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Development of a Global Slope Dataset for Estimation 
of Landslide Occurrence Resulting from Earthquakes 

By Kristine L. Verdin1, Jonathan Godt2, Chris Funk3, Diego Pedreros3,Bruce Worstell1, and James 
Verdin4 

Abstract 
Landslides resulting from earthquakes can cause widespread loss of life and damage to 

critical infrastructure.  The U.S. Geological Survey (USGS) has developed an alarm system, 
PAGER (Prompt Assessment of Global Earthquakes for Response), that aims to provide timely 
information to emergency relief organizations on the impact of earthquakes. Landslides are 
responsible for many of the damaging effects following large earthquakes in mountainous regions, 
and thus data defining the topographic relief and slope are critical to the PAGER system. A new 
global topographic dataset was developed to aid in rapidly estimating landslide potential following 
large earthquakes.  We used the remotely-sensed elevation data collected as part of the Shuttle 
Radar Topography Mission (SRTM) to generate a slope dataset with nearly global coverage.  
Slopes from the SRTM data, computed at 3-arc-second resolution, were summarized at 30-arc-
second resolution, along with statistics developed to describe the distribution of slope within each 
30-arc-second pixel.  Because there are many small areas lacking SRTM data and the northern limit 
of the SRTM mission was lat 60ºN., statistical methods referencing other elevation data were used 
to fill the voids within the dataset and to extrapolate the data north of 60º.   The dataset will be used 
in the PAGER system to rapidly assess the susceptibility of areas to landsliding following large 
earthquakes.  

1. Introduction 
The U.S. Geological Survey’s (USGS) National Earthquake Information Center in Golden, 

Colorado, reports on more than 30,000 earthquakes a year, 25 of which usually cause significant 
damage, injuries, or fatalities. Historically, the USGS has relied on the working experience of on-
duty seismologists to estimate the impact of events and determine if Federal and international aid 
agencies should be alerted. The Prompt Assessment of Global Earthquakes for Response (PAGER) 
system is designed to provide a near-real time estimate to governmental and non-governmental 
relief organizations, and the media of an earthquake’s effects anywhere in the world. PAGER is an 
automated system designed to estimate the effects of significant earthquakes on humans.  One 
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component of the global system is development of estimates of the potential for earthquake-
induced landslides.   

 
The method to estimate the potential impact of earthquake-induced landslides in near-real 

time is under development, and one approach that has been suggested is to couple an estimate of 
ground-shaking intensity with a simplified Newmark slope-stability analysis (Newmark, 1965; 
Godt and others, 2006). The simplified Newmark analysis calculates a critical (or yield) 
acceleration above which ground displacement is to be expected. Wherever the estimated Peak 
Ground Acceleration (PGA) produced as part of the PAGER system exceeds the yield acceleration, 
landsliding is assumed to occur. Whatever approach is ultimately adopted to assess the potential 
impact from earthquake-triggered landslides, a global database of topographic slope will be 
required.  

 
To this end, we undertook to develop a global slope dataset based on the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (DEM).  The SRTM DEM, with its global 
3-arc-second resolution (approximately 90 meters at the equator), formed the basis for all data 
development efforts to support the PAGER system.  Along with the global slope dataset at the 
publicly-available 3-arc-second resolution of the SRTM DEM, additional data layers were 
developed at the coarser resolution of 30 arc-seconds (approximately 1 km at the equator) to 
support the PAGER system.  These datasets describe the distribution of the elevation and slope 
within each 30-arc-second pixel, and include layers such as mean slope, mean elevation, 90th 
quantile slope, etc.  In all, 15 global data layers were developed which describe the elevation and 
slope data derived from the SRTM DEM.   The development of these datasets is described in this 
report. 

2. Data 
The derivative layers developed for this effort were based on the SRTM DEM. The SRTM 

was a collaborative effort by the National Aeronautics and Space Administration (NASA) and the 
National Geospatial-Intelligence Agency (NGA), with participation of the German and Italian 
space agencies, to generate a near-global DEM of the Earth using radar interferometry.  In February 
2000, the SRTM was the primary payload aboard the Space Shuttle Endeavour and successfully 
acquired terrain information between lat 56°S. and 60°N., approximately 80 percent of the Earth’s 
land mass.  The SRTM data acquired in February 2000 were processed into Digital Terrain 
Elevation Data (DTED®) by NASA’s Jet Propulsion Laboratory (JPL).  Details of the SRTM 
mission and the data can be found in Farr and Kobrick (2000). 

Following production of the unfinished SRTM data, contractors working for the NGA 
produced the finished SRTM products.  The finished products differ from the unfinished data in 
several ways: small voids, or areas within the dataset which had no elevation information, were 
filled, lakes were flattened, rivers were monotonically stepped down and coastlines were delineated 
(Slater and others, 2006).   

The SRTM DTED® data were divided into 1-degree by 1-degree tiles for processing, 
storage, and retrieval.  The elevation values are rounded to the nearest meter and are referenced to 
mean sea level as defined by the WGS 84 / EGM 96 geoid.  Elevations in the SRTM dataset are not 
necessarily ground elevations; instead, they represent the elevations of the reflective surface of the 
radar return.  The finished SRTM are made freely available to the public through the USGS Center 
for Earth Resources Observation and Science (EROS) Seamless Data Distribution System 
(http://seamless.usgs.gov/).  Data are available for the globe at a resolution of 3 arc-seconds and for 
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the United States at 1 arc-second.  The data are also available in a tiled format from NASA’s ftp 
site (ftp://e0srp01u.ecs.nasa.gov/srtm/version2/). 

The finished SRTM data were used in this analysis.  Data were processed using the SRTM’s 
1-degree tile structure.  The data were converted from the DTED® format into Arc Grid format.  
This resulted in each one-degree tile consisting of 1,200 rows and 1,200 columns with a cell 
spacing of 3 arc-seconds.  A total of 14,277 1-degree tiles were processed for this effort.  The 
distribution of the available SRTM tiles is shown in Figure 1.   

The finished SRTM data have many of the smaller voids filled, but many of the 1-degree 
tiles still contain voids (Hall and others, 2005).  Shown in Figure 2 is the distribution of voids that 
remain in the finished SRTM product.  Table 1 also summarizes this information.   Of all tiles, 28 
percent contain no voids and 63 percent are less than one percent void by area.  Of the 14,277 one-
degree tiles, only 1,322 contain void areas in excess of one percent.  

Efforts are underway, through contractors to NGA, to systematically fill the voids in the 
finished SRTM product.  A completion date for this work is unknown, and it has not been decided 
whether the completed product will be made available to the public.  To ensure that our results 
were based on publically available data, the work described in this paper uses the SRTM data with 
the voids intact.  In sections 3.3 and 3.4, we discuss procedures to identify the effect of and 
compensate for the voids in generation of the various data products.  

3. Methods 
The SRTM DEM has a resolution of 3 arc-seconds, but the summary data layers developed 

to support the PAGER system were developed at a reduced, more globally manageable resolution 
of 30 arc-seconds.  As a result, each tile of the SRTM DEM data consists of 1200 rows by 1200 
columns at 3 arc-second resolution, and each tiled data layer used in our study consists of 120 rows 
by 120 columns at 30 arc-second resolution (see Figure 3).  Data were processed on a tile basis and 
the resulting data layers were merged at the end of processing to assemble the global data layers.  
Because the layers were large, the data were composited on twenty-seven 40 degree by 50 degree 
tiles to accommodate the procedures used to compensate for the voids in the data, which rely 
heavily on GTOPO30 data (Gesch and others, 1999).  These tiles correspond to the spatial extent of 
the GTOPO30 distribution packages (Figure 4). In all, 15 data layers were developed: 

1. Mean slope 

2. Minimum slope 

3. Maximum slope 

4. 10th quantile slope 

5. 30th quantile slope 

6. 50th quantile slope (median) 

7. 70th quantile slope 

8. 90th quantile slope 

9. Standard deviation of the slope 

10. Mean elevation 

11. Median elevation 

12. Minimum elevation 

13. Maximum elevation 
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14. Elevation range 

15. Standard deviation of elevation 

3.1 Slope Summary Statistics 

The SRTM DEM posed a unique challenge in the calculation of slopes.  The elevation 
values are reported in meters and the cell size of the DEM is in units of decimal degrees (3 arc-
seconds or 0.00083 decimal degrees).   Since slope can be simplistically thought of as “rise over 
run,” the units used for elevations and for ground distances need to be consistent to produce a 
correct slope calculation.  Most standard Geographic Information System (GIS) packages have 
accommodation for adjusting one unit to be consistent with the other.  For example, in the 
implementation of the slope algorithm within ArcGIS (Burke and others, 2004), the z-factor 
parameter is available in order to adjust the units of the elevations (Z) to match the ground units (X 
and Y).   

The problem arises with the use of the SRTM data with ground units of decimal degrees.  
There is not a simple factor that will convert decimal degrees to units of meters (the z-units of the 
SRTM) for the entire globe, because the length of one degree varies depending on its latitudinal 
location.  At the equator, a one-degree by one-degree block is reasonably square when converted to 
units of meters (111,321 meters in the x-direction by 110,567 meters in the y-direction (Robinson 
and others, 1969)), but closer to the poles the distances in the x-direction grow smaller as a function 
of the cosine of latitude, owing to convergence of the meridians.   

Most GIS packages, ArcGIS included, operate only on square pixels, and so using a factor 
to adjust the x, y, or z dimensions to a common unit is not possible.  One solution would be to 
project each SRTM tile into an equidistant projection, such as the Azimuthal Equidistant projection 
(ESRI, 1994), calculate the slopes in this equidistant projection and then project the data back into a 
geographic framework.  Because the goal of this work is to develop accurate summary statistics at 
30-arc-seconds describing the underlying 3-arc-second data, the additional smoothing that would 
result from such a series of projections, along with the additional processing time, argued for an 
alternative solution. 

We calculated slope in the geographic framework through a straightforward application of 
the underlying slope equation.  This equation allows for different cell sizes in the x and y 
directions.  Slope, the first derivative of the elevation surface, is defined by a plane tangent to the 
surface as modeled by the DEM at any given point.  The derivative is calculated locally for each 
cell in the grid by computations made within a 3-by-3 kernel.  Slope is defined by: 

 

                            22 )/()/(tan YZXZS δδδδ +=   (Eq. 1) 

 
where S is the slope in degrees, Z is the elevation and X & Y are the coordinate axes.  Using the 
symbology defined for each 3-by-3 roving window shown in Figure 5, the changes of elevation in 
the X & Y directions are calculated (Burrough, 1986) using: 
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Slopes were calculated using the 3-by-3 roving window (Figure 5) on a tile-by-tile basis 
through application of Equations 1, 2, and 3.  Voids were dealt with in each 3-by-3 window.  If any 
of the 8 pixels surrounding the central pixel were void, the elevation of the central pixel was used 
in place of the void pixel.  If the central pixel was itself void, no valid slope would be calculated 
and the value for that pixel would be void.  In 3-by-3 windows with several voids, the use of the 
central pixel to fill the void pixels has the result of smoothing the derived slopes.  Additionally, to 
deal with the edge-effects of processing on a tile-by-tile basis, the outermost rows and columns 
were replicated in order to provide a valid 3-by-3 window at the edge of the tile.  This resulted in 
each tile, for processing, having 1202 rows by 1202 columns; however, the resulting slope dataset 
was trimmed back to the original 1200 rows by 1200 columns.   

Because the SRTM data are in the geographic coordinate system, the linear distances 
between postings change as the latitude changes.  To convert the ground units from decimal 
degrees into meters, lookup tables describing the distance in meters for each degree of longitude 
were used to convert the 3-arc-second spacing in the X-direction (Table 2) and Y-direction (Table 
3) into units of meters. The distances in the X-direction vary considerably, with one degree of 
longitude at the equator equaling 111,321 meters, whereas at 59 degrees north or south latitude, the 
same one degree of longitude equates to only 57,478 meters.  The variation of lengths in meters in 
the Y-direction is not as dramatic, varying from 111,567 meters at the equator to 111,406 meters at 
59 degrees north or south.  These average distances between postings were used as the δX and δY 
factors in the slope equations.   

Data procedures were developed in the Python programming language (van Rossum, 2006) 
and related add-on modules to facilitate array processing and analysis. These modules include the 
numeric and numarray modules that provide the basic array processing and analysis capabilities, 
the matplotlib add-on module, which is an analysis and graphing module that supports a variety of 
methods to facilitate data analysis, and the Geospatial Data Abstraction Library (GDAL) module.  
Because the local repository SRTM data are stored in ArcGIS GRID format, the GDAL module, 
which also has methods available from within Python, was used to read the SRTM data and make 
the data accessible as a numeric array.   

To calculate the distribution of slope values, aggregation blocks were created for each tile.  
Each aggregation block was 10 cells by 10 cells, resulting in 120 by 120 aggregation blocks for 
each tile (see Figure 3).  The minimum, maximum, mean, and standard deviation were computed 
for each block using functions within the numarray module.  The percentiles were computed for the 
10th, 30th, 50th (median), 70th, and 90th percentile using a routine for computing percentiles within the 
matplotlib module.   

 

3.2 Elevation summary statistics 

 
Elevation summary statistics were calculated by a straightforward application of ArcGIS 

modules. The SRTM elevation values are stored by ArcGIS as integer meters.  The ZONAL 
functions within ArcGIS were used to summarize the mean, median, minimum, maximum, and 
standard deviation for each 30-arc-second pixel within each 1-degree tile.  The range was 
calculated as the difference between the maximum and minimum elevations for each 30-arc-second 
pixel. 
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3.3 Critical Void Threshold 

 
The calculation of slope values at 3-arc-second resolution and the development of all the 

summary statistic layers at 30-arc-second resolution were done without regard to the presence of 
voids in the data. As can be seen from Figure 2, most of the 1-degree tiles have less than one 
percent voids by area.  However, some voids are large.  The question, therefore, is whether or not 
the presence of voids in the data set affects the calculation of the summary statistics at 30-arc-
second resolution and, if so, at what level of void area the summary statistics are affected. 

To assess the effect of void area on the calculation of the summary statistics, a comparison 
was made between mean slopes at 30-arc-second resolution calculated from two different sources.  
The Elevation Derivatives for National Applications (EDNA, Verdin, 2000) is a multi-layer 
database of standard DEM derivatives for the United States, one of which is a slope layer.  The 
EDNA, with its 30-meter (1 arc-second) resolution, is derived from the National Elevation Dataset 
(NED, Gesch and others, 2002) and is seamless; there are no voids in the DEM or the derivative 
layers.  We compared the mean slopes from the EDNA slope layer aggregated to 30 arc-seconds 
with those derived from the 3 arc-second SRTM summarized at 30 arc-seconds.  The EDNA layer 
provided, in essence, a truth dataset, since there are no voids in the slope layer and it is derived 
from the best available DEMs for the United States.  We can expect differences between the slopes 
derived using each dataset, owing to the different collection methodologies of the underlying 
DEMs; however, we hoped to determine a critical void threshold at which the presence of the voids 
significantly impaired the calculation of the summary statistics. 

Sampling locations were determined by selecting every 30-arc-second SRTM pixel within 
the conterminous United States in which the void area exceeded 15 percent.  These pixels were 
converted to a point dataset and this dataset was used to sample the underlying EDNA and SRTM 
slope grids.  The sample locations are shown in Figure 6.  A total of 25,249 samples were collected 
from the EDNA aggregated mean slope and the SRTM 30-arc-second mean slope layers.  The 
differences in mean slopes between the two datasets were then calculated and summarized by void 
area (Table 4 and Figure 7).  

Summary statistics calculated for 30-arc-second pixels with voids in excess of 35 to 40 
percent do not correlate well with the EDNA-derived statistics (Figure 7).  Accordingly, a threshold 
of 33 percent was chosen to define the locations where the summary statistics calculated using the 
raw SRTM could be considered erroneous due to the presence of voids.  The 30-arc-second pixels 
identified in this manner (voids in excess of 33 percent) were flagged for replacement.  The method 
of estimating an improved set of summary statistics for these flagged pixels is discussed in Section 
3.4.  

3.4 Filling of Void Areas 

 
Prior to the release of the SRTM data, the best available, globally consistent DEM was 

GTOPO30 (http://eros.usgs.gov/products/elevation/gtopo30/gtopo30.html).  This dataset, with its 
cell size of 30 arc-seconds, was derived from various sources, mostly of a cartographic base.  In 
order to fill the void areas within the SRTM, we analyzed the correspondence between the 
GTOPO30 and the SRTM layers and used these relationships to fill out the SRTM layer. 

Analysis of the relationships between the GTOPO30 and SRTM slope fields revealed strong 
locally systematic relationships. The higher resolution of the SRTM tended to produce similar but 
more extreme values. Exploratory analysis also demonstrated that a single one-pixel shift between 
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the two images could often dramatically increase their correspondence. These observations led us 
to develop a two-step filling procedure.  

In the first step, simple ratios between the SRTM and GTOPO30 fields for each pixel were 
used to create a ‘draft’ filled image. In this image, all pixels with more than 33 percent voids were 
filled with rescaled GTOPO30 values. The scaled values were created by: 

1. recompositing the GTOPO30 and SRTM grids to a 1-degree resolution  

2. calculating the bias between the two datasets as the ratio of the GTOPO30 and SRTM 
values 

3. spatially scaling these biases to 3 arc-seconds using a cubic convolution  

4. multiplying these biases against the corresponding GTOPO30 value to replace the missing 
SRTM pixels 

 

Figure 8 provides an example of these biases. 
The fill results of step one were used in all areas with no surrounding void pixels. Thus 

‘patches’ of missing pixels were filled with bias-corrected GTOPO30 values. GTOPO30 slopes 
were used to fill void areas in all the SRTM slope layers, and GTOPO30 elevations were used to 
fill voids in all the SRTM elevation layers. 

For areas with neighboring unfilled pixels, a further correction procedure fitted a local 
model based on the relationships between the surrounding nine pixels. This step helped to 
compensate for any local bias and misregistration between the GTOPO30 and the SRTM data.  The 
first step in this procedure was the identification of a ‘best neighbor.’ Nine sets of nine GTOPO30 
pixels each were compared to the corresponding SRTM values. These nine sets were generated by 
using spatial lags of plus-or-minus one pixel (Figure 9). The optimal local model was then derived 
using the squared correlations between the nine GTOPO30 subsets and the SRTM. This process 
may be summarized as follows: 

 

• For each 3x3 window calculate a vector of offset correlations, C0..8 

• For each 3x3 window calculate the local weighting ratio: 

• R = (Avg SRTM slope)/(Avg GTOPO30 slope) 

• Set weights for the nine GTOPO30 pixels equal to the squared correlation with the central 
STRM pixels, W0..8= C2

0..8 /SUM(C2

0..8) 

• Calculate scaled weighted average, Est = R * SUM(GTOPO30*W) 

 
This simple procedure proved to be very effective. Visual inspection of SRTM and 

GTOPO30 surrogates revealed strong levels of correspondence (Figure 10 and 11). However, the 
lower resolution of the GTOPO30 data creates smoother spatial variations and a tendency to 
underestimate the extremes. Quantitative measures of skill, such as correlation and standard error, 
were estimated by comparing the SRTM and GTOPO30 datasets for 1-degree tiles. Correlations 
exceeding 0.8 were typical. The filled slope and elevation products produced accurate and 
reasonable results. In contrast, the two elevation dispersion metrics (range and standard deviation) 
proved more difficult to fit, owing to the spatial scale differences between the SRTM and 
GTOPO30, which resulted in lower correlations.  
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The filling process was carried out on the 40 degree by 50 degree GTOPO30 grids, and 
slopes were calculated from the GTOPO30 with an IDL port of the same code used to estimate 
slope values from the STRM (see Section 3.1).  

 

3.5 Extrapolating the Data Sets beyond 60° North 

A process similar to step one of the void-filling procedure was used to extend the summary 
data layers beyond 60°N. A bivariate regression model was constructed for each of the nine 
GTOPO30 tiles that extended beyond 60°N, covering the area from 40°N to 90°N. For the areas 
between 40°N and 60°N, where both SRTM and GTOPO30 data are present, both datasets were 
averaged by 1-degree blocks, and a regression carried out between the two aggregated fields. For 
slope fields, a bias correction was estimated, based on the GTOPO30 slopes. Similarly, GTOPO30 
elevations formed the basis for correcting elevation fields. The regression models developed in this 
manner were then applied to the areas north of 60° using the GTOPO30 as the independent 
variable. 

4. Discussion 
This database will provide the topographic information necessary to develop and test a 

global system to provide a rapid assessment of the impacts of earthquake-induced landslides. The 
calculation of slope and elevation statistics from the raw 3-arc-second SRTM data was a 
straightforward procedure.  The filling process, to replace the void pixels and extend the dataset 
north of lat 60ºN, was more susceptible to problems – including the development of discontinuities 
in the data or the introduction of biases.  We found that the two-step procedure for filling voids and 
the bivariate regression model technique to extrapolate the data north of 60º produced adequate 
results.  In particular, the procedure to extrapolate the data north of 60º removed some large scale 
biases between the GTOPO30 and SRTM data, and a visual comparison suggests a reasonable fit at 
coarse levels of analysis (Figure 12, left panel).  However, the GTOPO30 elevations exhibit 
substantial discontinuities, owing to the differing physical and cartographic natures of GTOPO30 
and SRTM data. At smaller scales, systematic differences in the scale of the data are apparent 
(Figure 12, right panel). The GTOPO30 dataset has a much coarser resolution than the SRTM data, 
and presents a less variable landscape. Again, this scale discrepancy was most significant for the 
range and standard deviation files. 

 

5. Conclusions 
 
A new global topographic dataset has been created to assist in estimating the potential for 

large landslides following large earthquakes.  This global dataset was developed from the 3-arc-
second SRTM data and consists of 15 derivative layers at 30-arc-second resolution.  New 
techniques were developed to fill the voids in the derivative layers as well as extrapolate the layers 
beyond lat 60°N (the northernmost limit of the SRTM data).  Data were filled and extrapolated 
using bivariate regression models with GTOPO30 derivatives as the independent variable.  Because 
of the different collection methods and resolutions of the SRTM and the GTOPO30 data, the fit 
between the two datasets is adequate, but not optimal.   

These derivative layers will be used in developing the landslide potential models which will 
be implemented worldwide.  The techniques for estimating landslide potential are still being 
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developed and this database will help define the critical parameters for assessing landslide 
potential.  The database is at 30-arc-second resolution, as is GTOPO30, but the summary statistics 
from the underlying 3-arc-second SRTM data will provide the models with additional information 
which was not available previously which may enable much broader application. 
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Figure 1.  Distribution of finished SRTM 1-degree tiles used in the processing.  A total of 14,277 tiles 
were available.  The limits of the SRTM data collection were from lat 56°S to 60°N.
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Figure 2.   Percent voids summarized by one-degree tile.  Many of the tiles (3,965 out of 14,277 one-
degree tiles or 28 percent) have no voids after the finishing process.  However, the majority of the 
tiles still contain voids, with some voids of significant extent.  The maximum percent of tile coverage 
containing voids is 73 percent.
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Figure 3.  Example data for tile N40W110.  Top figures show the full resolution (3-arc-second) SRTM 
slope data for the tile.  The lower figures show the mean slope data summarized by 30-arc-second 
pixel.  Other statistics calculated in a similar frame framework include the minimum, maximum, 
median, and others. 
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Figure 4.  Distribution tiles for GTOPO30.  This 40-degree by 50-degree tile structure was used to 
composite the 1-degree SRTM tiles.  Additionally, the two-stage void-filling algorithm operated 
under this tile structure.
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Figure 5.  3-by-3 processing kernel used in the calculation of slope.
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Figure 6.    Location of sample points used in comparison of EDNA and SRTM slopes.  All pixels with 
void area in excess of 15 percent were selected for comparison.  A total of 25,249 points was used.
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Figure 7.    SRTM [skill] compared with slopes derived from EDNA.  A threshold of 33 percent was 
set to select those pixels which are significantly impacted by the presence of voids.
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Figure 8.    Ratio of STRM mean slope and GTOPO30 slopes for a region of the southwestern United 
States. Values were stretched from 0.5 (dark blue) to 3.0 (dark red).

 17



9 sets of 9 pixels used to detect offset 
correlations 

1     2     3

4     5     6

7     8     9

Central box contains SRTM 
 

Figure 9.     Best neighbor correction schema.   The numbers (1 to 9) correspond to the central pixel 
of the candidate 3-by-3 block.
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Figure 10.     Sample east-west transects for the ‘best neighbor’ fill algorithm drawn from long 20-
21°E and lat 39-40° N. Blue lines designate the SRTM mean slope values.   Red lines show the 
values estimated from GTOPO30 slopes.

 19



 

 
 
 
 
 
 
 

Figure 11.     Sample SRTM 90th percentile fields (left) and estimated 90th percentile fields based on 
GTOPO30. Yellow hues denote high slopes. 1-degree tile centered at long 113°30′W and lat 32°30′N.
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Figure 12.    Examples of filled tile, long 100°W, lat 90°N, 90th percentile slope. The filling procedure 
removes systematic bias (left). Variations in resolution are still apparent (right).
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Table 1.  Distribution of void areas.  Of the 14,277 one-degree tiles, over 90 percent have void areas 
of 1 percent or less.  The remaining void areas are, at times, of significant size.  The spatial 
distribution of these voids is shown in Figure 2. 
 

Percent of area  
containing voids (v) 

Number of  
one-degree tiles 

Percent of 
total 

v = 0% 3965 27.8%

0% < v <= 1% 8990 63.0%

1% < v <= 5% 884 6.2%

5% < v <= 10% 223 1.6%

10% < v <= 25% 150 1.0%

v > 25% 65 0.4%

TOTAL 14277 100%
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Table 2.  Lengths of Degrees of the Parallel from Robinson and Sale (1969) 
 

Latitude of 
Southwest 
Corner of Tile 

Lengths of 
Degrees of the 
Parallel (meters) 

Latitude of 
Southwest 
Corner of Tile 

Lengths of 
Degrees of the 
Parallel (meters) 

0 111321 30 96488

1 111304 31 95506

2 111253 32 94495

3 111169 33 93455

4 111051 34 92387

5 110900 35 91290

6 110715 36 90166

7 110497 37 89014

8 110245 38 87835

9 109959 39 86629

10 109641 40 85396

11 109289 41 84137

12 108904 42 82853

13 108486 43 81543

14 108036 44 80208

15 107553 45 78849

16 107036 46 77466

17 106487 47 76058

18 105906 48 74628

19 105294 49 73174

20 104649 50 71698

21 103972 51 70200

22 103264 52 68680

23 102524 53 67140

24 101754 54 65578

25 100952 55 63996

26 100119 56 62395

27 99257 57 60774

28 98364 58 59135

29 97441 59 57478
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Table 3.  Lengths of Degrees of the Meridian from Robinson and Sale (1969) 
 

Latitude of 
Southwest 
Corner of Tile 

Lengths of 
Degrees of the 
Meridian 
(meters) 

Latitude of 
Southwest 
Corner of Tile 

Lengths of 
Degrees of the 
Meridian 
(meters) 

0 110567.3 30 110857.0

1 110568.0 31 110874.4

2 110569.4 32 110892.1

3 110571.4 33 110910.1

4 110574.1 34 110928.3

5 110577.6 35 110946.9

6 110581.6 36 110965.6

7 110586.4 37 110984.5

8 110591.8 38 111003.7

9 110597.8 39 111023.0

10 110604.5 40 111042.4

11 110611.9 41 111061.9

12 110619.8 42 111081.6

13 110628.4 43 111101.3

14 110637.6 44 111121.0

15 110647.5 45 111140.8

16 110657.8 46 111160.5

17 110668.8 47 111180.2

18 110680.4 48 111199.9

19 110692.4 49 111219.5

20 110705.1 50 111239.0

21 110718.2 51 111258.3

22 110731.8 52 111277.6

23 110746.0 53 111296.6

24 110760.6 54 111315.4

25 110775.6 55 111334.0

26 110791.1 56 111352.4

27 110807.0 57 111370.5

28 110823.3 58 111388.4

29 110840.0 59 111405.9
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Table 4.  Comparison of the slopes derived from EDNA aggregated to 30 arc-seconds and those 
derived from the SRTM.  Thirty-three percent was selected as the break point at which the mean 
slopes were affected by the presence of voids. 
 

Percent of the 
30 arc-second 
pixel containing 
voids 

Average 
squared error Variance Skill 

15% 67.458 0.6458 0.8036 
20% 69.542 0.6348 0.7968 
25% 87.338 0.5414 0.7358 
30% 95.669 0.4976 0.7054 
35% 102.266 0.4630 0.6804 
40% 119.976 0.3700 0.6083 
45% 116.082 0.3905 0.6249 
50% 128.389 0.3258 0.5708 
55% 126.233 0.3371 0.5807 
60% 146.872 0.2288 0.4783 
65% 131.053 0.3118 0.5584 
70% 146.307 0.2317 0.4814 
75% 136.028 0.2857 0.5345 
80% 129.814 0.3183 0.5642 

 
 
 
 


