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Abstract
A microbunching instability driven by coherent synchrotron radiation (CSR) in a bunch compres-
sor chicane is studied using an iterative solution of the integral equation that governs this process.
By including both one-stage and two-stage amplifications, we obtain analytical expressions for CSR
microbunching that are valid in both low-gain and high-gain regimes. These formulae can be used
to explore the dependence of CSR microbunching on compressed beam current, energy spread, and

emittance, and to design stable bunch compressors required for an x-ray free-electron laser.
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I. INTRODUCTION

A microbunching instability driven by coherent synchrotron radiation (CSR) in a bunch
compressor chicane [1] is under intense study [2-5] as it may impact the design of an x-ray
free-electron laser (FEL) calling for kiloampere, subpicosecond electron bunches [6, 7]. A
klystron-like mechanism of amplification of parasitic density modulations in a bunch com-
pressor is studied in Ref. [4] under the high-gain assumption and in the absence of electron
energy chirp. A self-consistent treatment of CSR microbunching, including the electron en-
ergy chirp and the emittance effect, is developed in Ref. [5], and the microbunching process
is described by an integral equation. Numerical solution of the integral equation for beam
parameters and lattice functions corresponding to the second bunch compressor of the Linac
Coherent Light Source (LCLS) [6] yields very low gain (<3) over a wide wavelength range.

In this paper we analyze the microbunching process in a typical bunch compressor and
obtain the iterative solution of the integral equation that is valid in both high-gain and
low-gain regimes. In Section II, we present a compact derivation of the integral equation
for CSR microbunching, originally derived in Ref. [5] using the linearized Vlasov equation.
In Section III, we discuss the iterative solution and express CSR microbunching initiated
from either density or energy modulation in terms of beam energy, current, emittance,
energy spread and chirp, initial lattice parameters, as well as basic chicane parameters. In
Section IV, we apply these results to study the stability of the LCLS bunch compressors and

to illustrate various amplification processes. Concluding remarks are given in Section V.

II. INTEGRAL EQUATION FOR CSR MICROBUNCHING

Consider a beam distribution function f(x,’, z, §; s) in the transverse (z, 2’ = dz/ds) and
longitudinal (z,0 = AFE/FE) phase spaces at location s along a bunch compressor chicane.

(The vertical plane is irrelevant here.) If N is the total number of electrons, we have

[ axsxin =, 1)

where X = (z, ', z,0) denotes the set of phase-space variables at s.

In the absence of CSR, the evolution of f is given by

f(Xs58)=fR (1 = 5)X;7), (2)



where X = R(7 — $)X,, X, is the set of phase-space variables at 7, and the symplectic

transfer matrix R between 7 and s is
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Here C(7 — s) and S(7 — s) are the cosine- and sine-like solutions of the focusing equation
"+ K, (s)r =0 (4)

with the boundary conditions C(7 — 7) = 1 and S(t — 7) = 0, (') = d/ds, K.(s) is the

horizontal focusing function,

C(r—=¢ S(r—=¢)
p(C) p(C)

is the dispersion function, p(s) is the bending radius, and the transfer function

d¢
p(C)

connects an offset in transverse phase space or energy at 7 to a change in z at s. Thus, the

n(r = 5) = S(r — s) / a0 o g / ac2T =0 (5)

(R51,R52,R56)(T — 8) = —/S (C S ’I’])(T — 8) (6)

distribution function f(X;s) is completely determined by the initial distribution fy(X,) at

the chicane entrance 7 = 0 because

F(Xss) = fRT(s)X;0) = fo(Xo), (7)

where R(s) = R(0 — s) for abbreviation.
Suppose coherent synchrotron radiation is emitted and the electron energy is changed by
an amount AJ at 7. The distribution function immediately after the emission (at 740) is

related to that immediately before (at 7—0) by

FKim40) = F(X, = AX:7-0) & (X, 7-0) — asZ K70 ®

where AX = (0,0, 0, Ad), and only terms up to the first order in Ad has been kept in Eq. (8).

Summing up CSR contributions over the entire trajectory and using

f(X;s) = [(Xr;740),  f(Xp57=0) = fo(Xo), (9)



the evolution of the distribution function under the influence of CSR is

1%i9) = o) - [ arLELTZO D (10)

The rate of CSR. energy change dd/d7 is determined from the beam density modulation as

dé dk; :
—=—c 27 Nb(ky; 7)ere, 11
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Here 7. is the classical electron radius, 7 is the electron energy in units of mc?, Z(k;s) is
the one-dimensional, steady-state synchrotron radiation impedance [8, 9] given by [5]

k1/3

b(k; s) is a complex bunching parameter for density modulation at wavelength A\ = 27 /k:

bk 5) = % / X e £ (X 5). (13)

Note that both k£ and the beam current vary in a chicane due to compression, but the
bunching parameter defined above is independent of the current because of Eq. (1).
Equation (10) can now be cast into an integral equation for the bunching parameter.

First, we write

b(k; s) =bo(k;s) /dT/dX —ikz(Xr) 6f( —0)do
dr
=by(k; 8) — — / dr Rsg(T — 5) / dX, e*lkz( V(X T — 0)@ (14)
N ’ dr’

where
1 .
b()(k, S) = N/dXOe_ZszO(XO) (15)

is the bunching without CSR, and we have integrated the second term by parts over ¢, using
2(X;) = z; + Rs1 (T = 8)x; + Rso(T — 8)2t + Rsg(T — 5)05. (16)

Changing variables from X, to X, with f(X,,7—0) = fo(X,) for the second term of Eq. (14)

and inserting Eq. (11), we obtain

-
bo(k; s) =bo (ks s) + —

/dTR56(T — S)/Z—I:Z(kl;T)b(kl;T)

X / dX e heXo)Fikizr(Xo) £, (X ), (17)



where 2(Xo) = 2o + Rs1(s)zo + Rsa(s)xfy + Rse(s)do.
We now write fo(Xo) as
fo(Xo) = fo(Xo) + fo(Xo), (18)

where fo(X,) represents the average distribution and fo(X,) represents an arbitrary but
small perturbation. For modulation wavelengths much smaller than the electron bunch
length, we may assume that the average beam distribution is uniform in z and Gaussian in
transverse and energy variables:

B no z3 + (Boxy + awxo)® (S0 — hzp)?
= ————exp |— — -
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Here ng is the initial line density of electrons, g and Sy are the lattice functions at s = 0, &g

fo(Xo) (19)

and o4 are the initial beam emittance and incoherent energy spread, respectively, and h > 0
is the initial energy chirp. Neglecting fo in the second term of Eq. (17) and integrating over
dXy, we obtain [5]

b(k(s);s) = bo(k(s);s) + /05 drK (1, s)b(k(7);7), (20)

with the kernel of the integral equation as

I Z(k(T); - ,
K(Ta S) :ik(S)R%(T — s) (T) ( (T)’T)e—kOU (s,m)03/2
Y14
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(o)) 2 k%go 9
X exp [— 5 (V(S,T) — EW(S,T)) - 2—&)W (5,7')] . (21)

Here k(7)/B(1) = k(s)/B(s) = ko, B(s) = (1 + hRs6(s)) !, ko is the modulation wavenum-
ber at s =0, I(7) = ecnyB(7) is the peak current at 7, [4 = ec/r. = 17045 A is the Alfven

current, and [10]
U(s,7) =B(s)Rs6(s) — B(1)Rs6(T),

V(s,7) =B(s)Rs1(s) — B(1)Rs1(7),
W (s,7) =B(s)Rs2(s) — B(T)Rs2(T). (22)

S~/

The physical meaning of Egs. (20) and (21) is very clear: Density modulation at 7 in-
duces energy modulation through CSR impedance and is subsequently turned into density

modulation at s through the transfer function Rse(7 — s).



III. STAGED AMPLIFICATION OF CSR MICROBUNCHING

Equation (20) can be solved numerically for given beam parameters and chicane op-
tics [5]. Here we seek an approximate analytical solution that may provide insight into the
amplification process and simplify microbunching calculations. First, we iterate Eq. (20) to
obtain

b(k(s);s) =bo(k(s);s) + /S dTK (7, 8)bo (k(7);7)

0

+ /08 dTK (T, 3) /OT dCK (¢, m)bo(k(C);C) + - (23)

For definiteness, we study a symmetric chicane that consists of three rectangular dipoles
only. The length of both the first and the last dipoles is L, while the middle dipole is twice
as long. In general, L, is much smaller than the dipole separation distance AL. In the
absence of horizontal focusing (i.e., K (s) = 0 in Eq. (4)), we have C(s) =1 and S(s) = s.

The dispersion and transfer functions are determined from Egs. (5) and (6). In particular,

0 (L—Qg) within the same dipole,
R56(T — S) = Po

2
O (Aif ”) from one dipole to another,
0

(24)

where py = |p(s)| is the same for all dipoles. Thus, we may neglect the induced bunching
from the energy modulation in the same dipole [4] (i.e., we may put K(7,s) = O (%) ~ 0
for (s —7) < AL in Eq. (23)) and consider staged amplification from one dipole to another

as follows.

A. Microbunching Due to Initial Density Modulation

We first consider that CSR microbunching is initiated by a small deviation of the beam
current such as from shot noise fluctuations and rf nonlinearity. For simplicity, we take a
special form of fo(Xo) = €(20)fo(Xo) (le(z0)] < 1 with [ dzp€(29) = 0). The initial density
modulation is

bo(o; 0) = / dzge(z0)e—*0%. (25)



Without CSR, the bunching degradation can be calculated from Egs. (15) and (19) as

bo(k(s); 8) =bo(k(s); 0)e ¥ ()R3e(s)o3 /2

k2(s)e o 7 k2(s)e
X exp [— (s)eofo (351(8) - —0R52(s)) _F) °R2,(s) (26)
2 Bo 259
for k(s) = koB(s) at s.
We now apply Eq. (23) to obtain CSR microbunching in each dipole:
b(k(s1); s1) mbo(k(s1);81), 0 < s1 < Ly, (27)
Ly
b(k(s2);52) ~bo(k(sa)ise) + [ dsiRK(su,so)bo(b(s0)s0), 0= 0 < 2L (25)
0

bk (s): 55) ~obo(k(53); 53) + /0 " dsuK (s1, 53)bo(k(s1): 51) + /0 " dsoK (53, 85)bo (k(52); 53),

2L, Ls
+/ dsy K (s2, 83)/ ds1K (s1,52)bo(k(s1);51), 0 < s3< Ly, (29)
0 0

where s; (j=1,2,3) is measured from the beginning of the j* dipole, and b(k(s;); s;) repre-
sents the bunching parameter at s; in the j dipole. The transfer functions are

3

()= 2L R(s) = 21, Rug(s) = 21
51\ 1 ,00 ) 52\°1 2p0 ) 56\°1 6,0(2) )
Ly —s ALs ALL

Rs1(s2) = L=, Rsa(s9) ~ — 2, Rs6(s2) = —— vso,

Po Po Po

Ly — s 2AL(s3 — L 2ALL?
Rsi(s3) = ———, Rsp(ss) ~ M, Rs6(s3) ® ————2 = Ry,

Po Po Po
AL AL

R56(6‘1 — 6‘2) I —F(Lb — 81)82,
0

R56(SQ — 33) ~ —7(214, — 32)83,
0

2AL

I

R56(81 — 83) ~ — [(Lb — Sl)Lb + 8183] . (30)

For a typical chicane, we have ﬂ() > Lb, |O,/0| ~ 1 and R51 (81) > |OJ‘R52(81)/ﬂ0 ~ R52(82)/ﬁ0.
Since Rsg(s1) is much smaller than the Rsq generated between dipoles, we set Rsg(s1) = 0,

k(s1) =~ ko in Eq. (26) to obtain

bo(k(sl); 81) ~ bo(ko, 0)6716(%}2%1(51)60&)/2_ (31)

If the induced bunching fOL” ds1 K (s1, $2)bo(ko; s1) in the middle dipole is much larger than
bo(ko; s1) and bg(k(s2); s2) (i-e., if the gain is much larger than 1), the bunching in the last
dipole is determined mainly from the induced bunching in the middle dipole (i.e., the last

term on the right side of Eq. (29)). This situation corresponds to the two-stage amplification
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discussed in Ref. [4] under the high-gain assumption. However, the gain is usually not very
high when both the emittance and the energy spread are taken into account; then one-stage
amplifications from the first and the middle dipoles to the last dipole (i.e., the second and
the third terms on the right side of Eq. (29)) are also important and may even dominate the
two-stage process (see numerical examples in Section IV). Thus, the final bunching at the
chicane exit can be calculated from Eq. (29) for s3 = L, (denoted as “f”). Here the initial
bunching degrades to

bo(ka f) =exp [—m] bo(ko; 0), (32)

where G5 = koRs605, and kf = ko/(1+ hRs6), and the emittance degradation effect is absent
because of the achromatic condition Rs;(f) = Rs2(f) = 0. The one-stage amplification from
the first dipole can be computed from Eqs. (29), (30), and (31) as

9s

Fy(5,) + i] exp [—2(—2} bo(ko; 0), (33)

Ly
dsi1 K bo(ko: = Al
/0 S1 (Sla 83) 0( 05 81) f 25-3 1+ hR56)2

where o3
f= 2/3 )
Y1 4Py

I; is the compressed beam current, &, = koLy\/c0f0/po, and

(34)

e + o, /Terf(c,) — 1
202 ’

FO (5-.56) = (35)

with the error function erf(z) = 2r~/2 [*dtexp(—t?). Similarly, the one-stage and the

two-stage amplification from the middle dipole to the chicane exit can be computed as
2L, ~
/ dsaK (82, 53)bo(k(s2); 82) = Al F1(hRss, Gr, 0, ¢, 55)bo(ko; 0), (36)
0

2L Ly -
/ dso K (52, 83)/ ds1 K (s1, 52)bo(ko; 51) & A’ I7Fy(64) Fa(hRsg, 0g, 0o, ¢, 05)bo (Ko; 0),
0 0

20L —pgRse
Bo BoL?

o [ =t [t (1= )t + hRs)
R _2/0 dt; A0, F2_2/0 dt H(),

and

where ¢ =

1 + hR56t (1 + hR56t)7/3
o (1= 2t + agt)? + §*t? o3 (1—1t)?
H — _ 2( _ ) 2 )
() =exp [ T (1 + hRset)? 21+ hRegt)® \" T (1 + hitsg)? (37)



Defining the final gain of density modulation in a chicane as Gy = |b(ky; f)/bo(ko; 0)|, we
obtain from Egs. (32), (33), and (36)

—2
0'5 -
~ % | 4AT
Gy | exp [ 201 +hR56)2] + Al

1—e % 52
Fi(5 - - N R
( (%) + 55 ) P ( 2(1+ hR56)2>

+ F1(hRs6, Gzy 0, 9, 05) +AZI_]%FO(E'z)F2(hR56,5'waa’O:¢,5'6) : (38)

The first term on the right side of Eq. (38) represents the loss of microbunching in the limit
of vanishing current, the second term (linear in current) is the one-stage microbunching
amplification at low current (low gain), and the last term (quadratic in current) corresponds
to the two-stage amplification at high current (high gain).

It is often useful to know the electron energy spectrum for beam diagnostics. The induced
energy modulation at wavelength \ = 27 /k can be obtained from Eq. (11) as

Ape(s) = - / "4 1D g0k, PYb(h(r), 7), (39)
0 Y14

where b(k(7),7) is determined by Eqgs. (27), (28), and (29).

B. Microbunching Due to Initial Energy Modulation

CSR microbunching can also be seeded by an initial energy deviation Apg(zo) originated

from upstream wakefield and CSR effects [11]. In this case, we write

fo(Xo) = fo(Xo - AXO) - fo(Xo) ~ ((So_gﬂfo(xo)a (40)
6

where AX, = (0,0,0,Apy). In view of Egs. (15) and (19), the density modulation at s in
the absence of CSR is

W (k(s), s) = — ik(s) R (s) Apgoe ™ () Boe ()93 /2

X exp {— w (351(3) - —1%52(s)>2 — HQ(—ZE"Rég(s) , (41

where Apyy = 32 il dzge~"*0%0 Apy(z) is the Fourier amplitude of the energy modulation at
s =0.
We can now repeat the staged calculation as before. Since Rse(s;) =~ 0 and induced

bunching in the first dipole is negligible, we have b”(k(s1), s1) = 0. Equation (29) reduces



to
bP(k(s3);s3) = bh(k(s3);s3) +/0 b dso K (89, 53)05 (k(s2); s2). (42)

Thus, the final bunching at the chicane exit due to an initial energy modulation is

75

b (kg3 f) ik ¢ Rs6 Apko exp( 2(1 + hRs )?

) + AI;Fy(hRs6, 54, 0, ,55) | - (43)

The induced energy modulation can also be calculated according to Eq. (39).
Finally, we note that the results of this section are equally applicable to a four-dipole
chicane where two closely spaced dipoles (length L, each) play the role of the middle dipole

in a three-dipole configuration.

IV. NUMERICAL EXAMPLES

In this section, we apply the previous results to study the stability of the LCLS bunch
compressors and to illustrate different amplification processes discussed in Section ITI. Two
bunch compressors (BC1 and BC2) are incorporated in the LCLS design in order to increase
the peak current by a factor of about 40. The basic beam and chicane parameters are listed
in Table I for both BC1 and BC2. In Fig. 1 we compute the amplification factor G in
density modulation for wavelengths from 1 to 100 pym at the exit of BC1 and show that it
is determined by one-stage amplifications as the gain is low. We also calculate the induced
energy modulation Apy; (in units of initial bunching) at the end of BC1 by integrating
Eq. (39) (see Fig. 2). In Figs. 3 and 4 we compute the amplification of density modulation
G s in BC2 as a function of the initial modulation wavelength for four cases that are studied
in Ref. [5]. Good agreement between the analytical results and the numerical solutions of
the integral equation is found. Figure 4 also indicates that the two-stage amplification is
the dominant process when the gain is very high.

In order to determine the total amplification factor G after a bunch (with some initial
density modulation) passing through both BC1 and BC2, one should in principle transfer
CSR energy kicks in both compressors to density modulations at the end of BC2. To simplify
the calculation and to estimate G, we approximate CSR energy kicks in BC1 as an effective
energy modulation at the entrance of BC2 given by Apgg = %Apkl (E; is the energy in
BC1 and F is the energy in BC2). We also assume that the density modulation of BC1 is
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preserved to the entrance of BC2. Using Egs. (38) and (43), we add up CSR microbunching
originating from both density and energy modulation in BC2 and obtain G7 as shown in
Fig. 5. The calculation assumes yeq = 1 um in both compressors and o5 = 1.2 x 107° at the
beginning of BC1. Such an incoherent energy spread will change to 3 x 107% prior to the
entrance of BC2 due to BC1 compression and acceleration between the two compressors.
As seen in Fig. 5 (case 1), the total gain of the two-compressor system can be significant.
To reduce the instability, os at the beginning of BC2 can be increased to 3 x 107> with the
addition of a superconducting wiggler prior to BC2 [12]. Figure 5 (case 2) shows that the
increased energy spread in BC2 improves the stability of the two-compressor system against
the microbunching. It is interesting to note that the peak gain of the two-compressor system
with the wiggler (case 2 of Fig. 5) is still larger than BC2 gain without the wiggler (case 3

of Fig. 3), in qualitative agreement with the numerical simulation results [12].

V. CONCLUSION

In this paper, we show that both one-stage and two-stage (klystron-like) amplifications
are important processes for CSR microbunching in a bunch compressor chicane. Based on
the assumption that the dipole separation is much larger than the length of the individual
dipoles, we investigate the bunching process in a typical chicane and derive Egs. (38) and
(43) for CSR microbunching initiated by density and energy modulation. These results are
applied to the study of the LCLS bunch compressors in order to determine the stability
of the system. The method and formulae presented here should be useful to facilitate the
design of bunch compressors in order to reach the challenging beam parameters required for

an x-ray FEL.
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TABLE I: Basic beam and chicane parameters for the LCLS bunch compressors [12].

Parameter BC1 BC2

E[GeV] 0.25 4.54

Ir [A] 480 4000
veo [pm] 1 1
Bo [m] 15 105
o 2 5
o 1.2¢-5 3e-6(5)

hm™t 214 40
Rs6 [mm| -36  -22
po [m] 25 122
Ly [m] 02 04

AL[m] 26 10

0 20 40 60 80 100

FIG. 1: (Color) BC1 gain Gy of density modulation as a function of modulation wavelength at
the exit of BC1 as calculated from Eq. (38) with (in red) and without (in blue) the last term (the

two-stage amplification).
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FIG. 2: Energy modulation amplitude |Apgi| (in units of initial bunching) as a function of modu-

lation wavelength at the exit of BCI.
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FIG. 3: (Color) BC2 gain Gy of density modulation as a function of modulation wavelength at
the entrance of BC2 for (1) 05 = 3 x 10 2, vgp = 1 pm (in blue); (2) 05 = 3 x 1075, ygg = 0 um
(in red); (3) o5 = 3 x 107%, 7veg = 1 um (in black). Solid curves are calculated from Eq. (38) and

dashed curves are numerical solutions of the integral equation found in Ref. [5].
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FIG. 4: (Color) BC2 gain Gy of density modulation as a function of modulation wavelength at
the entrance of BC2 for 05 = 3 x 1075, 79 = 0 pm, as calculated from Eq. (38) (in red) and the
last term of Eq. (38) only (in blue). The dashed curve is the numerical solution of the integral

equation found in Ref. [5].
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FIG. 5: Total amplification factor Gr of BC1 and BC2 as a function of modulation wavelength at

the entrance of BC2 (1) without the wiggler; (2) with the wiggler.
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