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2.0   Estimation and Projection Methodology

As described in section 1.6, methods for management reference point estimation and predictions
of stock status through 2009 have been classed into three categories, depending on the
availability of data: age-based reference points; surplus production estimators, and index-based
approaches.  The theory and specific application of methods associated with the three approaches
are summarized below.

2.1 Age-based assessments of reference points

Both a parametric and an empirical non-parametric approaches to age based production analyses
were employed to derive FMSY and BMSY or their proxies, and to conduct projections for
evaluating rebuilding plans if required. The two approaches were applied to each stock (where
appropriate) so as to be potentially complementary and supportive and because using both
should build confidence in the results. Where results differ appreciably, the results of the
empirical approach were used as a component in final model selection.  Automatic objective
application these techniques is often compromised by lack of sufficient observation on stock and
recruitment over a suitable range of biomass to provide suitable contrast. Thus it is often
necessary to extrapolate beyond the range of observation and to infer the shape of the stock
recruit relationship, within the range of observation, from limited and very variable data.
Subjective judgement, drawn from collective scientific experience, was used to establish the
following guidelines for applying both of these approaches. Unless there is convincing evidence
to the contrary, the shape of the stock recruit relation will be assumed to be asymptotic. This
assumption leads to an adaptive management approach to test the strength of super-
compensatory mechanisms at higher stock sizes that should permit gradual accumulation of
information at higher biomass, facilitating subsequent refinement of reference points (section
4.4).  Making the assumption of increasing recruitment as biomass increases can result in
predicting recruitment outside the range of observation and can result in unreasonably large
estimates of BMSY.  Alternatively, making the assumption that recruitment varies inversely with
biomass beyond some point result in a more aggressive harvesting strategy which might not
permit learning about the potential productivity of the resource at higher biomass. In the absence
of  a plausible mechanism for overcompensation (cannibalism, spatial interference between
adults and progeny, etc.) an asymptotic relationship is preferred as a basis for reference point
estimation and projections.  

For stocks that have been consistently growth overfished, if the estimate of Fmsy is substantially
greater than Fmax or F40% msp, the basis of this needs to be closely examined for possible
model mis-specification.

The specific procedures used for age-based reference point estimation are described below. We
emphasize again that reference point estimates will periodically be updated and possibly change
substantially as we learn more about stock dynamics at higher biomass.  Parametric and non-
parametric approaches should be attempted in parallel, if re-enforcing, either approach can be
used for projections. 
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2.1.1 Empirical Non-parametric Approach

The general approach of the empirical non-parametric method is to evaluate various statistical
moments of the observed series of recruitment data and to apply the estimated biomass per
recruit associated with common F reference points to derive the implied spawning stocks and
equilibrium yields.  For this purpose, we developed a consistent format (“4-panel plots”, see
Figure 3.1.2 for the example of Gulf of Maine cod).  The 4-panel plots includes the time series of
spawning stock biomass and recruitment (plots a and b) and the scatterplot of stock-recruit data
(plot c).  A lowess smoother is fit to the s-r data as a visual guide to any trend in the relationship
between stock and recruitment.  If this trend is flat, then the mean or median recruitment is
chosen for biomass calculation, depending on the leverage exerted by outliers (usually very large
year classes).  In the lower right corner of the 4-panel plot the moments of the recruitment series
are multiplied by the BPR at F0.1 and F40% msp to give point estimates of associated spawning
biomasses.  For example, in Figure 3.1.2 the mean of all recruitment values in the series is 7.67
million fish.  If this value is multiplied by 11.412 kg/fish at F40% msp, this results in a spawning
biomass of 87,580 metric tons.  This value is compared to the results from parametric analyses of
model fits.  The full bpr/ypr analysis for this stock is given in Table 3.1.2.

Several types of analyses of the recruitment * BPR analysis are undertaken, depending on the
shape of the relationship between stock and recruitment:

• For cases where recruitment appears to be impaired at lower biomass, the average
recruitment at a higher biomass stanza is evaluated as the proxy for recruitment at MSY,
otherwise the average recruitment over all observations will be used.

• The BMSY proxy will be calculated from the spawning biomass per recruit at F40% and the
proxy for recruitment at MSY.  This assumes that compensatory mechanisms such as impaired
growth or maturity schedules or reduced recruit survival are negligible over the range of
expected biomass considered.  All of these parameters can be monitored, consisted with the
recommended adaptive approach to increasing stock biomass.

• Projections to evaluate rebuilding plans incorporate uncertainty in the current population
estimate (either bootstrap replicates or suitable variance simulation) and stochasticity in
predicted recruitment (see section 2.4.1 below). Recruitment stochasticity is accommodated by
either resampling from observed recruitment, r/ssb or their CDFs, (as long as the s-r model used
is consistent with that used for estimating reference points).

• The use of F40% as a proxy for FMSY is likely to maintain adequate spawning potential for
most primary New England groundfish based on the results of Clark (1993) and Mace (1994).
This choice  represents a more conservative spawning potential ratio than recommended by
Clark (1991), and is consistent with the analyses of Thompson (1993) who suggested that fishing
mortality rates be set no greater than F30% and with the review of spawning-per-recruit
requirements by Mace and Sissenwine (1993), who found that, on average, stocks require
threshold spawning potential ratio values of at least 31% for sustainability. Overall, these results
suggest that an FMSY proxy of F35% may be too high to sustain stocks in the long term.  Based on
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the results of Dorn (2002), F40% appears to be too aggressive a harvest rate for long-lived West
Coast Sebastes spp., and therefore the use of F50% as a proxy for FMSY is considered to be
appropriate for Acadian redfish.

2.1.2 Parametric Model Approach

The parametric model approach uses a fitted parametric stock-recruitment model along with
yield and spawning biomass per recruit information to calculate MSY-based references points
using a standard algorithm. A key difference between the nonparametric proxy and the
parametric approach is that the parametric approach produces a direct estimate of FMSY in
contrast to using an assumed proxy value. A key similarity between the nonparametric proxy and
the parametric approach is that both use yield and spawning biomass per recruit analyses to
determine MSY and BMSY values. Descriptions of the stock-recruitment models, estimation of
stock-recruitment model parameters, and computation of maximum sustainable yield are given
below.

Stock-Recruitment Models

The stock-recruitment models for estimation of MSY-based reference points were chosen to
allow for compensatory and overcompensatory stock-recruitment dynamics. This choice
provided two competing hypotheses about the possible forms of density-dependence. Both
compensatory and overcompensatory models included a deterministic component to describe
equilibrium stock-recruitment dynamics. Similarly, the models included an observation error
term to account for randomness in the stock-recruitment data.

Deterministic Component

The Beverton-Holt curve (Beverton and Holt 1957) was used to model compensatory stock-
recruitment dynamics where recruitment increases with spawning stock to an asymptote at large
spawning stock size. This curve has a sound theoretical basis as a model of stock-recruitment
dynamics. The Beverton-Holt curve arises naturally when density-dependent effects are critical
at some early life history stage (see, for example, Quinn and Deriso 1998) and can also arise as a
result of adaptation to balance predation and foraging risk in a variable environment (Walters
and Korman 1999). This model was considered to be the null hypothesis in the absence of
evidence that it was inconsistent with the observed data.

The modified Beverton-Holt curve (Mace and Doonan1988) was used for parameter estimation:

                         R
S

S z S zMAX MAX MAX
 =  

z RMAX MAX4
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where SMAX= maximum observed level in the stock-recruitment data; RMAX = maximum expected
recruitment; and zMAX =  steepness of the modified Beverton-Holt curve computed as the ratio of
R at 20% of SMAX to RMAX.
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A standard form of the Beverton-Holt curve was used for projections:
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For the purposes of using the results of Myers et al. (1999) to determine appropriate prior
distributions for the steepness parameter, the steepness calculated relative to the unfished
spawning stock size, SUNFISHED, denoted as z, was related to unfished equilibrium recruitment,
RUNFISHED, and the parameters of the standard curve via:
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For stocks that had short time series of stock-recruitment data and had relatively high NEFSC
autumn survey biomass indices during the 1960s, values of SMAX were computed as the product
of average spawning biomass times the ratio of average NEFSC autumn survey biomass indices
during 1963-1970 to the average biomass indices during 1990 to the most recent year for which
stock-recruitment data were available. This computation was done for Gulf of Maine cod (SMAX
=77,500 mt), Georges Bank cod (SMAX =104,200 mt), Georges Bank (SMAX =36,200 mt) and
Southern New England (SMAX =64,400 mt) yellowtail flounder. For the other three stocks where
parametric models were investigated, the maximum spawning biomass value in the stock-
recruitment time series was SMAX ; these were Georges Bank haddock (SMAX =199,500 mt), Cape
Cod yellowtail flounder (SMAX =5,000 mt), and Southern New England winter flounder (SMAX
=14,600 mt). Here it is important to note that SMAX was simply a fixed value for which to
estimate the RMAX parameter.

The Ricker curve (Ricker 1954) was used to model overcompensatory stock-recruitment
dynamics where recruitment decreases with spawning stock as stock size becomes large.
The form of the Ricker model used for parameter estimation was:

                                                       R Se S= +α β
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where " = the slope at the origin and  $ = the strength of density-dependence in the relationship. 

Stochastic Component

The stochastic component was represented by a multiplicative lognormal or an autoregressive,
multiplicative lognormal error structure with a lag of one year. The stochastic component was
multiplied by the deterministic component, denoted as f(Si) for the ith data point, to obtain the
stock-recruitment model:

                                                    R f S ei i
i =  ( ) ε

For uncorrelated errors, the ,i were iid Gaussian random variables with zero mean and constant
variance F2. In this case, the error variance (F2) was a parameter to be estimated. For
autoregressive lag-1 errors, the ,i were distributed as:
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and the autoregressive coefficient and the error variance were additional model parameters to be
estimated. The multiplicative lognormal error term was used because this positively-skewed
distribution arises naturally when groundfish survival rates during early life history are affected
by numerous independent random events represented as multiplicative log-scale effects. In this
context, as the number of random events becomes large, the distribution of the mean of the log-
scale multiplicative process approaches a normal random variable under the central limit
theorem. The autoregressive error term was included to model serial correlation in random
environmental variation because this allowed successive recruitments to be correlated when the
effects of environmental forcing were strong, e.g., periods of good recruitment followed by
periods of poor recruitment, regardless of the deterministic component.

Estimation of Stock-Recruitment Model Parameters

Maximum Likelihood Estimation

Parameter estimates were computed using maximum likelihood estimation conditioned on the
stock-recruitment model (see, for example, Brodziak et al. 2001). The support function, or
loglikelihood (logL), for a total of n stock-recruitment data points (Ri,Si) with uncorrelated
lognormal errors was:
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For models with autoregressive lag-1 correlated lognormal errors (see, for example Seber and
Wild 1989) the loglikelihood was:
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Maximum likelihood estimates (MLEs) of model parameters were computed using these support
functions and the time series of stock-recruitment data. The AD Model Builder software package
(Otter Research Ltd. 2001) was used to compute the MLEs.

Bayesian Priors on Steepness, Slope at the Origin or Unfished Recruitment

Because it was recognized that there would be limited information on the value of the steepness
parameter of the Beverton-Holt curve or the slope at the origin of the Ricker curve, we borrowed
from the strength of meta-analyses of numerous fish populations (Myers and Mertz 1998) to help
to determine these parameters in a Bayesian statistical estimation framework (Gelman et al.1995;
Hilborn and Mangel 1997; Punt and Hilborn 1997). In this context, an informative prior on the
steepness or slope at the origin was determined using results of Myers et al.’s (1999) meta-
analysis of a large number of stock-recruitment data sets. In a frequentist estimation framework,
the use of such a prior would be conceptually equivalent to applying a penalty function to the
support function to constrain parameter estimates (e.g., Edwards 1992).

The prior on steepness of the Beverton-Holt curve was based on values of z reported in Table 1 
of Myers et al. (1999). The informative prior was assumed to be distributed as a normal random 
variable. Thus, the negative log of the prior on steepness (P(z)) was:

− = + +
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The mean of the informative prior was taken to be the median point estimate of steepness (z).
The standard error of the informative prior was computed from the upper and lower values of the
60% confidence interval for steepness and the assumption that the steepness was normally
distributed. This led to informative priors for the steepness of Atlantic cod, haddock, yellowtail
flounder, and winter flounder (Table 2.1.2.1).
                             
Similarly, the prior on the slope at the origin of the Ricker curve was based on values of "=logA
and standard errors reported in Table 1 of Myers et al. (1999). As with the steepness parameter,
the informative prior was assumed to be distributed as a normal random variable so the negative
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log of the prior on the slope at the origin (P(")) was:

The parameters of the informative priors for the slope at the origin of Atlantic cod, haddock,
yellowtail flounder, and winter flounder (Table 2.1.2.1).

Bayesian Prior on Recruitment

It was also recognized that there could be limited information on recruitment at high spawning
stock sizes because the assessment time horizons of most stocks were short in comparison to
their historic period of exploitation. For example, Georges Bank cod had been fished since the
1700s but the assessment time horizon begins in the late-1970s. As a result, an empirical
Bayesian statistical estimation approach (Carlin and Louis 2000) was used to determine
informative priors for the distribution of unfished recruitment, RUNFISHED. The informative prior
for RUNFISHED, denoted by P(RUNFISHED), was assumed to be normally distributed so that the
negative log prior had form:

The mean and standard error of the informative prior on RUNFISHED was determined using the
empirical data on recruitment at high spawning stock size. For stocks that had a pattern of
increasing recruitment with increasing spawning stock size, either in the hindcast or observed
recruitment data, an appropriate subset of the observed recruitment data was used to determine
the mean and standard error of the prior. These stocks were: Georges Bank haddock, Georges
Bank cod, Southern New England winter flounder, and Georges Bank and Southern New
England yellowtail flounder. For Georges Bank haddock, recruitment values during 1931-1960
were used to determine the prior parameters. For Georges Bank cod, recruitment values for
spawning stock sizes in the top quartile of the spawning stock distribution were used to
determine the prior parameters. For Southern New England winter flounder, recruitment values
for the five highest observed spawning stock sizes were used to determine prior parameters; this
was done because the data series was short (n=17). For the Georges Bank and Southern New
England yellowtail flounder, recruitment values for spawning stock sizes in the top quartile of
the hindcast spawning stock distribution were used to determine the prior parameters.

For stocks that had no discernable trend in recruitment with spawning stock size, the entire set of
observed recruitment values were used to compute the mean and standard error of the prior.
These stocks were: Gulf of Maine cod and Cape Cod yellowtail flounder.
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Bayesian Estimation of Parameter Uncertainty

We used a Bayesian approach to characterize the uncertainty in output parameters of the
parametric model to compute MSY-based reference points. This was done to give estimates of
precision and Bayesian credibility intervals (confidence intervals) for the key output parameters.
The AD Model Builder software package (Otter Research Ltd. 2001) was applied with an
informative prior on either steepness, slope at the origin, or unfished recruitment, depending
upon model configuration and with an uninformative prior on the remaining model parameters.
In this approach, the posterior distribution of model parameters is assumed to be multivariate
normal with mode equal to the MLE. The observed Hessian matrix at the MLE is used to
estimate the covariance of the posterior distribution and samples from the posterior distribution
are calculated using a Markov Chain Monte Carlo (MCMC) algorithm based on the Gibbs
sampler (Gelman et al. 1995). The MCMC algorithm was run for 500,000 iterations to obtain
representative samples from the posterior distribution with a sampling interval of every 100th

value to reduce autocorrelation in the series of samples. Thus, there were 5,000 posterior
samples available for inference.

Computation of Maximum Sustainable Yield

Maximum sustainable yield for a fixed equilibrium stock-recruitment curve combined with yield
and spawning biomass per recruit information was computed using a standard algorithm
(Sissenwine and Shepherd 1987; Clark 1991; Brodziak 2002). In this approach, equilibrium yield
is determined for a uniform grid of fishing mortality values. In this case, we used a grid of F
ranging from 0 to 2 in 0.005 increments. The first step of the algorithm is to compute yield per
recruit (Y/R) and spawning biomass per recruit (S/R) for each value of F. In this case, standard
procedures to compute YR and S/R were applied (Gabriel et al. 1989). The second step of the
algorithm is to determine the equilibrium spawning biomass based on the spawning biomass per
at F and the stock-recruitment parameters over the grid of F values. For the Beverton-Holt
model, the equilibrium spawning biomass (S*) is:

                                                     ( )S S R* /= −α β

while for the Ricker model, it is:

                                               ( )( )S S R* log / )=
−

+
1

β
α

The third step of the algorithm is to compute equilibrium recruitment (R*) from equilibrium
spawning biomass and the stock-recruitment parameters over the grid of F values. For the
Beverton-Holt model, R* is:
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while for the Ricker model, R* is:

                                                          R S ea S* * *= +β

The fourth step of the algorithm is to compute equilibrium yield (Y*) over the grid of F values as
the product of equilibrium recruitment and yield per recruit:

                                                         ( )Y R Y R* ( *) /=

The last step of the algorithm is to determine MSY as the maximum value of Y* over the grid of
F values; this also determines the value of BMSY and FMSY.

Use of Median Stock-Recruitment Curve

Applying a logarithmic transformation to either parametric stock recruitment model leads to a
nonlinear regression equation:

                                                     Z F S= +log( ( )) ε

where Z=logR. This provides a way to estimate the parameters of F(S) in a logarithmic scale
which is natural approach to rescaling the estimation equation. 

In log-scale, any estimate of Z calculated from the parameters of F(S) for a particular value of S
is an unbiased estimate of the expected value of Z, E[Z]. In contrast, any estimate of F(S)
computed from the parameters of F(S) under inverse transformation to the original measurement
scale is a biased estimate of the expected value of F(S). This bias is approximately equal to the
exponential function of the population error variance divided by 2 and it applies only to the
statistical expectation of F(S). In fact, the estimate of F(S) computed from the parameters of F(S)
under inverse transformation to the original measurement scale is equal to the median of the
distribution of the estimator of F(S) (see, for example Seber and Wild 1989, pp. 86-87).

For the purposes of evaluating whether MSY-based reference points are achieved, the median
value of the distribution of any skewed estimator has been considered preferable to the mean.
For example, projections are conducted to determine the fishing mortality that would lead to
BMSY being achieved with a 50% probability in a given year.  In practice, the achievement of
management targets under simulation has been consistently evaluated with respect to the 50%
probability or median level for New England groundfish stocks. This implies that, to be
consistent with the interpretation of achieving reference points under projection, the median
stock-recruitment curve, as estimated under a logarithmic or any other monotonic transformation
of the data, may be used as the basis for reference point computations. As a result, the median
stock-recruitment curve is used for MSY-based reference point computations, in contrast to the
expected value which would be subject to accurate estimation of the population error variance
and correct specification of the observation error distribution. 
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Table 2.1.2.1 Parameters of informative prior distributions for steepness and slope at the origin.
                                                                                                                                         

              Steepness    Slope at the origin
                                                                              

Species Mean SE Mean SE
                                                                                                                                         
Atlantic cod 0.84 0.08 1.37 0.15

Haddock 0.74 0.11 0.72 0.21

Yellowtail flounder 0.75 0.07 0.79 0.34

Winter flounder1 0.80 0.09 0.79 0.18
                                                                                                                                         
1 Based on reported values for Pleuronectids

Hierarchical Criteria for Comparing Parametric Stock-Recruitment Model Fits

For each of the candidate stock-recruitment models, an hierarchy of criteria is applied to
determine whether the maximum likelihood model fits are consistent with auxiliary information
and with respect to model goodness-of-fit measures. These criteria are used as a quality control
check to ensure that the individual model outputs make sense.

A priori, it is required that the estimated MLE from the model fit satisfies first- and second-order
derivative conditions required for a strict maximum. These are that the gradient of the
loglikelihood is identically zero at the MLE and that the Hessian matrix of second derivatives of
the negative loglikelihood is positive definite.

In addition to satisfying the derivative conditions, each model must satisfy the following
hierarchy of criteria to be considered credible:

1. Parameter estimates must not lie on the boundary of their feasible range of values
2. The estimate of MSY lies within the range of observed landings
3. The estimate of SMSY is not substantially greater than the nonparametric proxy estimate
4. The estimate of FMSY is not substantially greater than the value of FMAX 
5. The dominant frequencies for the autoregressive parameter, if applicable, lie within the

range of one-half of the length of the stock-recruitment time series
6. The estimate of recruitment at SMAX , the maximum spawning stock size proxy input to

the stock-recruitment model, is consistent with the value of recruitment used to compute
the nonparametric proxy estimate of SMSY 

For the subset of models that satisfy these criteria, Akaike’s Information Criterion (AIC) can be
used to assign relative probabilities to each model based on loglikelihood values (Brodziak et al.
2001). In this approach, each candidate model is assigned an equal prior probability of being the
true state of nature. Model likelihood ratios are then compared using Bayes’ Theorem to
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compute the posterior probability that each model represents the true state of nature. Last, the
most likely model is selected as the best parametric model from which to base reference point
calculations and stochastic projections. Further details of these calculations are provided below.

A bias-corrected form of the AIC criterion, known as AICC (Burnham and Anderson 1998 and
references therein), was computed for each candidate model fit to data set D, with K parameters,
n data points and, likelihood value L(D | 1) at the MLE  1,:

AIC L D K
K K

n KC  =   |  − + +
+

− −
2 2

2 1
1

log ( )
( )

Θ

In theory, the best model has the lowest AICC value. However, when AICC values were very
similar among models, support for a single best model was limited.

Given the AICC values, Bayes’ theorem was applied to evaluate the relative goodness of fit of
each model. The probability that each candidate model was the true state of nature was computed
for the available stock-recruitment data. Estimated AICC values were used to measure the
relative likelihood of each model, with a penalty applied for the number of parameters which
differed according to the assumed error structure. In particular, let M = {Mk} denote the set of
models and let MMAX denote the model with the maximum AICC value; MMAX is the least likely
model in M. Thus, for a given set of stock-recruitment data D and model M with corresponding
AICC value of AICC(D|M), the likelihood ratio of model M to the least likely model is
7(D|M,MMAX) where:
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The posterior distribution of relative model credibility was calculated from the likelihood ratio
form of Bayes’ Theorem using the model likelihood ratios relative to the least likely model and
the prior distribution of each model, Pr(Mk). The posterior probability of model M, denoted by
Pr(M|D), is the product of its likelihood ratio and prior probability divided by a normalizing
constant
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In the absence of any prior information on the credibility of candidate models, we assumed equal
prior probabilities for each them. Models that did not satisfy first- or second-order derivative
conditions at the calculated maximum or that did not satisfy one or more of the hierarchical
criteria were assigned a prior probability of zero.
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Model Name Decoder

Model names were built iteratively as more analyses were conducted (For example, see table
3.1.1 for Gulf of Maine cod). To decode the model name:

1. Start at the right, the last two letters are either BH (Beverton and Holt) or RK (Ricker), which
distinguish the two possible underlying stock recruitment relationships.
2. If there is an A just before either BH or RK this means that an autoregressive error term was
assumed in the model.
3. All the remaining models start with a P.
4. If the P is alone except for the letters already examined this means that the model assumed a
prior for the steepness parameter in the Beverton and Holt model or the slope parameter in the
Ricker model.
5. If the P is followed by R (not part of RK for the Ricker model), then the model assumed a
prior for the unfished recruitment from the VPA data.
6. If the P and R are followed by HC, then the model assumed a prior for the unfished
recruitment that was derived from hindcast data.
7. If the P is followed by 2, then the model assumed both a prior for unfished recruitment (either
from the VPA data, no additional letters, or the hindcast data, HC) and a prior for either the
steepness parameter in the Beverton and Holt model or the slope parameter in the Ricker model.

The 24 possible model names (note that all models are not examined for all stocks) are given in
the table 2.1.2.2.
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Table 2.1.2.2.  Definition of model names for fitting stock-recruitment data.

Priors

Name
Stock Recruitment

Relationship
Auto-

regressive

Unfished R

Steepness Slope VPA Hindcast
BH Beverton & Holt
ABH Beverton & Holt Yes
PBH Beverton & Holt Yes
PABH Beverton & Holt Yes Yes
PRBH Beverton & Holt Yes
PRABH Beverton & Holt Yes Yes
P2BH Beverton & Holt Yes Yes
P2ABH Beverton & Holt Yes Yes Yes
PRHCBH Beverton & Holt Yes
PRHCABH Beverton & Holt Yes Yes
P2HCBH Beverton & Holt Yes Yes
P2AHCBH Beverton & Holt Yes Yes Yes
RK Ricker
ARK Ricker Yes
PRK Ricker Yes
PARK Ricker Yes Yes
PRRK Ricker Yes
PRARK Ricker Yes Yes
P2RK Ricker Yes Yes
P2ARK Ricker Yes Yes Yes
PRHCRK Ricker Yes
PRHCARK Ricker Yes Yes
P2HCRK Ricker Yes Yes
P2AHCRK Ricker Yes Yes Yes

2.2 Surplus Production Assessments

Biomass Dynamics Analyses

A nonequilibrium surplus production model incorporating covariates (ASPIC; Prager 1994,
1995) was applied to each stock using landings (and discards where available) and multiple
survey indices of stock biomass.  The model assumes logistic population growth, in which the
change in stock biomass over time (dBt/dt) is a quadratic function of biomass (Bt):

dBt/dt = rBt  - (r/K)B2
t  (1)

where r is intrinsic rate of population growth, and K is carrying capacity.  For a fished stock, the
rate of change is also a function of fishing mortality (F):

dBt/dt = (r-Ft)Bt  - (r/K)Bt
2

  (2)

Biological reference points can be calculated from the production model parameters:
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MSY = K r / 4 (3)
BMSY = K / 2 (4)
FMSY = r / 2 (5)

Initial biomass (expressed as a ratio to BMSY: B1R), r, MSY, and catchability of biomass indices
(q) were estimated using nonlinear least squares of survey residuals.  Biomass indices from
research surveys or commercial catch rate contributed as independent biomass indices.  Survey
residuals were randomly resampled to approximate precision and model bias through bootstrap
analysis.

Biomass dynamics models are simpler than age-based models such as VPA with relative
advantages (e.g., they require only aggregate catch and biomass indices, and make simple
assumptions about population dynamics) and disadvantages (e.g., they may ignore important
age-based dynamics; National Research Council 1998a).  With reliable observations of catch and
biomass indices and a wide range of observed stock conditions, nonequilibrium models of
biomass dynamics can provide reliable perspectives on stock status relative to MSY reference
points (Hilborn and Walters 1992).

2.3 Index-based Assessments

Application of Index Methods: Catch and Fishery Independent Abundance Surveys 

One of the core problems in fisheries science is the estimation of the scaling factor between
estimates of relative abundance and true population size.   This scaling factor is generally called
the  catchability coefficient.  Assessment models that rely on VPA utilize the record of age-
specific catches to approximate the virtual population.  The utility of the  virtual population as a
means of estimating catchability rests on assumptions that the losses due to fishing are both
known and large relative to natural mortality.   Age structured assessments are data intensive and
their scope is restricted to years in which both catch and abundance indices can be aged.   In this
section we explore the general trends in abundance and fishing mortality deducible from a time
series of catch (or landings for some species) and survey indices.  For all stocks, only the total
catch (mt) and autumn and spring research trawl survey indices (kg/tow) are utilized.  We
explore the relative fishing mortality rate, defined as the ratio of catch to survey index, and relate
it to what we call the replacement ratio. The replacement ratio is introduced here as an analytical
tool for examining the historical behavior of a population and any potential influence of
removals due to fishing activities.  To test these concepts and to  facilitate comparisons, the
analyses were applied to both the aged and un-aged stocks. 

The replacement ratio draws from the ideas underlying the Sissenwine-Shepherd model, delay-
difference models, life-history theory, and statistical smoothing.  We begin by defining  Ij,s,t as
the j-th relative abundance index for species-stock unit s at time t and Cs,t as the catch (or
landings) of species-stock unit s at time t.  The simple relative fishing mortality rate with respect
to index type j, stock s and time t is defined as the ratio of  Cs,t to   Ij,s,t.    This ratio can be noisy,
owing to imprecision of survey estimates, and the variation can be damped by writing the
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relative F as a ratio of the catch to some average of the underlying indices.  Following the
recommendation of the previous reference point panel review team, relative F is defined as the
ratio of catch in year t to a centered 3-yr average of the survey indices:

Note that under this definition, the estimates of relative F for the first and last years of a time
series are based on only 2 years of data.

Noise in the survey indices also affects the ability to relate inter-annual changes in abundance
estimates to removal from fishing.   The general approach of averaging adjacent years to
estimate current stock size underlies statistical smoothing procedures (e.g., LOWESS) as well as
formal time series models (e.g., ARIMA methods).    One of the difficulties of applying such
approaches in the present context, is that the derived parameters, if any, are unrelated to the
species’ biology or any aspect of the fishery.   Moreover, we are interested in a basic questions
of whether the current stock is replacing itself and whether the current level of catch is too high
or low.   Population dynamics models usually come to the rescue and allow approximate answers
to these questions.  However, if age-structure models cannot be applied, and more importantly, if
the recent history of the fishery is uninformative, then most mathematical models will fail.  The
underlying reasons for model failure may not be immediately obvious from analysis of  standard
diagnostic measures.  Of greater concern is the issue of the model mis-specification, wherein an
inappropriate model adequately fits the data but leads to deductions inconsistent with basic
biology and the fishery.     The proposed replacement ratio is a “data-based” technique relying on
fewer assumptions.  No technique however, can fully compensate for model mis-specification
errors.
 
If we assume that the survival from eggs to the juvenile stage is largely independent of stock
size, then the number of recruits will be proportional to stock size.  Locally, (i.e, in the
neighborhood of any give stock size)  this assumption holds for  any stock-recruitment function.  
Since a population is a weighted sum of recruitment events, the interannual change in total stock
size tends to be small relative to the total range of stock sizes (at least in the Northeast USA).
Recruitment in any year is likely to be small relative to the biomass of the total population. Thus,
the change in total biomass is likely to be small relative to the change in annual recruitment.
Although the mathematics are more complicated than this ,the argument is based on the premise
that if Var(x/1) = F2 then Var(Ex/n) F2 /n.   Of course, the magnitude of such changes depends on
the variation of recruitment and the magnitude of fishing mortality. 
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Using the linearity assumption defined above, we can employ  basic life history theory to write
abundance at time t as a function of the biomasses in previous time periods.  The number of
recruits at time t (Rt) is assumed to be proportional to the biomass at time t (Bt).   More formally, 

where Egg is the number of eggs produced per unit of biomass, and So is the survival rate
between the egg and recruit stages.   Survival for recruited age groups at age a and time t (Sa,t)   
is defined as 

 

where F and M refer to the instantaneous rates of fishing and natural mortality, respectively.  We
also need to consider  the weight at age a and time t (Wa,t) and the average longevity (A) of the
species    

Using these standard concepts we now write the biomass at time t as a linear combination of the
A previous years.  Without loss of generality, we can drop the subscripts on the survival terms
and assume that average weight at age is invariant with respect to time.   Further, set the product
So Egg equal to the coefficient ".  The biomass at time t can now be written as 

Substituting Eq. (2)  into Eq. (4 ) leads to 

If the population is replacing itself, then the left hand side of Eq. (5) will equal the right hand
side.  The replacement ratio Qt can then be defined as

Further simplifications of the replacement ratio can be obtained by letting Nj = " SjWj and noting
that It = q Bt   where q is the catchability coefficient.
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The q’s cancel out such that  Qt is represented as a ratio of the survey indices to a weighted
average of the previous survey values.  The survival term Sj is equivalent to the lx term in the
Euler-Lotka equation for population growth (lx is the probability of surviving to age x).  For high
levels of fishing mortality the  Sj term is decreasing faster than the average weight  Wj is
increasing. Thus the importance of earlier indices rapidly diminishes.    All of the It and Nj  terms
are positive, and at equilibrium, It=It+1 and  It =G Nj It-j both hold.  Therefore,  G Nj = 1.  It would
be desirable to express each of the  Nj weighting terms as function of the underlying population
parameters.  As expected,  increases in  fishing mortality increase the weight to more  recent
indices, whereas the converse hold for lower fishing mortality rates. As an approximation for this
initial analyses, we assumed that all of the  Nj = N which implies that  N = 1/A. 
Given the high rate of fishing mortality observed in Northeast stocks, we further assumed that
A=5 was a valid approximation.  Note that even moderate levels of fishing mortality imply low   
  Nj  values beyond the fifth term.  (e.g., F=0.5, M=0.2 imply S5 = 0.03.  For the fifth to be
important the ratio of the weights between the youngest and oldest ages would have to be greater
than 1/S5 which, for this example, would exceed 33.    As a first approximation, we defined  Nj
=1/5 for all j.     Thus Eq. 7 becomes the ratio of the current index to the average of the 5
previous years.   

Application of any smoothing technique reflects a choice between signal and noise.  A greater
degree of smoothing eliminates the noise but may fail to detect true changes in the signal.  
Given the abrupt changes in fishing mortality that have occurred in some Northeast stocks, we
chose to utilize the current year in the numerator of the replacement ratio.  Use of the current
index in the numerator rather than a running average of say k years, increases the sensitivity of
the ratio to detect such changes. The penalty for such sensitivity is that the proportions of false
positives and false negative responses increase.  This penalty was judged acceptable for two
reasons. First, it is desirable to detect abrupt changes in resource condition given the magnitude
of recent and proposed management regulations.  Second, the current formulation of the
replacement ratio has a natural relationship to stock-recruitment hypotheses and the ratio can be
investigated as a function of variations in underlying parameters, especially survival. Alternative
formulations of the replacement ratio, say with a 2-yr average population size in the numerator
can (and will) be developed, but their basic properties have not been investigated. 

When fishing mortality rates exceed the capacity of the stock to replace itself the population is
expected to decline over time.  The expected behavior of  Qt under varying fishing mortality and 
recruitment is complicated, but it will have a stable point = 1 when the fishing mortality rate is in
balance with recruitment and growth.  Variations in fishing mortality will induce complex
patterns, but in general terms,   Qt will exceed 1 when relative F is too high, and will be below 1
when F is too low.   To account for these general properties and to reduce the influence of wide



31

changes in either  Qt or the relative F, we applied  robust regression methods (Goodall 1983) to
estimate the relative F corresponding to  Qt =1.    The parameters of the regression model 

were estimated by minimizing the median absolute deviations. Median Absolute Deviation
estimators are known as MAD estimators in the statistical literature (eg.Mosteller and Tukey
1977).   Residuals were downweighted using a bisquare distribution in which the sum of the
MAD standardized residuals was set to 6.  This roughly corresponds to a rejection point of about
plus or minus two standard deviations from the mean. (Goodall 1983).

The relative F at which Qt = 1 was estimated from Eq. 8. as 

where the estimates of a and b from Eq. 8  were substituted into Eq. 9.  This derived quantity
may be appropriately labeled as a threshold since values in excess of it are expected to lead to
declining populations.   Alternatively, populations are expect to increase when relFt < relFthreshold

Employing the general standard that managers should attempt to rebuild fish stocks within 10
years, we estimated the relative fishing mortality rate at which the expected value of Qt = 1.1 as
a measure of relF target.  Applying a little algebra to the Eq. 8 leads to the following estimator of
relFtarget:

 

The asymptotic standard errors of relFthreshold and relFtarget were derived from the Hessian matrix
of the regression model.

The usual tests of statistical significance do not apply for the model described in Eq. 8.  The
relation between Qt and relFt is of the general form of Y/X vs X where X and Y are random
variables.  The expected correlation between Y/X and X is less than zero and is the basis for the
oft stated criticism of spurious correlation.   To test for spurious correlation we developed a
sampling distribution of the correlation statistic using a randomization test. The randomization
test is based on the null hypothesis that the catch and survey time series represent a random
ordering of observations with no underlying association.   The randomization test was developed
as follows:
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1. Create a random time series of length T of Cr,t from the set {Ct} and Ir,t from the set
{It} by sampling with replacement. 

2. Compute a  random time series of relative F (relFr,t)  and replacement ratios ( Qr,t )
3. Compute the r-th correlation coefficient, say Dr between ln(relFr,t) and ln( Qr,t ).
4. Repeat steps 1 to 3 1000 times.
5. Compare the observed correlation coefficient robs with the sorted set of Dr 
6. The approximate significance level of the observed correlation coefficient robs is the

fraction of values of Dr less than robs 

It should be emphasized that relF is not necessarily an adequate proxy for Fmsy, since this
parameter only estimates the average mortality rate at which the stock was capable of replacing
itself.  Thus, while relF defined as average replacement fishing mortality is a necessary condition
for an Fmsy proxy, it is not sufficient, since the stock could theoretically be brought to the stable
point under an infinite array of biomass states.  

Even with an estimate of relF derived from the above procedure, externally-derived estimates of
Bmsy or MSY are necessary in order to develop consistent estimates of all the management
reference points: MSY, Bmsy and Fmsy or their proxies.  For index-based assessments these
terms are related by

MSY/IBmsy = relF

where IBmsy is the survey index associated with Bmsy.  Knowledge of any two of these terms
allows for estimation of the third.  For some index stocks (e.g. Gulf of Maine haddock) an
external estrimate of MSY was considered, based on average catches over a stable period.  For
others, the Ibmsy proxy was considered more reliable and MSY derived from the above
equation.

Six-Panel Plots of Catch, Relative F, and Replacement Ratios

The relationships among the catches, abundance indices, relative F, replacement ratios and time
are summarized in a series of six-panel plots for each stock (19) and survey type (fall, spring). 
The panels are aligned to facilitate interpretation of the stock dynamics and to allow for a
standard approach for comparison among stocks.  The top four panels illustrate the
interelationships among ln(relFt), ln( Q,t ), It, and time t.    The variables share axes such that the
temporal and phase plane interactions are easily followed.   The bottom two panels illustrate the
temporal patterns between catch Ct and  ln(relFt).  Two of the panels warrant special
consideration. The upper left panel plots ln( Qt ) vs ln(relFt). The strength of the linear
association can be inferred from the shape of the confidence ellipse (or principle component)
surrounding the points. When the association is strong the ellipse will be long and narrow; when
the association is weak the ellipse will approach a circle.    The diagonal line represents the
robust regression estimate and the dashed horizontal line represents the replacement ratio of 1.0. 
The intersection of the diagonal line with the replacement line represents the estimate of 



33

relFthreshold .  The intersection of the regression line with a horizontal line at a replacement ratio
of 1.1 (not shown) represents the estimate of  relFtarget 

The middle left panel represents the phase plane relationship between the log of the  survey,
ln(It) and the ln(relF,t). Each point is labeled with the survey year and the points  are connected
to illustrate the temporal sequence.   If the population declines with increases in fishing mortality
and increases when the fishing mortality is reduced, the population should move up and down a
linear isocline.  In many species it is interesting to note that the return path for biomass, when F
is reduced, tends to deviate sharply from the decline path. This general result may suggest that 
the rebuilding of stocks will be less predictable than the path of decline. In particular, the
influence of truncated age structures on reproduction may be important and certainly, the
presence of strong year classes will have a substantial, yet unpredictable influence on stock
rebuilding.

Guide to 6 panel plots

The six panel plot developed for the “index” species attempts to show the interelationships
among survey estimates of abundance, landings, functions of landings and relative abundance,
and time.   The two functions of  landings and relative abundance considered are the replacement
ratio (Eq. 6, section 2.3) and relative F (Eq. 9, section 2.3).  The concept of using multiple panels
to relate multiple variables over time has been advocated  for use in fisheries science (e.g . Clark
1976,  Hilborn and Walters 1992)  and other fields (e.g. Cleveland 1993).  The 6-panel plots
attempt to show the logical  connections among variables and to estimate underlying biological
rates.   The example for GOM Haddock (Figure 2.3) will be discussed in detail here.  

The first aspect  to note about the plots are the shared axes in the top four plots (A,B, C, D) and 
F.  Panels B , D and F show the time series for the replacement ratio, the fall survey index, and
the relative F, respectively.  The horizontal  line in A and B is the replacement ratio =1 line.  
The relationship between the replacement ratio and relative F in panel A  is the key to
understanding the influence of fishing mortality on stock size.  Panel A is a phase plane that
describes the relationship between two variables ordered by time.  The degee of association 
between these variables is characterized by a Gaussian bivariate ellipsoid  with a nominal
probability level of  p=0.6827 equivalent to + 1 SD about the mean of the x and y variables.  The
primary and secondary axes of the ellipse are the first  and second principal components,
respectively.   When the degree of association between relative F and replacement ratio
decreases, the ellipse becomes more circle-like.  The implication is that either the survey is too
imprecise to detect changes induced by historical levels of fishing removals, or that the levels of
fishing effort have been too low to effect changes in relative abundance.   These alternatives can
often be distinguished by consideration of the sampling gear and its interaction with the behavior
of the species. Similarly incompleteness of the catch record, particularly for species in which the
magnitude of discard mortality has varied widely,  is another critical factor in the interpretation
of the confidence ellipse.   

The assumption that the relative F and replacement ratio have a joint bivariate normal
distribution  in the log –log scale may not hold for all (or any) species.  In particular, the
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Figure 2.3.  Annotated six-panel plot depicting trends in relative biomass, landings, relative fishing
mortality rate (landings/index) and replacement ratios for Gulf of Maine haddock.  Horizontal dashed
(---) lines represent replacement ratios = 1 in (A) and (B), threshold relF in (F) and target relative
biomass in (C) and (D).  Vertical dashed lines in (A) and (C) represent the derived relF thresholds.
Smooth lines in (B), (D), and (F) are Lowess smooths (tension=0.3).  The confidence ellipse in (A)
has a nominal probability level of 0.68.  The regression line in (A) represents a robust regression using
bisquare downweighting of residuals.  See text for additional details.
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replacement ratio model is designed to be sensitive to contemporary changes, so that by
definition it will be highly variable.   Large changes that  are subsequently validated by future
observations imply true changes in population status.  When the converse is true, it is proper to
conclude that the change was an artifact of sampling variation.   The degree to which high
residuals influence the pattern is tested using the robust regression method of Tukey (Mosteller
and Tukey 1977) that downweights large residuals using a bisquare distribution (see Goodall
1983 for details). Thus the regression line in panel A will not be aligned with the primary axis of
the ellipse when high residuals distort the confidence ellipse.   The expected value of correlation
between the replacement rate and relative F is negative.  The empirically derived estimate of the
sampling distribution for the correlation coefficient , via the randomization test,  provides a way
of judging the significance of the robust regression line.    

The predicted value of relative F at which the replacement  ratio is 1 is defined by Eq. 8 and
denoted by the vertical line in Panel A and B.  The precision of that point depends largely upon
where it lies within the confidence ellipse.  If the confidence ellipse is nearly centered about the
intersection point, then the precision of the relative F threshold will be high.  This also indicates
that over time, a wide range of F and replacement ratios greater than one have been observed.  
In contrast, when the intersection point lies in the upper right portion of ellipse, the precision
will be low.  This is,  of course, is a common property of  linear regression in which the
prediction interval for Y increases with the square of the distance between the independent
variable X and its mean.  Thus a high degree of correlation between relative F and the
replacement ratio  does not necessarily ensure  high precision in the threshold if relatively few
observations have replacement ratios greater than one.  Panel A demonstrates, in a slightly
different way, the implications of the “one-way trip” described in  Hilborn and Walters (1992)

Panel C depicts the phase plane for relative biomass (ie. The index) and the relative F.  At
equilibrium, the population should move up and down a linear isocline.  The degree of departure
from linearity reflects both sampling variation as well as true variations induced by recruitment
pulses and its transient influence on total biomass.   Thus the trace of points can give useful
insights into parametric model selection of  population dynamics under exploitation .

The simple data of catch and survey are generally not sufficient to estimate simultaneously both
the threshold F and biomass targets.  This property  characterizes the common property of
indeterminancy of r and K in standard surplus production models.   For the GOM haddock
example, the relative biomass target is defined external to the model (Panel C and D).

To facilitate the detection of temporal patterns, Lowess smoothing is applied in panels B, D, and
F.  A relatively low tension =0.3 (i.e., 30% of the span of data are used for the estimate of each
smoothed Y value) is used to allow for more sensitive flexing of the smoothed line.  As noted
earlier, the heightened sensitivity is desirable for this particular application in fisheries
management.   In a sense, the Lowess smoothing counterbalances the sensitivity built into the 
definitions of replacement ratio and relative F, by damping the rates of change and allowing for
detection of  general trends. 
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The final point to note is that the 6 panel plot  may allow one to develop a reasonable picture of
the population dynamics  in relation to exploitation.  With the exception of a brief period in the
late 70’s the replacement rate for GOM haddock was below one and continued its downward
trend until 1990 (Panel A). This was accompanied by a continuously decreasing population size
(Panel D). The reduction  in landings from nearly 8000 mt in 1984 to less than 500 mt by 1989 
(Panel E) greatly reduced the relative F (Panel F) below the threshold level  and subsequently led
to the replacement ratio exceeding one.  The inter-relationships among Panels B, D, and F
resemble  the kinetics of  simple chemical reactions and conceptually one should look  for
counteracting trends among indices and the influence of the trends in catch and relative survey
abundance.

2.4 Projection Methodologies

One principle of conducting stock projections is that the basis for such projections (e.g., stock-
recruit model, or emporical approach, production analysis or index method) should be consistent
with the approach taken for reference point estimation (see the problems as noted in section 1.5
when this is not the case).  Our analyses used consistent projections methodologies in all cases.

2.4.1 Age-Based Projections

Age-based projections are conducted using standard methodology and software (Brodziak et al.
1998; Brodziak and Rago 2002). In this approach, standard statistical techniques of
bootstrapping and Monte Carlo simulation are used to project performance measures such as
landings, discards, spawning biomass, and recruitment under alternative management policies.
The key idea is to propagate variability in estimates of initial stock size forward in stochastic
projections of future possibilities based on the same dynamical model and data used in the stock
assessment model. Bootstrap replicates of current population size from an age-structured
assessment model are combined with a stochastic stock-recruitment relationship to simulate
population trajectories through the projection horizon. As a consequence, uncertainties in both
initial population abundance and future recruitment are directly incorporated into management
advice. The implications of management decisions can be quantified and compared using
empirically-derived sampling distributions of catch, landings, discards, spawning biomass,
recruitment, and, in the case of management under fixed catch quotas, fishing mortality. 
Estimates of the probability of exceeding biological reference points or achieving management
targets are also quantified.

2.4.2 Surplus Production Projections

Stochastic projection was performed using bootstrap distributions of stock biomass in 2001, and
estimated biomass dynamics parameters from ASPIC (Prager 1995).  Projections assumed
observed catch in 2001 (adjusted upward from January-November data), and the resulting fishing
mortality in 2001 was assumed to continue in 2002 (expressed as a ratio to F in the terminal
year, 2000).  Projections were run through 2010.  Results were described using bias corrected
confidence intervals of projected biomass and catch.
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2.4.3 Projections from Index-Based Methods 

Catch Estimation and Projections

The estimates of  relFthreshold and relFtarget from Eq. 9 and 10 respectively, can be used to project
the expected catches during any forecast period.   Under the theory, multiplication of the current 
abundance index It by   relFthreshold leads to an estimate of Ct.  If the estimate of   relFthreshold is
unbiased then the population is expected to remain constant. This leads to the rather
uninteresting forecast of constant catches over any time horizon.  Conversely, when the
population is fished at  relFtarget , the population is expected to grow by an average of 10% per
year and the catches will grow at a similar rate.  For short time periods and low initial population
sizes, this approximation is likely to hold.  Results of this approach, summarized in Table 4.1.2,
suggest a reasonable degree of coherence with rebuilding schedules and catch projections
derived from more complicated age-structured models.  Thus, the catch projection estimates for
the species without more complicated models may be used for planning and management
purposes.

2.5 Mean Generation Times

The calculation of mean generation times for the various stocks is relevant to rebuilding times
and rates in as much as life history is a determinant of maximum rebuilding potential and the
ability of stocks to recover to Bmsy over a defined time interval (Restrepo et al. 1998).  In the
context of stocks determined to be unable to meet Bmsy targets in a 10 year time frame once a
re-building program has been initiated, the National Standard Guidelines state that the actual
rebuilding time plus one mean generation time may be specified as the maximum rebuilding
period.  The formula of Goodyear (1995) was modified for application to the New England
groundfish stocks for which adequate estimates of natural mortality (M) mean weights at age in
the stock, and proportion mature at age are available.  Generation time, G is the weighted mean
age of spawners in a population not subjected to fishing:
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Na is the number at any age in the population, Ea is the weighting factor calculated as the
proportion mature at age multiplied by the mean weight at age in the stock, and a is age.  For the
New England groundfish species, basic data inputs to the calculation are given in the appropriate
yield and spawning stock biomass per recruit tables (e.g., Table 3.1.2 for Gulf of Maine cod). 
The number of ages was determined by applying M  to the population numbers at age until there
was an insignificant number of fish remaining from the initial assumed cohort size (for redfish
we assumed 200 ages, for all others 50 years).  Results of the mean generation time calculations
are given in Table 2.5.  Owing to its low natural mortality rate and delayed maturity, Acadian
redfish had the longest mean generation time (30.6 years) while the Georges Bank and Southern
New England yellowtail flounder stocks had the lowest G values, under 9 years.
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Table 2.5.  Calculated mean generation times for Northeast groundfish stocks

Species Stock Mean Generation Time
(Years)

Atlantic cod Gulf of Maine 10.8

Georges Bank 10.3

Haddock Georges Bank (current) 8.9

Georges Bank (1931) 8.8

Yellowtail Flounder Georges Bank 8.1

Southern New England 8.3

Cape Cod 8.8

American plaice Georges Bank-Gulf of Maine 11.1

Witch Flounder Georges Bank-Gulf of Maine 12.0

Winter Flounder Southern New England 8.9

Acadian Redfish Georges Bank-Gulf of Maine 30.6




