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Longitudinal drift compression and pulse shaping for high-intensity particle beams
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High beam current can be achieved by longitudinally compressing bunched beams. The objective of
drift compression is to compress a long beam bunch by imposing an initial longitudinal velocity distribu-
tion over the length of the beam in the beam frame. The longitudinal dynamics of drift compression and
pulse shaping for high intensity particle beams are studied using a one-dimensional warm-fluid model.
Two self-similar drift compression solutions admitted by the one-dimensional warm-fluid equations are
derived. The pulse shaping problem is also solved such that an arbitrary input pulse shape can be shaped
into the pulse shapes required by the self-similar drift compression solutions.
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I. INTRODUCTION

In accelerators and storage rings, high beam current
can be achieved by longitudinally compressing bunched
beams. For example, in the currently envisioned configu-
rations for heavy ion fusion, it is necessary to longitudi-
nally compress the beam bunches by a large factor after
the acceleration phase and before the beam particles are
focused onto the fusion target. In order to obtain enough
fusion energy gain, the peak current for each beam is re-
quired to be of the order of 103 A and the bunch length
as short as 0.5 m. However, to deliver the beam particles
at the required energy, it is both expensive and technically
difficult to accelerate short bunches at high current. First,
because of the finite rise time of the accelerating waveform,
it is much easier to accelerate and transport beam bunches
longer than 10 m. Second, short bunches have higher cur-
rent (density) and therefore stronger space-charge effects
which can increase the beam emittance and induce halo
particles.

The objective of drift compression [1–7] is to compress
a long beam bunch by imposing an initial longitudinal ve-
locity distribution over the length of the beam in the beam
frame. As a result, the beam length is reduced as the
beam drifts downstream, until the space-charge force in
the longitudinal direction becomes strong enough to re-
move the initial velocity distribution. Different longitu-
dinal compression schemes have been studied in particle
simulations [1,2] and in numerical solutions of a cold-fluid
model [3–5]. There are also variations in the assumed ax-
ial line density profile of the bunched beam. In Haber’s
study [1], for example, the line density is uniform in the
middle of the pulse but falls off at the ends, whereas in
the study of Bisognano et al. [3] the line density is para-
bolic. The quality of drift compression is determined by
two factors. A good drift compression scheme should, first
of all, work for any reasonable beam pulse shape gener-
ated by accelerators, and second, the velocity distribution
initially imposed for the purpose of compression should
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be minimized when the compression is finished. Because
the beam length is much shorter after the compression,
it is difficult to apply an external field to eliminate the
residual longitudinal velocity distribution over the beam
length. In desirable drift compression schemes, the space-
charge force and the emittance in the longitudinal direction
are utilized to minimize the residual longitudinal velocity
distribution.

In this paper, we study the longitudinal drift compres-
sion and pulse shaping of high intensity beams using a one-
dimensional warm-fluid model. We first give two
self-similar drift compression solutions. The first solution
is characterized by a flattop density profile, a linear
velocity profile (i.e., a linear velocity tilt), and a parabolic
pressure profile, which will be referred to as the linear self-
similar drift compression solution. The second solution
is characterized by a parabolic density profile, a linear
velocity profile, and a double-parabolic pressure profile,
which will be referred to as the parabolic self-similar
drift compression solution. For the parabolic self-similar
drift compression solution, the residual longitudinal ve-
locity distribution can be eliminated by the space-charge
force and emittance. We then show how to shape an
arbitrary pulse shape into a parabolic form so that it can
be subsequently self-similarly compressed after a linear
velocity tilt is applied. More generally, we solve the pulse
shaping problem. That is, we calculate the initial velocity
distribution such that a given initial pulse shape gradually
evolves into the desired final pulse shape after a certain
length of time.

The paper is organized as follows. In Sec. II, the one-
dimensional warm-fluid equations with appropriate
boundary and initial conditions are introduced as a model
to describe the longitudinal dynamics of drift compres-
sion and pulse shaping. The self-similar drift compres-
sion solutions are derived in Sec. III, and an example
from heavy ion fusion is given. The general pulse
shaping problem is solved in Sec. IV, illustrated with two
examples.
© 2002 The American Physical Society 034401-1
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II. ONE-DIMENSIONAL WARM-FLUID MODEL
FOR LONGITUDINAL DYNAMICS

We use a one-dimensional warm-fluid model to describe
the longitudinal dynamics of drift compression and pulse
shaping. For the longitudinal electric field, the conven-
tional g-factor model is adopted with axial electric force
�eEz� and geometric factor �g� given by [5,8]

eEz � 2
ge2

g2

≠l

≠z
, g � 2 ln

rw

rb
. (1)

Here, e is the charge, l�t, z� is the line density, rw is the
wall radius, and rb is the average beam radius. We also
allow for an externally applied focusing force Fz � 2kzz.
In the beam frame moving with axial velocity bc relative
to the laboratory frame, the warm-fluid equations for the
line density l�t, z�, average longitudinal velocity yz�t, z�,
and longitudinal pressure pz�t, z� are given by [9,10]
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1 3pz

≠yz

≠z
� 0 . (4)

We treat g and rb as constants for present purposes. This
assumption simplifies the problem by decoupling the trans-
verse dynamics from the longitudinal dynamics. In reality,
when the beam is compressed, the beam radius rb will vary
due to the increase of the space-charge force in the trans-
verse direction. However, it is desirable to minimize the
variation in rb in order to keep the transverse dimension of
the drift compression system at a reasonable size, a goal
achievable by applying a nonperiodic focusing lattice with
increasing focusing field strength along the beam path. It
is possible to design the nonperiodic lattice in such a way
that it permits an asymptotically matched beam which has
minimal variations in rb [7]. In addition, the effects of the
variations in rb are further reduced due to the logarithmic
dependence of g and the fact that the space-charge force
term in Eq. (3) is smaller than the inertial term and the
convection term.

Equations (2)–(4) form a nonlinear hyperbolic system
of partial differential equations (PDEs). If kz and pz can
be neglected, Eqs. (2) and (3) have the same form as the
shallow-water equations. Equation (4) is a simplified ver-
sion of the pressure equation derived by Lund and David-
son [9,10], and it can be recast into the form

d
dt

µ
pz

l3

∂
�

µ
≠yz

≠t
1 yz

≠yz

≠z

∂ µ
pz

l3

∂
� 0 . (5)

In practical laboratory applications, the longitudinal
drift compression and pulse shaping are initiated by
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passing the bunched beam through a voltage gap, which is
located at a fixed axial position and has an adjustable volt-
age shape as a function of time. The typical length of the
voltage gap is in the range of centimeters, and the typical
voltage applied is hundreds of kilovolts [11]. For most
applications, we can safely assume

d ø zb , yz ø bc , (6)

where zb is the characteristic beam length, and d is the gap
length. From Eq. (6), it follows that

d
bc

ø
zb

yz
, (7)

which implies that the time it takes for the voltage gap to
transfer momentum to the bunched beam is much shorter
than the characteristic time of the longitudinal dynamics.
We therefore can model the physical effects of a voltage
gap by an instantaneously imposed longitudinal velocity
distribution across the beam length. By the same argu-
ment, a voltage gap can be used to instantaneously remove
a longitudinal velocity distribution, and two voltage gaps
can be used to replace one velocity distribution by another,
as long as Eq. (6) is satisfied. For drift compression appli-
cations, these operations can be more easily performed in
the upstream region when the beam length is longer and
Eq. (6) can be satisfied by a large margin. In terms of
the nonlinear PDE system, Eqs. (2)–(4), passing through
a voltage gap with a prescribed voltage profile is equivalent
to imposing an initial condition on yz�t, z� at t � 0. Our
goal is thus to study, using the one-dimensional warm-fluid
model, how the bunched beam is compressed and shaped
in the longitudinal direction by imposing different initial
velocity distributions.

III. SELF-SIMILAR DRIFT COMPRESSION
SOLUTIONS

Self-similar drift compression schemes preserve the
geometric shape of the bunched beam, as well as the den-
sity profile, the pressure profile, and the velocity distribu-
tion, while the beam length and amplitudes of the density,
velocity, and pressure profiles change with the time. The
nonlinear PDE system, Eqs. (2)–(4), admits at least
two self-similar drift compression solutions. The first
solution is characterized by a flattop density profile and
a parabolic pressure profile, and the second solution is
characterized by a parabolic density profile and a double-
parabolic pressure profile. Both solutions have a linear
velocity distribution (velocity tilt). In the present analysis,
we will refer to the first solution as the linear self-similar
drift compression solution and to the second solution as
the parabolic self-similar drift compression solution.

In the linear self-similar drift compression solution, the
z dependence and the t dependence for the field variables
are separated according to
034401-2
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l�t, z� � lb�t� , (8)

yz�t, z� � 2yzb�t�
z

zb�t�
, (9)

pz�t, z� � pzb�t�
z2

z2
b�t�

, (10)

dzb�t�
dt

� 2yzb�t� , (11)

where lb�t�, zb�t�, pzb�t�, and yzb�t� depend only on t.
The z dependences of l�t, z�, yz�t, z�, and pz�t, z� are il-
lustrated in Fig. 1. In the present analysis, we neglect the
effects due to the density discontinuity at the beam ends. In
general, the discontinuity will propagate into the beam at
the plasma wave speed and significantly modify the pro-
file shape. This erosion effect has been experimentally
observed [12]. Therefore, the analysis of the linear self-
similar drift compression solution presented here should
only be applied to the central region of the beam in drift
compression schemes where the beam has a flat density
profile in the middle and a special design shape near the
ends to reduce the effects of erosion [1]. A near flattop
pulse shape may be favorable in heavy ion fusion applica-
tions because it can be focused more easily onto the target.
It is interesting to know that such a self-similar flattop so-
lution indeed exists for the fluid equations in the central
region. The pulse shape near the ends for this type of drift
compression scheme is not expected to be self-similar, but
it still can be studied using the one-dimensional fluid equa-
tions. This topic is beyond the scope of this paper. In the
present analysis, we focus attention on the self-similar flat-
top region near the center of the beam.

Substituting Eqs. (8) and (9) into the continuity equation
(2), we obtain

dlb

dt
2

yzb

zb
lb � 0 . (12)

That is,

vz pz

z
z tb( )

v tzb( ) p tzb( )

λ

tb( )λ

z
z tb( )

z

z tb( )

FIG. 1. The z dependences of field variables for the linear self-
similar drift compression solution.
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1
lb

dlb

dt
1

1
zb

dzb

dt
� 0 �) zblb � const � Nb�2 ,

(13)

where Nb �
Rzb

2zb
dz l�t, z� is the total number of particles

in the beam pulse. Substituting Eqs. (9) and (10) into the
energy equation (4), we obtain

d
dt

ln

µ
pzb

z2
b

∂
1

d
dt

lnz5
b � 0 , (14)

and thus

z3
bpzb � const � W . (15)

Similarly, for the momentum equation (3), the z depen-
dence drops out as well, giving

2
d
dt

µ
yzb

zb

∂
1

y
2
zb

z2
b

1
kz

mg3 1
2r2

b

mg3lb

pzb

z2
b

� 0 . (16)

In terms of zb and s � bct,

d2zb

ds2 1
kz

mg3b2c2 zb 1
´

2
l

z3
b

� 0 , (17)

where ´l � �2r2
bW�mg3b2c2Nb�1�2 for the case of the

linear self-similar drift compression solution. Equa-
tions (13), (15), and (17) describe the dynamics of the
time-dependent variables lb�t�, zb�t�, and pzb�t�, and can
be solved to give the linear self-similar drift compression
solution.

A notable feature of the solution in Eq. (17) is that the
beam pressure peaks at the ends of the beam. Therefore,
the pressure gradient force is restoring, and the pressure
(emittance) term in Eq. (17) compresses the beam. In ad-
dition, there is no space-charge force due to the flattop
density profile. Both the externally applied force and the
pressure-gradient force are focusing. Equation (17) pre-
dicts a dramatic compression scenario where the beam lon-
gitudinally “implodes” because of the singularity of the
(focusing) pressure term in Eq. (17) as zb ! 0. Obviously,
this is not a desirable scheme for practical drift compres-
sion applications since the amplitude of the longitudinal
velocity significantly increases.

We now turn to the parabolic self-similar drift compres-
sion solution, which has several desirable features and is a
good candidate for practical applications. We consider the
class of solution to Eqs. (2)–(4) with

l�t, z� � lb�t�
µ
1 2

z2

z2
b�t�

∂
, (18)

yz�t, z� � 2yzb�t�
z

zb�t�
, (19)

pz�t, z� � pzb�t�
µ
1 2

z2

�t�z2
b

∂2

, (20)

dzb�t�
dt

� 2yzb�t� . (21)
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FIG. 2. The z dependences of field variables for the parabolic
self-similar drift compression solution.

The z dependences of l�t, z�, yz�t, z�, and pz�t, z� are
illustrated in Fig. 2.

Substituting Eqs. (18)–(20) into Eqs. (2) and (4), we
find that the z dependence drops out, and

dlb

dt
2

yzb

zb
lb � 0 , (22)

dpzb

dt
2 3

yzb

zb
pzb � 0 . (23)

Remarkably, but not surprisingly, for the momentum equa-
tion (3), the z dependence also drops out, giving

2
dyzb

dt
2

e2g
mg5

2lb

zb
1

kzzb

mg3 2
4r2

bpzb

mg3lbzb
� 0 . (24)

In general, Eqs. (21)–(24) form a coupled ordinary differ-
ential equation system. Most remarkably, these equations
recover the longitudinal envelope equation [8,13]. From
Eqs. (21)–(23), we obtain

1
lb

dlb

dt
1

1
zb

dzb

dt
� 0 �) zblb � const �

3
4

Nb ,

(25)

1
pzb

dpzb

dt
1

3
zb

dzb

dt
� 0 �) z3

bpzb � const � W ,

(26)

where Nb �
Rzb

2zb
dz l�t, z� is the total number of particles

in the bunch. Equation (26) implies that pzb increases as
zb decreases. The energy equation (4) indicates that the
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charge bunch is heated in the longitudinal direction when
it is compressed. Substituting Eqs. (21), (25), and (26)
into Eq. (24) we obtain

d2zb

ds2 1
kz

mg3b2c2 zb 2
Kl

z2
b

2
´

2
l

z3
b

� 0 , (27)

where s � bct, Kl � 3Nbe2g�2mg5b2c2 is the effec-
tive longitudinal self-field perveance, and ´l � �4r2

bW�
mg3b2c2Nb�1�2 is the longitudinal emittance for the para-
bolic self-similar drift compression solution. Equation (27)
is the familiar longitudinal envelope equation [8,13]. Fi-
nally, the solutions for lb�t�, zb�t�, and pzb�t� can be ob-
tained by solving the longitudinal envelope equation (27)
numerically.

The longitudinal envelope equation (27) can be inte-
grated once to give the energy relation

�z02b0 2 z02b � �
kz

2mg3b2c2 �z2
b 2 z2

b0�

1 2Kl

µ
1
zb

2
1

zb0

∂

1 ´2
l

µ
1

z2
b

2
1

z2
b0

∂
, (28)

where zb0 � zb�s � 0� and z0b0 � �dzb�ds�s�0. Contrary
to the linear self-similar drift compression solution, both
the space-charge and the emittance terms are defocusing.
As a result, the velocity amplitude yzb � 2z0b�t� decreases
as the beam is compressed. It is clear from Eq. (28) that
the minimum beam length zb min that can be achieved is
given by

z02b0 �
kz

2mg3b2c2 �z2
b min 2 z2

b0�

1 2Kl

µ
1

zb min
2

1
zb0

∂

1 ´2
l

µ
1

z2
b min

2
1

z2
b0

∂
, (29)

when z0b � 0.
For given values of the initial and final beam lengths zbf

and zb0, we want to minimize the velocity tilt (momentum
spread) �z0bf , z0b0� and the beam path length sf . However,
z0bf , z0b0, and sf cannot be chosen arbitrarily because of
the constraint imposed by the energy relation (28). From
Eq. (27), the beam path length required for drift compres-
sion can be expressed as
sf � 2
Z zbf

zb0

dzbq
z02b0 2

kz

2mg3b2c2 �z2
b 2 z2

b0� 2 2Kl�
1
zb

2
1

zb0
� 2 ´

2
l � 1

z2
b

2
1

z2
b0

�
. (30)
The integral in Eq. (30) can be carried out analytically
in closed form when kz � 0 [14], whereas a numerical
evaluation of the integral for the general case is a fairly
straightforward task.
As an example of drift compression in a heavy ion fu-
sion driver [15], we consider a Cs1 beam with rest mass
m � 133mp , where mp is the proton mass, kinetic en-
ergy �g 2 1�mc2 � 2.5 GeV, and initial half-beam length
034401-4
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FIG. 3. Longitudinal drift compression of a heavy ion fusion
beam.

zb0 � 9.5 m. Our goal is to compress the beam by a fac-
tor of 16, i.e., zbf � zb0�16 � 0.6 m. The final average
current is taken to be �If� � 2500 A. The longitudinal
emittance is taken to be ´l � 7.7 3 1026 m, and effec-
tive longitudinal self-field perveance Kl � 1.3 3 1024 m
with g � 2.0. Assuming no external focusing �kz � 0�
and z0b0 � 20.023, we obtain sf � 421.5 m by evaluat-
ing the integral in Eq. (30), and z0bf � 20.01 by solving
Eq. (28). The beam half-length zb�s�, obtained numeri-
cally from the longitudinal envelope equation (27), is plot-
ted together with the velocity tilt z0b�s� in Fig. 3.

In this example, the velocity amplitude is almost a con-
stant until near the end of the drift compression, where
the beam has been compressed by a large factor and the
space-charge force becomes significant.

IV. LONGITUDINAL PULSE SHAPING

The parabolic self-similar drift compression solution de-
scribed in Sec. III requires the initial beam pulse shape to
be parabolic. However, the beam pulse shape is generally
not parabolic after the acceleration phase in practical ac-
celerator applications. It is necessary to shape the beam
pulse into a parabolic form before imposing a velocity tilt.
In the subsequent analysis, longitudinal pressure effects
will be omitted because in many applications, such as the
case studied in Sec. III for heavy ion fusion, the pressure
effects are negligible. The external focusing force will also
be omitted in the subsequent analysis. In general, the pulse
shaping problem can be posed as finding the initial velocity
distribution V �z� � yz�t � 0, z� such that a given initial
pulse shape L�z� � l�t � 0, z� evolves into a given final
pulse shape LT �z� � l�t � T , z� at time t � T . In par-
ticular, we need to solve the pulse shaping problem for
the case where LT �z� is a parabolic function of z for the
scheme of parabolic self-similar drift compression.

When studying the pulse shaping problem, it is conve-
nient to choose the following normalized variables:

yz �
yz

bc
, z �

z
zb0

, l �
l

lb0
, t �

tbc
zb0

,

(31)
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where zb0 is the initial beam half-length and lb0 is the
initial beam line density at the beam center �z � 0�. In the
normalized variables, the one-dimensional fluid equations,
neglecting pressure effects and external focusing, are given
by

≠l

≠t
1

≠

≠z
�lyz� � 0 , (32)

≠yz

≠t
1 yz

≠yz

≠z
1 Kl

≠l

≠z
� 0 , (33)

where Kl � lb0e2g�mg5b2c2 is the normalized lon-
gitudinal perveance. In Eqs. (32) and (33), we dropped
the overbar notation for the normalized variables for
simplicity.

As noted in Sec. III, the space-charge force is important
only near the end of drift compression. Since pulse shap-
ing is expected to be performed in the upstream region
where the pulse length is long enough for condition (6)
to be satisfied, Kl will be treated as a small parameter in
the following study. We first solve the pulse shaping prob-
lem to zeroth order in Kl , and then carry out the analysis
to determine the first-order corrections. To order lowest
order, neglecting the Kl term in Eq. (33), the momentum
equation is decoupled from the continuity equation, which
gives

≠l

≠t
1

≠

≠z
�lyz� � 0 , (34)

≠yz

≠t
1 yz

≠yz

≠z
� 0 . (35)

Equations (34) and (35) can be solved by integrating along
characteristics. On the characteristics defined by

C:
dz
dt

� yz , (36)

Eqs. (34) and (35) are

dl

dt
� 2l

≠yz

≠z
, (37)

dyz

dt
� 0 . (38)

Because dyz�dt � 0 on C, the family of characteristics C
are straight lines in the �t, z� plan, which can be represented
as

C: z � j 1 V �j�t , (39)

where

V �j� � yz�t � 0, j� . (40)

The solution for yz�t, z� can be formally written as

yz�t, z� � V ���j�t, z���� , (41)

where j�t, z� as a function of t and z is determined from
Eq. (39).
034401-5
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From Eqs. (41) and (39), four useful identities can be
derived, i.e.,

≠j

≠z
�

1
1 1 V 0�j�t

, (42)

≠j

≠t
�

2V �j�
1 1 V 0�j�t

, (43)

≠yz

≠z
�

V 0�j�
1 1 V 0�j�t

, (44)

≠yz

≠t
�

2V �j�V 0�j�
1 1 V 0�j�t

. (45)

From Eqs. (37) and (44) we obtain

d lnl

dt
�

2V 0�j�
1 1 V 0�j�t

on C . (46)

Since j is a constant on C, Eq. (46) can be integrated to
give

lnl � lnl�t � 0, j� 1
Z t

0

2V 0�j�
1 1 V 0�j�t

dt

� lnL�j� 1 ln�1 1 V 0�j�t� , (47)

where L�z� � l�t � 0, z� is the initial line density profile.
The solution to Eq. (46) for l�t, z� is

l�t, z� �
L�j�

1 1 V 0�j�t
. (48)

For the pulse shaping problem, the final line density
profile LT �z� � l�t � T , z� is specified. We therefore
obtain

LT �z� � LT �j 1 V �j�T � �
L�j�

1 1 V 0�j�T
, (49)

which can be viewed as an ordinary differential equation
for V �j�. It can be simplified using the variable U�j�
defined by

U�j� � j 1 V �j�T . (50)

In terms of U�j�, Eq. (49) becomes

LT �U�dU � L�j�dj . (51)

Finally, U�j� is determined by solving Eq. (51) for the
given functional forms LT �z� and L�z�, and with the ap-
propriate boundary conditions. We find that V �j� is simply
related to U�j� by

V �j� �
U�j� 2 j

T
. (52)
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Note that U�j� does not depend on T , and V �j� is linearly
proportional to 1�T . To shorten the beam path length
for pulse shaping, we need only to linearly increase the
amplitude of the initial velocity distribution V �j�.

We consider two examples with the following symme-
tries:

yz�t, 2z� � 2yz�t, z� , (53)

l�t, 2z� � l�t, z� , (54)

which imply the boundary conditions for V �j� and U�j�
corresponding to

V �j � 0� � 0 , (55)

U�j � 0� � 0 . (56)

Example 1—Pulse shaping without compression: We
first consider the case where

L�z� �

8<
:

1 2 zm, 0 # z # 1 ,
0, 1 , z ,
L�2z�, z , 0 ,

(57)

LT �z� �

8><
>:

�1 2 zn� m�n11�
n�m11� , 0 # z # 1 ,

0 1 , z ,
L�2z�, z , 0 .

(58)

Here, m, n fi 21, and the coefficient m�n 1 1��
n�m 1 1� in the expression for LT �z� assures the conser-
vation of the total number of particles. Equation (51) can
integrated to give∑

U�j� 2
U�j�n11

n 1 1

∏
m�n 1 1�
n�m 1 1�

� j 2
jm11

m 1 1
. (59)

The parabolic self-similar drift compression solution cor-
responds to n � 2. In this case, there are three solutions
for U�j�. The solution satisfying the boundary condition
(56) is

U�j� � 2
1 2 i

p
3 1

3
p

22 p2

3
p

4 p
, (60)

where

p �
3

q
23a 1

p
24 1 9a2 , (61)

a �
2�m 1 1�

3m

µ
j 2

jm11

m 1 1

∂
. (62)

For a large value of m ¿ 1, L�z� has a flattop shape with
a fast falloff near the ends of the pulse. Equations (60) and
(52) then give the initial velocity distribution V �z� neces-
sary to shape a flattop bunched beam into a parabolic shape
which can be self-similarly compressed after imposing a
linear velocity tilt. In Fig. 4, LT �z� � �45�32� �1 2 z2�
and L�z� � 1 2 z15 are plotted versus z, together with
V �z�.
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FIG. 4. Initial pulse shape L�z� � 1 2 z15 and final pulse
shape LT �z� � �45�32� �1 2 z2� are plotted in (a). The initial
velocity V �z� given by Eqs. (56) and (52) is plotted in (b).

Example 2—Pulse shaping with compression: In this
example, a beam pulse is compressed while being shaped.
We consider the case where

L�z� �

8<
:

1 2 zm, 0 # z # 1 ,
0, 1 , z ,
L�2z�, z , 0 ,

(63)

LT �z� �

8><
>:

�1 2 �az�n� am�n11�
n�m11� , 0 # z #

1
a ,

0, 1
a , z ,

L�2z�, z , 0 ,

(64)

where a . 1 is the compression factor. Again, the coeffi-
cient ~ m�n 1 1��n�m 1 1� in the expression for LT �z�
assures the conservation of the total number of particles.
Equation (51) can be integrated to giveΩ

aU�j� 2
�aU�j��n11

n 1 1

æ
m�n 1 1�
n�m 1 1�

� j 2
jm11

m 1 1
,

(65)

which is identical to Eq. (59) if aU�j� is replaced by
U�j�. It is easy to verify that aU�j � 1� � 1 and there-
fore

V �j � 1� �
�1�a 2 1�

T
. (66)
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For the case of a beam being shaped but not compressed,
a � 1 and V �j � 1� � 0. When a . 1, the beam is
simultaneously being shaped and compressed, and V �j �
1� , 0. An inward velocity at the beam ends is needed to
compress the beam. Plotted in Fig. 5 are L�z�, LT �z�, and
V �z� for the case where m � 15, n � 2, and a � 3.

To complete the study on pulse shaping, we now carry
out the analysis to O�Kl�. We express

l�t, z� � l0�t, z� 1 l1�t, z� , (67)

yz�t, z� � yz0�t, z� 1 yz1�t, z� . (68)

Here, l0�t, z� and yz0�t, z� are the leading-order solutions
obtained in Eqs. (48) and (41). To O�Kl�, Eqs. (32) and
(33) can be expressed asµ

d
dt

∂
0
l1 �

≠l1

≠t
1 yz0

≠l1

≠z

� 2l1
≠yz0

≠z
2

≠

≠z
�l0yz1� , (69)

µ
d
dt

∂
0
yz1 �

≠yz1

≠t
1 yz0

≠yz1

≠z

� 2yz1
≠yz0

≠z
2 Kl

≠l0

≠z
. (70)
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FIG. 5. Initial pulse shape L�z� � 1 2 z15 and final pulse
shape LT �z� � �135�32� �1 2 9z2� are plotted in (a). The ini-
tial velocity V �z� given by Eqs. (56) and (52) is plotted in (b).
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In the above equations, � d
dt �0 �

≠

≠t 1 yz0
≠

≠z is the total
time derivative along the unperturbed characteristics, i.e.,

C0: z � j 1 V0�j�t . (71)

Equation (70) is an inhomogeneous ordinary differential
equation for yz1 on the unperturbed characteristics C0. The
solution to the corresponding homogeneous equation is
034401-8
yz1�t, z� �
V1�j�

1 1 V 0
0�j�t

, (72)

where V1�j� � yz1�t � 0, j�, and j�t, z� is determined as
a function of t and z from Eq. (71). Using the method of
variational coefficients, the solution to Eq. (70) is found to
be
yz1 �
1

1 1 V 0
0�j�t

Ω
V1�j� 2 Kl

≠

≠j

µµµ
L0�j�
V 0

0�j�
ln�1 1 V 0

0�j�t�
∂∂∂æ

. (73)

In deriving Eq. (73), use has been made of

≠l0

≠z
�

≠l0

≠j

≠j

≠z
�

≠l0

≠j

1
1 1 V 0

0�j�t
. (74)

By the same procedure, Eq. (69) can be integrated to give

l1 �
L1�j�

1 1 V 0
0�j�t

2
1

1 1 V 0
0�j�t

≠

≠j

3

Ω
L0�j�V1�j�t
1 1 V 0

0�j�t
2 KlL0�j�

≠

≠j

∑
L0�j�
V 0

0�j�

∏
V 0

0�j�t 2 ln�1 1 V 0
0�j�t�

�1 1 V 0
0�j�t�2

2 Kl
L

2
0�j�

V 0
0�j�

V 00
0 �j�

t2

�1 1 V 0
0�j�t�2

æ
.

(75)

At time t � T , we obtain

LT �z� � l0�t � T , z� 1 l1�t � T , z� . (76)

Since LT �z� and L�z� are prescribed in the pulse shaping problem, we take LT1�z� � 0 and L1�z� � 0. This results in

V1�j� � Kl
≠

≠j

∑
L0�j�
V 0

0�j�

∏
V 0

0�j� 2 ln�1 1 V 0
0�j�T ��T

1 1 V 0
0�j�T

1 Kl
L0�j�
V 0

0�j�
V 00

0 �j�
T

1 1 V 0
0�j�T

1 c0 . (77)
The constant c0 is determined from the boundary condition
for V1�j�. For cases with the symmetries in Eqs. (53)
and (54), c0 � 0 because V 0

0�j� and L0�j��V 0
0�j� are even

functions and their first derivatives vanish at j � 0.
From Eq. (77), the amplitude of the first-order cor-

rection V1�j� increases with T . To be precise, V1�j�
is linearly proportional to KlT for small V 0

0�j�T . This
dependence is the result of the accumulation of space-
charge-induced corrections over time. To reduce the space-
charge-induced corrections, we can increase the amplitude
of V0�j� so that T , the duration of the pulse shaping, is
reduced.

V. CONCLUSIONS AND FUTURE WORK

To summarize, we studied the longitudinal dynamics
of drift compression and pulse shaping using a one-
dimensional warm-fluid model. It was found that at least
two self-similar drift compression solutions exist for the
one-dimensional warm-fluid equations: the linear self-
similar drift compression solution and the parabolic self-
similar drift compression solution. Detailed analysis
showed that the latter solution has several desirable
features and is a good candidate for practical drift com-
pression schemes. We also solved the pulse shaping
problem perturbatively in the weak space-charge limit,
such that an arbitrary pulse shape produced after the
acceleration phase can be shaped into the pulse shapes
required by the self-similar drift compression solutions.
Besides the two self-similar drift compression solutions
derived here, the one-dimensional warm-fluid equations
may admit other self-similar drift compression solutions
that can be used in drift compression applications. A
systematic method to discover families of self-similar
drift compression solutions will provide more possibilities
for different drift compression applications. In addition,
extending the solution of the pulse shaping problem to the
strong space-charge region will enable us to modify the
pulse shape over the entire beam path with more accuracy.
In this region, it is necessary to solve the fluid equations
numerically to study the influence of space charge on the
profile evolution. An efficient algorithm using Lagrangian
coordinates is being developed. New results in these areas
will be reported in future publications.
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