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Abstract 

The aggregate flow model is used to determine 
how to distribute predeparture delays among air 
traffic control Centers and across time to optimally 
satisfy constraints on airspace capacity and 
departure rates.  To do so, a quadratic cost on 
cumulative departure delays is introduced, resulting 
in an optimization problem that can be quickly 
solved using convex optimization tools.  
Simulations using the model demonstrate the 
behavior of the National Airspace System (NAS) 
when implementing optimal departure delays for a 
particular constraint scenario.  These results show 
that capacity-constrained air traffic control Centers 
suffer the highest delays.  Three approaches for 
increasing the equity of the distribution of delays 
across the NAS are investigated.  The first involves 
setting an upper bound on the Gini coefficient, a 
quasi-convex measure of inequality.  Another is to 
make delays in some Centers more costly than in 
others.  The last approach is to put an upper bound 
on the delay per departure for each Center.  
Simulation results demonstrate that bounding delay 
per departure effectively reduces the delays for the 
constrained Center.  Enforcing an upper bound on 
the Gini coefficient and increasing the weight on 
delays in some Centers may impose large delays on 
other Centers when reducing the delays in the 
constrained Center.   

Introduction 
Sub-optimal traffic flow management (TFM) 

initiatives are responsible for some of the delays 
observed in the NAS.  For example, more than 
215,000 hours of delay between January 2003 and 
October 2004 can be attributed to the FAA’s Traffic 
Management System.  These delays cost airlines 
alone around $700 million [1].   A NAS-level 
model for which optimal TFM actions could be 
derived would help the FAA Air Traffic Control 
System Command Center (ATCSCC) make NAS-
wide TFM decisions.  However, surprisingly few 

TFM models have been developed for which 
optimal solutions can be computed for the entire 
NAS in real-time.  NAS-wide TFM is so large and 
complex that most proposed models and 
optimization techniques are too computationally 
intensive to allow for real time NAS-wide 
optimization.  Some of these models are discussed 
below in the “Models for Traffic Flow 
Management” subsection.   

One model for which optimal solutions can be 
computed for the entire NAS in real-time is the 
aggregate flow model [2].  Note that while many 
models use aggregation of one kind of another, one 
particular model will be referred to as the aggregate 
flow model.  This model describes the behavior of 
the NAS with around 20 states that evolve in a 
time-varying linear dynamical system.  The stability 
and response characteristics of the model have been 
studied [3], and it has been used to manage 
congestion in a small sample problem [1].  
However, there has been no attempt to utilize this 
model to find TFM actions for the entire NAS. 

While the two projects using the aggregate 
flow model [1, 3] used different approaches, they 
both found that the most effective way to handle 
constraints in a part of the NAS was to implement 
predeparture delays in that part of the NAS.  
Indeed, research on the impact of weather on delays 
has found that weather-induced delays are not 
distributed evenly across air traffic control Centers 
[4].  This distribution of delays may not be 
desirable when high-delay or high-priority areas are 
assigned large amounts of delay.  In fact, more 
recent research has looked at how to take TFM 
actions specifically to alleviate delays in high-delay 
parts of the nation, such as New York [5-6].  The 
aggregate flow model can be used to examine the 
impact of prioritizing equality in the distribution of 
delays around the NAS. 

In this paper the aggregate flow model is used 
to determine how to distribute predeparture delays 
across the NAS to minimize a quadratic cost on 



cumulative delays while meeting future capacity 
constraints.   Three methods for incorporating 
equality concerns into this optimization approach 
are also analyzed. 

In the next sub-section, models for TFM will 
be classified, discussed, and evaluated.  The 
aggregate flow model will be described in detail, 
and its strengths and weaknesses will be itemized in 
the “Aggregate Flow Model” section.  In the 
“Optimization Approach” section, the cost function 
and constraints will be introduced.  Next a 
simulation scenario and results will be presented 
and discussed in the “Results and Discussion” 
section.  Finally, in the “Conclusions and Future 
Work” section, what was learned will be 
summarized and future work will be proposed. 

Models for Traffic Flow Management 
Several TFM models have been developed 

over the past few decades.  These models possess a 
large variety of properties and can be classified in 
several ways – deterministic versus stochastic, 
according to the control inputs they allow, regional 
versus national, etc.  However, the most insightful 
way to classify these models is according to how 
aircraft are aggregated. 

At one extreme, models may not aggregate 
aircraft at all.  Such models that maintain 
information about each aircraft separately are 
known as Lagrangian models.  The most well-
known and widely used Lagrangian TFM model 
was developed by Bertsimas and Stock [7].  In this 
model, the decision variables are whether or not a 
certain flight arrives at a certain sector by a certain 
time.  There also may exist a discrete number of re-
routing options for each flight.  Minimizing the sum 
of ground and airborne delay leads to a 0-1 integer 
programming problem.  Even the linear program 
relaxation of this problem is computationally too 
demanding to be solved for the entire NAS in real 
time. 

Bayen et al. developed another Lagrangian 
model [8].  In this model, aircraft were modeled 
with enough detail that air traffic control commands 
such as vectoring for spacing and speed changes 
could be implemented.  The completion time for 
moving aircraft from initial to final states was 
minimized with a mixed integer linear program.  

Again this model is too complex to be solved in 
real-time at scales any larger than a Center.   

Other models, broadly known as Eulerian 
models, do not keep track of each aircraft 
individually but rather keep track of the number of 
aircraft that share some characteristic.  The most 
obvious way to aggregate aircraft is according to 
geographic location.  The first such model used as 
its state the number of aircraft in each air traffic 
control Center [9].  The dynamics of this model 
were stochastic in nature and based on Poisson 
processes.  The aggregate flow model is closely 
related to this model; both models use the same 
state variables.  The models differ in that the 
aggregate flow model dynamics are based on time-
varying linear dynamical equations with noise terms 
rather than stochastic processes [2].  These models 
involve more dramatic assumptions than other 
models, but they also have relatively few state 
variables that are related in a convenient linear 
form.  This means that this model can easily be 
used to simulate and optimize over the entire NAS 
in real-time. 

Another possibility is to aggregate flights 
according to flight status.  Ball et al. define the 
number of aircraft that are held on the ground and 
bound for a particular airport as control inputs.  
Aircraft bound for an airport and held in the air 
constitute another state in the system.  The “planned 
airport arrival rate” is a probabilistic constraint that 
determines the number of aircraft that can transition 
out of the airborne state each time step by landing 
[10].  This is an integer program but its linear 
program relaxation is guaranteed to give integer 
results, and it can be solved quickly.  Several 
extensions to this model have allowed for the 
control of some rerouting possibilities and also 
time-dependent and probabilistic capacity 
constraints on airspace.  While the control inputs 
for this model are nicely suited to current 
collaborative traffic flow management practices, it 
is not easily extended beyond a single airport. 

Several other Eulerian TFM models are based 
on aircraft aggregation according to network flows.  
The first network-based model defined a network 
by first overlaying a grid on the NAS [11].  Eight 
flows were defined in each grid cell (one from each 
side to the opposite side and one from each corner 
to the opposite corner), and flights were aggregated 



accordingly.  A linear discrete-time dynamical 
system based on conservation of aircraft describes 
the movement of aircraft from one flow to another.  
Model-predictive control then finds appropriate 
control actions, which involve holding aircraft back 
in flows rather than allowing them to move from 
one flow to the next.  Determining divergence 
parameters, which describe how aircraft change 
direction at the intersection of flows, can be 
difficult.  These parameters could be updated 
continuously as new information becomes available 
[12]. 

Another network flow-based modeling 
approach defines network flows by starting from 
airspace sectors rather than a grid [13].  Flight 
trajectories through sectors are clustered into 
various flows, defining a network.  Each network 
link is then sub-divided into cells, which require 
one time step to traverse.  The system state is the 
number of aircraft in each cell for each origin-
destination pair in the system.  Decoupling the 
system state according to origin-destination pairs 
avoids the issues related to divergence parameters 
described earlier.  Again the model dynamics are 
defined by a linear dynamical system, and the 
control input is to hold aircraft back in a cell rather 
than allowing them to continue to the next cell.  
This model is used to minimize total travel time 
through the network using mixed-integer linear 
programming optimization.  The number of state 
variables can become large for this model and can 
easily exceed the number of aircraft in the system, 
which makes optimizing for the whole NAS 
difficult.  However, techniques such as linear 
programming approximation and dual 
decomposition help with these computational 
issues, and computation times may be low enough 
for real-time computation of NAS-wide solutions. 

A similar approach that is in some ways more 
realistic uses a finite impulse response filter model 
[14].  The control inputs in this model are the 
fraction of aircraft that are allowed to cross each 
network link at each of a finite number of 
velocities.  This mechanism for assigning delays 
aligns more closely with TFM practice than holding 
en-route aircraft.  This model can be used with 
quadratic programming optimization to find optimal 
control actions, but no attempt has yet been made to 
apply this approach to NAS-wide problems.  

Depending on the resolution of the model network, 
this approach may or may not be fast enough for 
real-time NAS-wide problems. 

Network flows can also be described with 
partial differential equations (PDEs) rather than 
linear dynamical systems [15].   The main idea in 
these models is that aircraft density along network 
links is modeled with hyperbolic PDEs from the 
Lighthill-Whitham-Richards traffic model.  The 
objective is to maximize aircraft throughput at a 
destination airport while maintaining traffic 
densities below some upper bound, and the control 
inputs are routing policies and speed assignments.  
Optimization problems with PDEs are difficult to 
solve, but this problem has been solved by using 
adjoint-based methods.  A discretized version of a 
linearized PDE model is referred to as the supply 
chain model [14].  While the supply chain model is 
not as accurate as the PDE model, it can be used in 
a convex optimization formulation and so routing 
and velocity TFM actions can be found quickly.  It 
is unclear if it would be possible to scale the PDE 
or supply chain approaches to NAS-wide problems 
and find real-time solutions. 

A final network-flow based approach 
mentioned here is based on dynamic queuing theory 
[16].  In this model, airport demand and capacity 
vary over time, and dynamic queuing theory 
determines the probability that queues (in the air or 
on the ground) will be certain lengths at certain 
times.  This methodology has been expanded to 
include around 60 interconnected airports.  One 
issue with this approach is that while it works well 
for predictions and studies of the impact of 
changing relevant parameters (such as airport 
capacities), it has not been utilized to perform TFM 
optimization. 

Aggregate Flow Model 
The state variables for the aggregate flow 

model are simply the count of aircraft in each air 
traffic control Center at each time step.  In this 
model the NAS can be viewed as a graph where 
each node is an air traffic control Center and edges 
represent borders between Centers, as shown in 
Figure 1.   



 

Figure 1. Graph Representation of National 
Airspace System for Aggregate Flow Model 

These states change over time according to 
linear time-varying equations that capture how 
aircraft move from one Center to another in each 
time step and how many aircraft arrive and depart 
in each Center at each time step.  These inflows and 
outflows are depicted in Figure 2. 

 

 

 

  

 

 

 

 

Figure 2. Inflows and Outflows of Air Traffic 
from a Center 

There are four main flows into and out of each 
Center.  One inflow is the number of departures 
from Center i itself.  This is the variable that can be 
used to control the system and it is denoted by 

! 

u
i
(k).  The other inflow comes from neighboring 

Centers and is assumed to be proportional to the 
number of aircraft in those neighboring Centers.  
For a neighboring Center j this inflow can be 
expressed as 

! 

" ji(k)x j (k) , where 

! 

" ji(k) is a time-
varying parameter between zero and one that 
denotes the fraction of aircraft in Center j that move 
to Center i during time step k.  Similarly, 

! 

"ij (k)xi(k)  is the outflow from Center i to Center j 
during time step k.  The fourth and final flow is the 
arrivals in Center i during time step k, which is also 
assumed to be proportional to the number of aircraft 
in Center i at the start of time step k and can be 
expressed as 

! 

"
ii
(k)x

i
(k) . 

Given the 

! 

"  parameters, the dynamics each of 
the 

! 

N  state variables can be expressed as 

! 

xi(k +1) = xi(k) + " ji(k)x j (k)
j=1
j# i

N

$

% "ij (k)xi(k) + ui(k)
j=1

N

$

.           (1) 

By building the appropriate 

! 

A(k) matrix [2], 
all of these equations can be expressed as a single 
matrix equation: 

! 

x(k +1) =A(k)x(k) + u(k) .             (2) 

In this paper, a cost on the cumulative delays 
in each Center is used, so it is notationally 

convenient to define 

! 

ˆ u (K) = u(k)
k=1

K

" .  This means 

that 

! 

ˆ u (K)  is simply a vector containing the 
cumulative number of departures from each Center 
at time step K.  Equation (2) can then be expressed 
as 

! 

x(k +1) = A(k)x(k) + ˆ u (k) " ˆ u (k "1) .     (3) 

Aggregate Flow Model Characteristics 
The main attractive feature of the aggregate 

flow model is its ability to model the behavior of 
the entire NAS with linear equations involving 
about 20 state variables and 20 control variables.  
The linear form of the equations means that control 
and optimization theory can be readily applied to 
assist in choosing control inputs.  The small number 
of state and control variables means that control 
inputs for the entire NAS can be readily computed 
in real time when using many control and 
optimization techniques.  However, the ability of 
this model to predict the state of the NAS when 
departure rates differ from their scheduled levels 
has not been demonstrated. 

The principal assumption in the aggregate flow 
model is that the number of flights that move to 

Center i 
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x
i
(k)  

! 

"
ii
(k)x

i
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Departures from Center i  
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u
i
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! 
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Outflow to Center j  
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"ij (k)xi(k)  



another Center or arrive during a time step is 
proportional to the number of aircraft in the Center 
at the start of that time step.  The proportionality 
constants (

! 

"ij (k)) change over time and are found 
from historical data.  This model performs well 
when predicting NAS behavior under nominal 
operating conditions [2].  Using proportionality 
constants derived from historical data may be less 
valid when traffic patterns differ from nominal 
operations and when flights are selectively delayed 
during a ground delay program.  Recent research 
has considered adapting the proportionality 
constants in real time and in response to flight plans 
for the current day in response to this issue [12].  
Moreover, deriving proportionality constants from 
historical data precludes using rerouting for TFM, 
thereby artificially limiting the space of possible 
TFM solutions. 

The small number of control inputs for this 
model also means that the controls available are 
relatively crude.  This is appropriate for a NAS-
wide model, but controls derived with this model 
would need to be used in conjunction with a lower-
level algorithm to assign departure slots to available 
flights.  This lower-level method may impact the 
validity of the proportionality constants and also the 
effectiveness of the resulting TFM initiatives. 

Optimization Approach 
The aggregate flow model was used in 

conjunction with optimization techniques to find 
optimal NAS-wide departure rates in response to 
expected restrictions on airspace and departure rate 
capacities.  Other approaches were considered, such 
as a model-following adaptive control approach and 
an optimal control approach.  The model-following 
adaptive control approach was not selected because 
of the difficulty in finding an appropriate and 
theoretically tractable model to follow.  Moreover, 
upper and lower bounds on state variables are not 
easily implemented when using these types of 
control theory.  Lastly, these approaches did not 
allow for future expected constraints to be 
considered when selecting control inputs.  Model 
predictive control (MPC) would overcome many of 
these difficulties, and in fact the actual 
implementation of the optimization approach 
utilized here would likely follow the MPC 
paradigm of implementing the first control action in 

a sequence, measuring the result, and then re-
optimizing over a relevant time horizon. 

Cost Function 
The cost function is a quadratic cost on 

cumulative departure delays over some time period.  
Previous research applying the aggregate flow 
model used instantaneous delays in the cost 
function [1].  However, cumulative delays take into 
account that when flights are delayed in one time 
step, actual departures must exceed planned 
departures in some future time step(s) to get back 
on schedule.  In fact, after a time step where actual 
departures are below scheduled departures, some 
flights will be delayed until actual departures 
exceed scheduled departures enough to catch up 
with the schedule. 

Similarly, using a quadratic cost on delays is 
appropriate because the marginal cost of a delay for 
airlines and passengers increases with delay time.  
As delay time increases, passengers, crews, and 
aircraft start missing connections and ultimately 
flights must be cancelled.  Therefore the cost of 
increasing a delay from 5 to 10 minutes is much 
less than increasing a delay from 55 to 60 minutes, 
justifying the use of a quadratic cost function. 

To express the cost function in a precise form 
that can be used in an optimization problem, a 
schedule variable must be defined.  Let 

! 

ˆ s (k)  be a 
vector containing the scheduled cumulative 
departures from all Centers at time step k.  If 
everything is running on schedule, 

! 

ˆ s (k) = ˆ u (k)  for 
all k. 

The optimization problem considers some time 
horizon from 

! 

k =1 to 

! 

k = k f .  If there are 

! 

N  air 
traffic control Centers, then the total number of 
control inputs for this time horizon is 

! 

Nk f .  For a 
more concise problem formulation, let  

  

! 

ˆ u = ˆ u (1)
T ˆ u (2)

T
K ˆ u (k f )

T[ ]
T

       (4) 

and 

  

! 

ˆ s = ˆ s (1)
T ˆ s (2)

T
K ˆ s (k f )

T[ ]
T

.       (5) 

With these variables defined, the quadratic cost 
to be minimized can be expressed as 



! 

J( ˆ u ) = ˆ s " ˆ u 
2

2 .                             (6) 

This cost is the sum of the squared cumulative 
delay in each Center at each time step. 

Physical Constraints 
There are several constraints for this 

optimization problem.  Many of them are imposed 
by the underlying reality of the airspace system.   
The first and most obvious constraint is that the 
system follows the system dynamical equations (3).   

Assuming that flights do not depart before 
their scheduled departure time and considering that 
cumulative departures cannot be negative leads to 
the constraint 

! 

0 " ˆ u " ˆ s .                                  (7) 

Of course cumulative departures should be 
non-decreasing.  The magnitude of the increase in 
cumulative departures from one time step to the 
next is bounded above by the possible departure 
rates at the airports in each Center.  These two 
constraints can be expressed together as 

! 

0 " ˆ u (k) # ˆ u (k #1) " u
max

(k)   
  

! 

" k = 2Kk f . (8) 

Similarly, the number of aircraft in each 
Center is bounded above by the capacity of the 
airspace in the Center and below by zero, so 

! 

0 " x(k) " x
max
(k)    

  

! 

" k =1Kk f .      (9) 

Here 

! 

x
max
(k)  is a vector that denotes the 

capacity of the airspace in each Center at time step 

! 

k , measured in number of aircraft.  Likewise 

! 

u
max
(k) is a vector that denotes the departure rate 

capacity for each Center at time step 

! 

k .  For this 
paper, these vectors are assumed to be known 
exactly for some time horizon.  In reality there 
would be considerable uncertainty regarding the 
exact value of 

! 

x
max
(k)  and 

! 

u
max
(k), particularly 

for large values of 

! 

k , and future research should 
consider this uncertainty explicitly.  

Constraints for Equity 
Other constraints considered for this problem 

are imposed not due to physical realities of the NAS 
but rather out of a desire to distribute air traffic 
delays across Centers in a particular way.  More 
specifically, each of these constraints imposes some 

requirements on the equity with which delays are 
distributed across Centers. 

The first equity constraint is an upper bound 
on the Gini coefficient for Center departure delays 
[17].  The Gini coefficient is a measure of equity 
that is equal to zero when there is perfect equality 
(each Center has the same amount of departure 
delay) and equal to one when there is perfect 
inequality (one Center incurs all of the departure 
delay).  If 

! 

G
max

 is the maximum allowable Gini 
coefficient for the distribution of departure delays 
among Centers, with 

! 

0 "G
max

"1, and the vector 

! 

d  contains the delay per departure for each Center, 
then this constraint can be expressed as 

! 

di "d j

j=1

n

#
i=1

n

#

2n di
i=1

n

#
$G

max
.               (10) 

A second approach involves adjusting the cost 
function rather than adding a constraint.  Delays can 
be reduced in some Centers putting a higher weight 
on their delays in the cost function.  To do so, the 
cost function (6) is modified to have the form 

! 

J( ˆ u ) = C(ˆ s " ˆ u )
2

2 .                        (11) 

Here 

! 

C  is a diagonal matrix with diagonal entries 
that designate the weight assigned to delays in each 
Center at each time step. 

Another possible equity-based constraint puts 
an upper bound on the departure delay per flight 
over the time horizon for each Center.  This upper 
bound is simply 

! 

d
"
# d

max
,                               (12) 

where 

! 

d
max

 is the desired maximum possible delay 
per departure for the time period under considera-
tion. 

Convex Optimization Problem 
Combining either objective (6) or (11) with the 

constraints (3), (7)-(9), and optionally (10) and (12) 
leads to the optimization problem used to find the 
distribution of departure delays for a particular 
scenario.  This problem is a convex optimization 
problem, a problem in which a convex function is 



minimized subject to inequality constraints where 
convex (or quasiconvex) functions are bounded 
above by zero and subject to affine equality 
constraints [18].  Minimizing the objective is 
equivalent to minimizing its root, in which case 
either objective (6) or (11) is a norm and therefore 
clearly convex.  The constraints (3) and (7)-(9) are 
just affine expressions of the vector variable 

! 

ˆ u , so 
they are also convex.  Constraint (12) is the 
sublevel set of a norm, which is convex because any 
norm is convex.  Finally, constraint (10) is convex 
because the Gini coefficient can be shown to be 
quasi-convex (see Appendix I), ensuring that its 
sublevel sets are convex. 

Verifying that this optimization problem is a 
convex optimization problem is important because 
the theory, and more importantly the practical tools, 
for minimizing convex optimization problems are 
well established [18].  In particular, open-source 
software such as CVX can easily be utilized to solve 
this convex optimization problem [19]. 

Results and Discussion 

Scenario 
For the analysis presented here, a five-hour 

period from 7 am to 12 noon EST on Thursday, 
May 6, 2004 was considered.  This is the same day 
that was studied in other research on the aggregate 
flow model [3].  Scheduled departure rates (

! 

ˆ s (k) ) 
and proportionality constants (

! 

"ij (k)) were derived 
from the actual traffic on this day. 

A scenario considered Cleveland Center 
experiencing a reduction in capacity.  The reduction 
in capacity can be caused by any phenomenon, such 
as weather or some air traffic control equipment 
malfunction.  Figure 3 depicts the scenario.  More 
specifically, the maximum aircraft count (

! 

x
max
(k) ) 

in Cleveland was reduced to 150 aircraft for a 100-
minute period during this five-hour period.  If there 
were no such restriction on traffic, then the aircraft 
count in Cleveland Center during this period would 
peak at just fewer than 300 aircraft.  Moreover, 
during the same 100-minute period, the departure 
rate in Cleveland Center was reduced to slightly 
more than 11 departures per 4-minute time step.  
More than 25 departures were scheduled during 
some time steps in this period.  Such Center-level 

restrictions are not used in current TFM practice, 
but they are required for this optimization process.  
These restrictions could be approximated by 
summing all of the sector capacities and airport 
departure rates in a Center. 

The optimization problem under consideration 
is solved using CVX, which is called from Matlab.  
This problem can be solved in less than 10 minutes 
on a desktop computer, fast enough to be used in a 
real-time implementation. 

Optimal System Behavior 
The first set of simulations demonstrates the 

optimal departure delays in this scenario when no 
constraints are implemented for equity.  More 
precisely, the optimization problem discussed above 
is solved but without constraints (10) and (12).  

Figure 3 shows the results of the simulation for 
Cleveland Center.  In part (a) of the figure, the 
restricted aircraft count is plotted over time.  About 
half an hour prior to the activation of the capacity 
constraints, the aircraft count is reduced 
dramatically.  Immediately after the constraint is 
lifted, the aircraft count grows quickly as pent-up 
demand for departures is released.  Part (b) shows 
the departures per time step over time.  Before and 
during the period where the airspace is constrained, 
the departure rate is even lower than its constrained 
upper bound.  Therefore the airspace constraint is 
the binding constraint in this situation.  As soon as 
the constraints are lifted, aircraft depart rapidly.  
Part (c) of this figure demonstrates how aircraft 
depart at the maximum possible rate following the 
lifting of the constraints to allow delayed flights to 
depart.  By the end of the simulation, about an hour 
after the constraints have been lifted, the Cleveland 
departures are almost back on schedule. 

  



 

(a) 

 

(b) 

 

(c) 

Figure 3. Optimal Constrained Response in 
Terms of (a) Number of Aircraft, (b) Departure 

Rate, and (c) Cumulative Departures in 
Cleveland Center 

The optimization approach is able to satisfy 
these constraints with 133,030 minutes of departure 
delay, or just over 6 minutes of delay per departure 
in the NAS.  Almost half of those minutes of 
departure delay were absorbed by Cleveland 
Center.  This corresponds to more than 47 minutes 
per departure from Cleveland Center.  This inequity 
in the distribution of delays among air traffic 
control Centers is portrayed graphically in the 
histogram of delays in Figure 4.  Such inequality 
has been observed in real delay data [4] and 
motivates the analysis of equity constraints 
presented in the following sub-section. 

 

Figure 4. Departure Delay Histogram for 
Optimal Constrained Response 

Delay and Equity Tradeoff 
The scope of the aggregate flow model and the 

flexibility of the convex optimization approach used 
here allow for some unique NAS-level analyses.  
Here a study analyzes several methods for trading 
off delay and equity in the distribution of delay 
between Centers. 

To investigate this tradeoff, we will first 
enforce constraint (10), an upper bound on the Gini 
coefficient.  When no constraint on inequality is 
imposed, the Gini coefficient is equal to 0.64, a 
relatively high value indicating an unequal 
distribution of delay per departure among Centers.  
The upper bound on the Gini coefficient (

! 

G
max

) is 
varied between 0.01 (almost perfect equality in 
delay per departure distribution) and 0.7 (highly 
unequal delay per departure distribution).  Actually 
an upper bound on the Gini coefficient above 0.64 



will have no effect on the optimization problem, 
because this is the value of the Gini coefficient at 
the optimal distribution of delay. 

Figure 5 shows the tradeoff between total 
departure delay and equality, as measured by the 
Gini coefficient, for this particular scenario.  When 
no constraint on equality is imposed, the delay is 
about 133,000 minutes.  If the upper bound on the 
Gini coefficient is decreased to 0.2 in order to 
enforce a more equitable distribution of delays, the 
total delay increases dramatically to about 200,000 
minutes.  Enforcing even more equality leads to 
higher total departure delays. 

 

Figure 5. Tradeoff Between Total Delay and Gini 
Coefficient 

This tradeoff can also be investigated on a per 
departure basis.  Figure 6 shows the average 
departure delay in Cleveland Center, the Center 
with the most delays in this scenario, and the NAS-
wide average departure delay.  As the upper bound 
on inequality decreases, the average delay per 
departure increases NAS-wide and also decreases in 
Cleveland. 

 

Figure 6. Impact of Gini Coefficient Bound on 
Delay per departure NAS-wide and in Cleveland 

In Figure 6 it can be seen that as the Gini 
coefficient upper bound decreases from 0.7 to 0.2, 
there is almost no change in the delay per departure 
in Cleveland.  This means that the gains in equality 
as the Gini coefficient decreases to 0.2 are 
essentially totally achieved by increasing delays in 
other Centers rather than decreasing delays in 
Cleveland.  It is only when an extremely high level 
of equality is enforced that delays in Cleveland start 
to decrease.  Unfortunately, as can be seen in Figure 
5, enforcing such high levels of equality leads to 
exceedingly large increases in NAS-wide total 
delay values.  Thus the aggregate flow model 
indicates that enforcing equality in average delay 
distributions is a poor way of alleviating delay in a 
particular Center. 

Weighted Centers in Cost Function 
A second option for shaping the distribution of 

delays among Centers is simply to put a higher cost 
on delays in some Centers than on delays in others.  
For example, in the scenario under consideration, 
Cleveland Center is constrained and therefore 
absorbs a high amount of delay when no effort is 
made to distribute the delays evenly.  Therefore it 
makes sense to put a higher weight on delays in 
Cleveland when computing TFM actions in this 
scenario.  Very busy or high-priority Centers could 
always receive a larger weight in the cost function 
when computing optimal departure delays. 



For the analysis of this method, all of the 
departure delays in Cleveland Center were assigned 
weights that took values between 1 and 10, while 
the weights on delays in each other Center remained 
at 1.  Figure 7 shows the impact of increasing the 
weight on Center delays in Cleveland on delay per 
departure in Cleveland and NAS-wide, as well as 
the impact on equality as measured by the Gini 
coefficient.  With this approach, Cleveland delay 
per departure can be driven below NAS-wide delay 
per departure; attempting to do so with the other 
approaches led to infeasible problems.  Of course 
doing so means that other Centers are experiencing 
higher delay per departure than Cleveland, even 
though it is the constrained Center.  This is why the 
Gini coefficient remains high as the Cleveland 
Center delays are reduced. 

 

Figure 7. Impact of Increasing Weight on 
Cleveland Delays on Delay per departure NAS-
wide and in Cleveland and on Gini Coefficient 

Delay and Center Delay per Departure 
Tradeoff 

A more direct approach to reducing the delays 
in a high-delay Center is to implement a constraint 
that bounds the delay per departure in each Center. 
This is accomplished by using constraint (12) rather 
than (10) in the optimization problem.  In the 
simulations with this constraint, the scenario 
described and simulated above was again used. 

The tradeoff between total delay and the 
maximum delay per departure in any given Center 
is depicted in Figure 8.  The y-axis on this figure is 

identical to that in Figure 5 to facilitate comparison 
between the results.  Reductions in the bound on 
Center delay per departure induce smaller increases 
in total delay than reductions in the Gini coefficient 
bound.   

 

Figure 8. Tradeoff Between Total Delay and 
Maximum Center Delay per Departure 

Figure 8 shows the impact of various Center 
delay per departure bounds on delay per departure 
in Cleveland and the entire NAS, as well as on the 
Gini coefficient.  As the delay per departure in 
Cleveland are reduced by the upper bound, the 
NAS-wide delay per departure increase.  However, 
comparing Figure 8 with Figure 5 reveals that the 
bound on Center delay per departure is much more 
effective at reducing severe delays in a constrained 
Center without imposing excessive delay demands 
on other Centers.  For example, Figure 5 indicates 
that bounding the Gini coefficient above by a very 
low value (around 0.07) will reduce the delay per 
departure in Cleveland to about 30 minutes by 
increasing the delay per departure NAS-wide to 
about 25 minutes.  Enforcing an upper bound on 
Center delay per departure as shown in Figure 9 
reduces the delay per departure in Cleveland to 30 
minutes while only increasing the delay per 
departure NAS-wide to about 12 minutes. 

Interestingly, Figure 9 also indicates that the 
Gini coefficient remains relatively high even as the 
maximum Center delay per departure (

! 

d
max

) is 
reduced.  Even when the delay per departure is 
bounded above by 25 minutes per departure, the 
Gini coefficient is still around 0.3.  Figure 10 shows 



the histogram of the delay distribution in this 
scenario (not delay per departure).  Many Centers 
have low levels of total delay, while a few have 
total departure delays as high as or higher than that 
of the constrained Center.  Intuitively this makes 
sense – the neighbors of the constrained Center 
would be expected to sustain larger levels of delays 
than Centers far from the constrained Center.  
While a few Centers have higher total departure 
delays in this case, Cleveland Center has the highest 
delay per departure (25 minutes). 

 

Figure 9. Impact of Center Delay per Departure 
Bound on Delay per departure NAS-wide and in 

Cleveland and on Gini Coefficient 

 

Figure 10. Distribution of Departure Delay 
When Maximum Center Delay per Departure is 

25 minutes 

To compare the results of these three methods 
more directly, curves showing the tradeoff between 
Cleveland delay per departure and NAS-wide delay 

per departure for each approach are plotted in 
Figure 11.  Using a bound on the Gini coefficient is 
clearly an inferior way to reduce delay in a 
constrained Center, as its tradeoff curve is strictly 
worse than those generated by the other two 
options.  Bounding Center delay per departure and 
putting a weight on delays in the constrained Center 
perform almost identically until the bound on 
Center delay per departure becomes too low.  
Therefore, when the goal is to reduce delays in one 
Center, the best approach is to put a higher weight 
on delays in that Center. 

 

Figure 11. Tradeoff Between Cleveland Delay 
per Departure and NAS-wide Delay per 

Departure for Three Approaches 

Figure 11 masks the fact that when weighting 
Center delays, at some point the weight becomes so 
large that the constrained Center is no longer 
experiencing the highest delay per departure.  
Figure 12 shows the delay per departure in the 
Center with the largest delay per departure on the y-
axis and the NAS-wide delay per departure on the 
x-axis.  Putting a higher weight on delays in the 
constrained Center in the cost function leads to 
reasonable results, except when the weight becomes 
too large and induces other Centers to experience 
excessive delays.  Putting an upper bound on the 
maximum Center delay per departure produces the 
most intuitive and useful results, largely because the 
bound applies to all Centers, not just the Center that 
is constrained. 



 

Figure 12. Tradeoff Between Maximum Center 
Delay per Departure and NAS-wide Delay per 

Departure for Three Approaches 

The three approaches presented above all use 
the aggregate flow model.  While this model allows 
for finding optimal NAS-wide solutions, these 
approaches are also hindered by the limitations of 
the model.  In particular, it is not possible in the 
aggregate flow model to implement ground delay 
programs only for flights departing for particular 
Centers or to change aircraft routes.  These more 
precise aircraft-level actions may be useful in 
easing the delay at a highly constrained Center  
[5-6]. 

Conclusions 
The aggregate flow model can be used to 

distribute delays over time and air traffic control 
Centers to minimize a quadratic cost on delays in 
response to expected airspace and departure rate 
constraints.  The aggregate flow model has a simple 
linear structure and significantly fewer state 
variables and control inputs than other TFM 
models, so the computational complexity of NAS 
wide optimization using this model is significantly 
lower than for optimization approaches using other 
TFM models.  The ability to quickly perform NAS 
wide TFM optimization of predeparture delays with 
this approach could provide useful advice to 
decision makers at the FAA when they are 
responding to constraints on airspace or departure 
rates. 

This optimization approach tends to allocate 
delays primarily to the Center that is experiencing 

capacity constraints.  Modifications to the approach 
can shape the equity of the resulting optimal delay 
distribution. Bounding the Gini coefficient above 
enforces a more equitable distribution of delay per 
departure, but increasing equality does not alleviate 
delays in a particular Center without severely 
punishing other Centers.  Simulation results 
indicate that more reasonable approaches are to 
directly constrain Center delay per departure or to 
increase the weight on delays in the constrained 
Center.  Both of these approaches work well to 
decrease the delays in the constrained Center, but 
applying the upper bound on delay per departure in 
any Center is a more useful tool because its impact 
is more obvious.  In particular, when applying 
weights to Center delays it is possible to apply 
excessive weighting, which leads to other Centers 
experiencing delays that exceed those initially 
experienced by the constrained Center. 

Future Work 
There is significant future work to be done in 

this area of TFM research.  Other optimization 
formulations that use the aggregate flow model 
should be considered.  Uncertainty, particularly in 
the timing and severity of airspace constraints, 
should be considered in this modeling and 
optimization approach.   

Important work remains to validate that the 
optimal departure rates proposed by this approach 
impact the NAS as the model predicts they will.  
This will involve determining how to implement 
such departure rates.  In particular, which flights 
should be allowed to depart when a departure rate is 
lower than scheduled?  Does this choice affect the 
validity of the proportionality constants in the 
model? 

Finally, the investigation here into equity in 
the distribution of delays among air traffic control 
Centers naturally could be applied to equity in the 
distribution of delays among airlines.  One simple 
way to research implementing equity constraints in 
the distribution of delays would be to use several 
aggregate flow models running in parallel, one for 
each airline, to model the NAS.  This would 
increase the system state but hopefully not 
prohibitively.  Then the upper bound on the Gini 
coefficient could enforce equity for airlines.  Upper 
bounds on the Gini coefficient and the infinity norm 



could also be used with totally separate models that 
also make use of convex optimization techniques. 
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Appendix I 
A simple proof of the quasiconvexity of the 

Gini coefficient is given here.  This proof is based 
on showing that the expression for the Gini 
coefficient is quasiconvex in its variables.  These 
variables are not controlled directly in this case, so 
composition rules are invoked to show that the Gini 
coefficient is also quasiconvex in the control 
variables.  For an elaboration on this approach to 
studying the convexity properties of functions, see 
chapter 3 of [18]. 

Recall from equation (10) that the Gini 
coefficient can be expressed as 
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Here 

! 

d
i
 refers to the delay per departure in Center 

! 

i .  First it will be shown that (13) is quasiconvex in 

! 

d . 

To show that (13) is quasiconvex in 

! 

d , the 
sublevel sets of (13) will be examined.  If these are 
all convex sets, then the Gini coefficient is 
quasiconvex in 

! 

d .  The 

! 

" -sublevel set can be 
expressed as 
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This can be re-written as 
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where the inequality does not change direction 
because the sum of delays is nonnegative.   

Expression (15) can be shown to describe a 
convex set in 

! 

d  by verifying that the left hand side 
of the inequality is a convex function in 

! 

d  for all 
values of 

! 

" .  This is sufficient because any sublevel 
set of a convex function is a convex set, and here 
we are studying the 0-sublevel set of the expression 
on the left hand side.  The left hand side can be 
expressed as the pointwise maximum of 

! 

2
n"1 linear 

expressions in 

! 

d , with another linear expression in 

! 

d  subtracted from the result.  For example, if 
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n = 2 , the left hand side can be expressed as: 
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The pointwise maximum of linear expressions 
is convex, so the first term this version of the left 
hand side is convex.  The second term is linear and 
therefore also convex.  Therefore the entire left 
hand side of (15) is convex, meaning that (15) as a 
whole describes a convex set for any value of 

! 

" .  
All of its sublevel sets are convex, so the Gini 
coefficient (13) is quasiconvex in 

! 

d . 

Now that the quasiconvexity of (13) in 

! 

d  has 
been established, quasiconvexity-preserving 
operations will be utilized to show that it is also 
convex in the control variable 

! 

ˆ u .  Note that each 
component of 

! 

d  can be computed as the sum of the 
delays in a Center divided the total number of 
scheduled departures in the Center: 
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,            (13) 

where 

! 

"t  represents the model time step.  The 
delay per departure in each Center is simply an 
affine expression of the control variable 

! 

ˆ u .   

Overall, the Gini coefficient is a quasiconvex 
function in 

! 

d , which is an affine transformation of 

! 

ˆ u .  Quasiconvexity is preserved under composition 



with an affine transformation, so the Gini 
coefficient is quasiconvex in 

! 

ˆ u . 
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