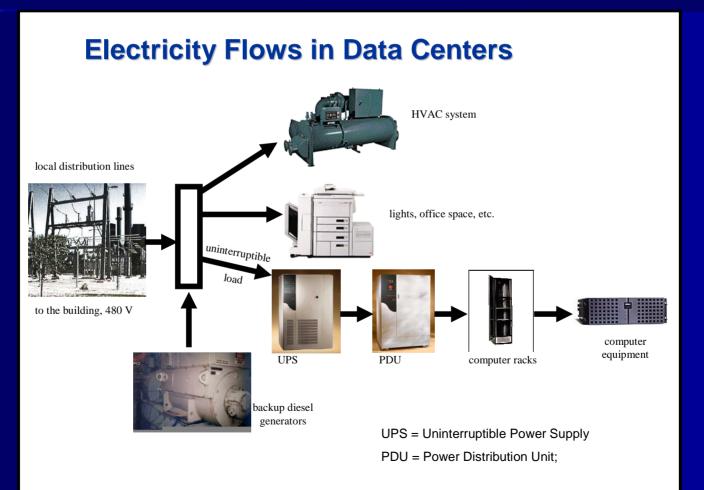
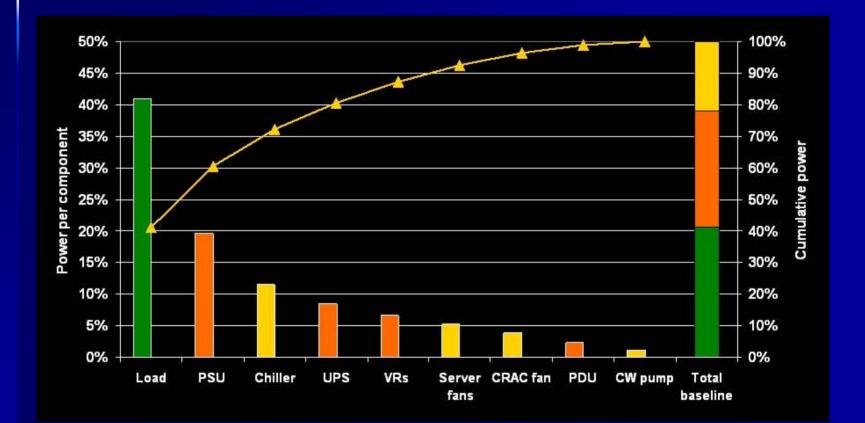
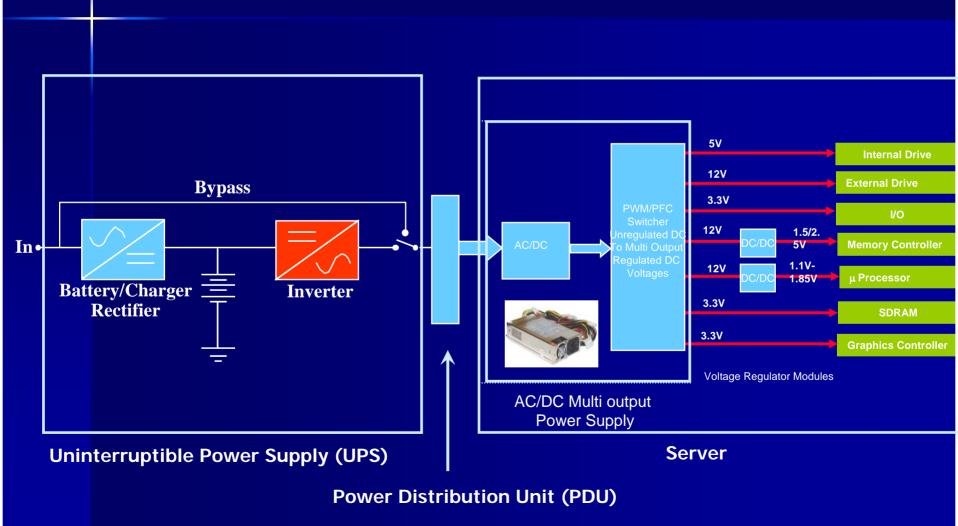

Data Center Power Distribution



July 19, 2007 William Tschudi wftschudi@lbl.gov


Percentage of power delivered to IT equipment

Benchmarking energy end use



Overall power use in Data Centers

Courtesy of Michael Patterson, Intel Corporation

Data Center power conversions

Data Center Power Delivery System

UPS

Power Dist 98 - 99% Power Supply 68 - 72% DC/DC 78 - 85%

The heat generated from the losses at each step of power conversion requires additional cooling power

Power for cooling can equal or exceed the direct losses

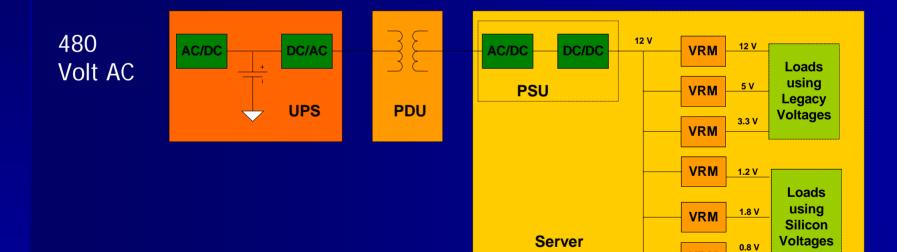
Prior research illustrated large losses in power conversion

Factory Measurements of UPS Efficiency (tested using linear loads) 100% 95% **Power Supplies** 90% Efficiency in IT equipment 85% 80% 85% Flvwheel UPS **Double-Conversion UPS** 75% 80% **Delta-Conversion UPS** 75% 70% 0% 20% 40% 60% 80% Efficiency 70% Percent of Rated Active Power Load 65% Uninterruptible Power % 60% Supplies (UPS) 55% Average of All Servers 50% 45% 0% 10% 20% 30% 50% 70% 80% 90% 100% 40% 60% % of Nameplate Power Output

100%

UPS labeling

- Based upon proposed European Standard
- Possible use in Energy Star program
- Possible use in Utility incentive programs
- Possible use in Federal Procurement specs

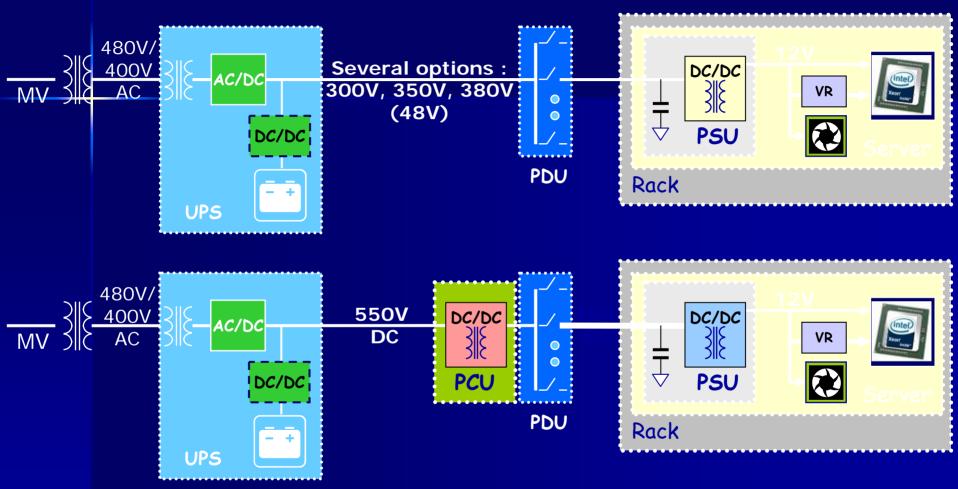

UPS-System

Manufacturer Model		SFOE USV1A	
Nominal power kW ¹⁾ / kVA ²⁾	XXX / XXX		
Mode of operation		<u> fēr</u>	
Low losses			
Losses < 2 %			A
Losses < 4 %			
Losses < 6 %			
Losses < 8 %			
Losses < 10 %			
Losses < 12 %			
Losses >= 12 %			
High losses			
Energy losses kWh / year ³⁾		xx.x	xx.x
Energy losses kWh at 2'000 h standby		xx.x	xx.x
Filtering of net disturbances	U _N = 100 4		
Outage	∿—	~	> X ms
Voltage interruption	$\sim \sim$	~	> X ms
Over- and undervoltages	\sim	~	> X ms
Voltage sags/brownouts	$\sim \sim \sim$	~	> X ms
Harmonic voltages	\sim	~	
Frequency variations	$\sim \sim \sim$	~	> X ms
Fast transients	\sim	~	< XXX % U _N
Energy loaded transients	\sim	~	< XXX % U _N
Power factor and harmonic distortion No declaration for UPS-6ystems with a normal power higher then 10 KVA		λ / THD ⁵⁾	
at nominal power in kW 10		x.xx / xx.x %	x.xx / xx.x %
at nominal power in kVA 2)		x.xx / xx.x %	x.xx / xx.x %
at asymmetric nonlinear load 2)		x.xx / xx.x %	x.xx / xx.x %
1) at ohmic load			

1) at ohmic load 2) at non-linear load according to EN 50091 2) Energy losses at ohmic continuous load with 75 % of nominal powe 4) U₄ – Nominal output votage: Filtering is sufficient, if the output votage fulfile EN 50150. 5) Power factor X, i Totali harmonic distriction of the input current 8PG-Directions for UPB-9xstems

Typical AC distribution today

VRM


Distribution considerations

- Distributing higher voltage AC or DC to the load is more efficient
- Less copper at higher voltage copper cost is very high
- Safety is key consideration
- Electricians are needed at higher voltages
- Disconnecting DC creates an arc
- UL rated equipment exists
- Equipment in use is rated to 600V. now.

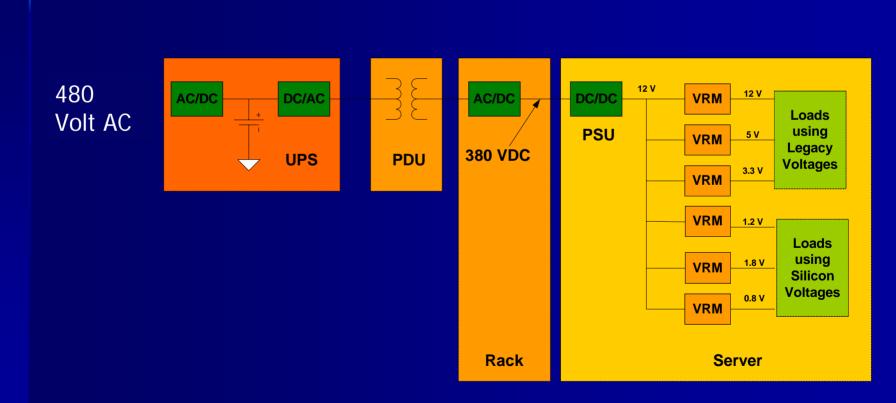
Thomas Edison:

"My personal desire would be to prohibit entirely the use of alternating currents. They are as unnecessary as they are dangerous. I can therefore see no justification for the introduction of a system which has no element of permanency and every element of danger to life and property."

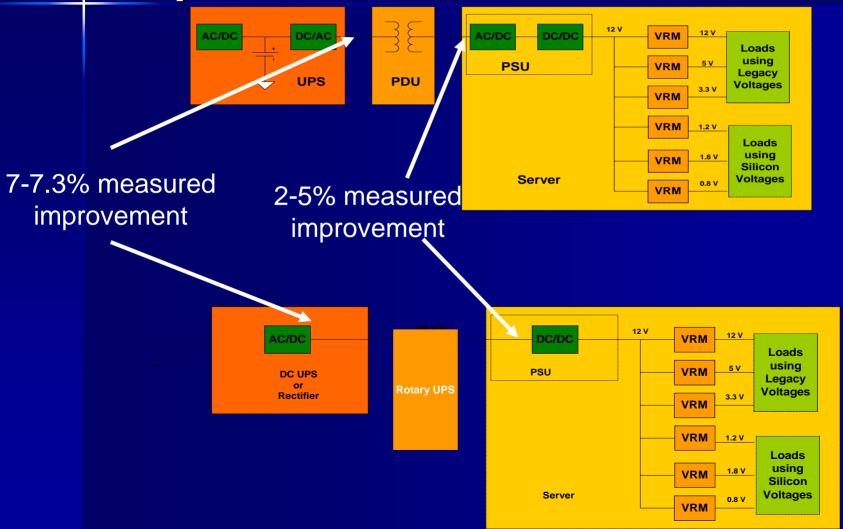
Various DC architectures

Courtesy of Annabelle Pratt, Intel

380 V. DC Demonstration



- Side-by-side comparison of traditional AC system with new DC system
 - Facility level distribution
 - Rack level distribution
- Power measurements at conversion points
- Servers modified to accept 380 V. DC
- Artificial loads to more fully simulate data center


Facility-level 380 V. DC distribution

Rack-level DC distribution

Measured Best in Class AC system loss compared to DC

Picture of demonstration set-up – see video for more detail

Demonstration Highlights

- All equipment was commercially available and UL rated.
- Connectors at the IT equipment need to be standardized
- Typical energy savings can be 20% or more
- Reliability is expected to be improved fewer points of failure
- In the long term, first cost could be lower

Most of the Center Can Operate on DC

 DC lighting was included

Most of the Center Can Operate on DC

Lighting

HVAC

On-Site Power Production (DG)

Implications could be even better for a typical data center

- Redundant UPS and server power supplies operate at reduced efficiency
- Cooling loads would be reduced.
- Both UPS systems used in the AC base case were "best in class" systems and performed better than benchmarked systems – efficiency gains compared to typical systems could be higher.
- Further optimization of conversion devices/voltages is possible

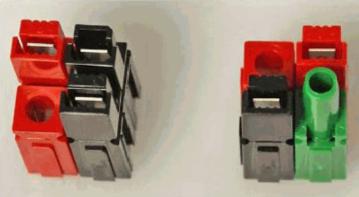
Data Center Power Delivery

For a typical center energy savings could exceed 20%

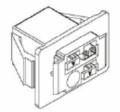
	UPS	XFMR	PS	Total Efficiency	
Typical Efficiency	85.00%	98.00%	73.00%	60.81%	
DC Option	92.00%	100.00%	92.00%	84.64%	
	Compute L	oad (W)	Input Load	(W)	Difference
Typical Efficiency	10,000		16444.93		
Optimized DC Option	10,000		11814.74		28.16%

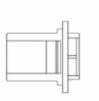
Connectors exist

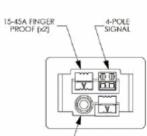
PowerPak configurations for 400 VDC


30 amp Receptacle Sun Micro 10 Amp Receptacle Intel

30 amp Plug wlatch Sun Micro


10 Amp Plug w/latch Intel





10A PIN-

Connectors with the right form factor are being developed

DC Power – path forward:

- DC power pilot installation(s)
- Standardize distribution voltage
- Standardize DC connector and power strip design
- Server manufacturers develop power supply specifications (including disturbances)
- Power supply manufacturers develop prototypes
- UL and communications certification
- Address other types of IT equipment (storage, switches, etc.)

Industry Partners in the Demonstration

Equipment and Services Contributors:

Alindeska Electrical Contractors APC Baldwin Technologies Cisco Systems Cupertino Electric Dranetz-BMI Emerson Network Power Industrial Network Manufacturing (IEM) Intel Nextek Power Systems Pentadyne Rosendin Electric SatCon Power Systems Square D/Schneider Electric Sun Microsystems UNIVERSAL Electric Corp.

Other firms collaborated

Stakeholders:

380voltsdc.com CCG Facility Integration Cingular Wireless Dupont Fabros EDG2, Inc. EYP Mission Critical Gannett Hewlett Packard Morrison Hershfield Corporation NTT Facilities RTKL SBC Global TDI Power Verizon Wireless

Additional Information

Lawrence Berkeley National Laboratory

Bill Tschudi, Principal Investigator wftschudi@lbl.gov

EPRI Solutions

 Brian Fortenbery <u>bfortenbery@eprisolutions.com</u>

Ecos Consulting

My Ton <u>mton@ecosconsulting.com</u> website: http://hightech.lbl.gov/datacenters/ **Discussion/Questions??**