and version of the cloned class,
followed
// | by the name and version themselves (e.g. "TXxx;1")
// 0->3 nObjects = Number of objects in clones array.
// 4->7 fLowerBound= Lower bound of clones array.
// 8->.. objects = Sequentially, objects in the clones array. However, the data
// | ordering depends on whether or not kBypassStreamer (0x1000)
is
// | set in TObject::fBits. By default, it is set. If it is not set,
// | the objects are streamed sequentially using the streamer of the
// | cloned class (e.g. TXxx::Streamer()).
// |
// | If it is set, the cloned class is split into its base classes
and
// | persistent data members, and those streamers are used. So,
if the
// | base classes and persistent data members of class TXxx are
TXxxbase,
// | TXxxdata0, TXxxdata1, etc., all the TXxxbase data from the
entire
// | clones array is streamed first, followed by all the TXxxdata0
data,
// | etc. This breakdown is not recursive, in that the member objects
// | are not again split.
// -End TClonesArray object

Global Setup

